
Project: Decentralized Foundation
Website: https://defo.app
Platform: Avalanche Network
Language: Solidity
Date: May 12th, 2022

https://defo.app

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 27

Our Methodology ………………………………………………………………………………... 28

Disclaimers ………………………………………………………………………………………. 30

Appendix

● Code Flow Diagram ……………………………………………………………………... 31

● Slither Results Log ………………………………………………………………………. 44

● Solidity static analysis ….……………………………………………………………….. 51

● Solhint Linter …………………………………………………………………….……….. 67

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Defo Contracts team to perform the Security audit of
the Defo Contracts Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 12th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Decentralized Foundation (DEFO) is a DeFi-As-A-Service protocol on the AVAX

network that aims to leverage the world of DeFi to generate funds while also helping

the most in need through the charity donations.

● The Defo Contracts have functions like burn, mint, initialize, fallback, receive, isPair,

RedeemMint, MintGem, BoostGem, RedeemMint, transferLog, Compound,

unstakeTokens, etc.

● The Defo Contracts inherit the Ownable, ERC20, ERC20Burnable,

AccessControlUpgradeable, OwnableUpgradeable, Initializable, IERC20,

SafeERC20, IERC721Enumerable, SafeMath, Address, Context, Strings, console

standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Defo Contracts Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 DefoErc20.sol

File 1 MD5 Hash B8FEE41D9A557EFC48B3AEC65503F64A

File 2 DefoLimiter.sol

File 2 MD5 Hash 0ABD9395AB9D4294244AFB56652571FC

File 3 Diamond.sol

File 3 MD5 Hash C5C1B4ECBF45A50FEF6F03467D06CC0D

File 4 DiamondInit.sol

File 4 MD5 Hash A526ABD7D1B125AD8A768B1C0BDB9F43

File 5 LpManager.sol

File 5 MD5 Hash 32336CBEFBCC63799C439768750364EB

File 6 Redeem.sol

File 6 MD5 Hash 652B270D7F0A3833F190AEAD9E5DE5CE

File 7 DiamondCutFacet.sol

File 7 MD5 Hash FB675C8189FD9D6CD4CAF93BB200A98F

File 8 DiamondLoupeFacet.sol

File 8 MD5 Hash 84553C4947D9917B1C73F83BFCF62B68

File 9 ERC721Enumerable.sol

File 9 MD5 Hash 30EA4861F52D9AD443509CB25D101CAD

File 10 ERC721Facet.sol

File 10 MD5 Hash F7636C5D8C29AE0C59BD5D7EF9DE4847

File 11 GemFacet.sol

File 11 MD5 Hash 198FD8793B0BCC22198CF2223828B723

https://github.com/defoundationxyz/defo-contract/blob/main/contracts/DefoErc20.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/DefoLimiter.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/Diamond.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/DiamondInit.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/LpManager.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/Redeem.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/DiamondCutFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/DiamondLoupeFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/ERC721Enumerable.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/ERC721Facet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/GemFacet.sol

File 12 GemGettersFacet.sol

File 12 MD5 Hash 6AE044E55A2E950003F4C8C2ABD1122E

File 13 NodeLimiterFacet.sol

File 13 MD5 Hash 608D61E7914E26EB76546F82EC9FC450

File 14 OwnerFacet.sol

File 14 MD5 Hash EA1DC6EABD981C327EF21C348B17D616

File 15 OwnershipFacet.sol

File 15 MD5 Hash D392728362597E7666A0FCFF960A8CB9

File 16 VaultStakingFacet.sol

File 16 MD5 Hash 5A29BA843AB1E10EE747D70FF6E3F658

Audit Date May 12th,2022

https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/GemGettersFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/NodeLimiterFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/OwnerFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/OwnershipFacet.sol
https://github.com/defoundationxyz/defo-contract/blob/main/contracts/facets/VaultStakingFacet.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 DefoErc20.sol
● Name: Defo Token

● Symbol: DEFO

● Decimal: 18

● Total Supply: 0.2 Million

YES, This is valid.

File 2 DefoLimiter.sol
● Total Supply a wallet can sell: 10

● Time Frame Expiration: 1 days

YES, This is valid.

File 3 Diamond.sol
● Find facet for function that is called and

execute the function if a facet is found

YES, This is valid.

File 4 DiamondInit.sol
● It initializes the diamond

YES, This is valid.

File 5 LpManager.sol
● It manages LP Tokens which includes, adding

liquidity, create pair, buffer system, etc.

YES, This is valid.

File 6 Redeem.sol
● Redeem contract allows to redeem from

presale and second presale.l

● It has functions like: setNodeAddress,

flipActive, etc.

YES, This is valid.

File 7 DiamondCutFacet.sol
● DiamondCutFacet has functions like:

diamondCut.

YES, This is valid.

File 8 DiamondLoupeFacet.sol
● DiamondLoupeFacet has functions like:

YES, This is valid.

facets, facetFunctionSelectors, facetAddress,

etc.

File 9 ERC721Enumerable.sol
● ERC721Enumerable has functions like:

tokenOfOwnerByIndex, tokenByIndex, etc.

YES, This is valid.

File 10 ERC721Facet.sol
● ERC721Facet has functions like: balanceOf,

tokenURI, ownerOf, getApproved, etc.

YES, This is valid.

File 11 GemFacet.sol
● GemFacet has functions like:

_distributePayment, _sendRewardTokens.

YES, This is valid.

File 12 GemGettersFacet.sol
● GemGettersFacet has functions like: GemOf,

GetGemTypeMetadata, etc.

YES, This is valid.

File 13 NodeLimiterFacet.sol
● NodeLimiterFacet has functions like:

transferLimit, addToWhitelist, etc.

YES, This is valid.

File 14 OwnerFacet.sol
● OwnerFacet has functions like: setTaperRate,

ChangePaymentToken, etc.

YES, This is valid.

File 15 OwnershipFacet.sol
● OwnershipFacet has functions like:

transferOwnership, etc.

YES, This is valid.

File 16 VaultStakingFacet.sol
● VaultStakingFacet has functions like:

showStakedAmount, unstakeTokens,etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 2 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderate
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderate
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderate
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 16 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Defo Contracts Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Defo Contracts Protocol.

The Defo Contracts Protocol team has provided unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Defo Contracts Protocol smart contract code in the form of a Github

weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://defo.app which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://defo.app

AS-IS overview

DefoErc20.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _afterTokenTransfer internal Passed No Issue
20 burn write Passed No Issue
21 burnFrom write Passed No Issue
22 owner read Passed No Issue
23 onlyOwner modifier Passed No Issue
24 renounceOwnership write access only Owner No Issue
25 transferOwnership write access only Owner No Issue
26 _transferOwnership internal Passed No Issue
27 onlyLiquidityPoolManager modifier Passed No Issue
28 getLiquidityPoolManager read Passed No Issue
29 setLiquidityPoolManager write access only Owner No Issue
30 recoverLostTokens external access only Owner No Issue

DefoLimiter.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchaine
d

internal access only
Initializing

No Issue

4 owner read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 transferOwnership write access only Owner No Issue
8 _transferOwnership internal Passed No Issue
9 __AccessControl_init internal access only

Initializing
No Issue

10 __AccessControl_init_unc
hained

internal Passed No Issue

11 onlyRole modifier Passed No Issue
12 supportsInterface read Passed No Issue
13 hasRole read Passed No Issue
14 _checkRole internal Passed No Issue
15 getRoleAdmin read Passed No Issue
16 grantRole write access only Role No Issue
17 revokeRole write access only Role No Issue
18 renounceRole write Passed No Issue
19 _setupRole internal Passed No Issue
20 _setRoleAdmin internal Passed No Issue
21 _grantRole internal Passed No Issue
22 _revokeRole internal Passed No Issue
23 initialize write Passed No Issue
24 onlyDefoToken modifier Passed No Issue
25 checkTimeframe modifier Passed No Issue
26 notDenied modifier Passed No Issue
27 isPair read Passed No Issue
28 transferLog external access only Defo

Token
No Issue

29 setMaxPercentage external Owner can stop the
sell

Refer audit
findings

30 setTokenAddress external access only Role No Issue
31 setLPAddress external access only Role No Issue
32 setLPManager external access only Role No Issue
33 setDiamond write access only Role No Issue
34 setTimeframeExpiration external access only Role No Issue
35 editWhitelist external access only Role No Issue
36 editBlocklist external access only Role No Issue

Diamond.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 fallback external Passed No Issue
3 receive external Passed No Issue

DiamondInit.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 init external Passed No Issue

LpManager.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 recoverLostTokens external access only Owner No Issue
8 validAddress modifier Passed No Issue
9 buffer external access only Owner No Issue

10 addLiquidityToken write Passed No Issue
11 bufferDefo internal Passed No Issue
12 createPairWith write Passed No Issue
13 setAllowance write access only Owner No Issue
14 shouldLiquify write access only Owner No Issue
15 setBufferThreshHold write access only Owner No Issue
16 getRouter external Passed No Issue
17 getPair external Passed No Issue
18 getLeftSide external Passed No Issue
19 getRightSide external Passed No Issue
20 isPair read Passed No Issue
21 getLeftBalance read Passed No Issue
22 getRightBalance read Passed No Issue
23 isLiquidityAdded external Passed No Issue
24 isRouter read Passed No Issue
25 getSupply external Passed No Issue
26 setPairAllowance write Passed No Issue
27 getReserver0 external Passed No Issue
28 getReserver1 external Passed No Issue
29 checkBalance external Passed No Issue
30 token0 external Passed No Issue
31 token1 external Passed No Issue

Redeem.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 transferOwnership write access only Owner No Issue
5 _transferOwnership internal Passed No Issue
6 renounceOwnership write access only Owner No Issue
7 isActive modifier Passed No Issue
8 nonReentrant modifier Passed No Issue
9 presaleCompliance modifier Passed No Issue

10 secondPresaleCompliance modifier Passed No Issue
11 timeCompliance modifier Passed No Issue
12 setNodeAddress write access only Owner No Issue
13 startTimer write access only Owner No Issue
14 flipActive write access only Owner No Issue
15 redeem write For loops can be

merged
Refer audit

findings
16 secondPresaleRedeem write access is Active No Issue

DiamondCutFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 diamondCut external Passed No Issue

DiamondLoupeFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 facets external Passed No Issue
3 facetFunctionSelectors external Passed No Issue
4 facetAddresses external Passed No Issue
5 facetAddress external Passed No Issue
6 supportsInterface external Passed No Issue

ERC721Enumerable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initializeERC721Enumerable write Passed No Issue
3 tokenOfOwnerByIndex read Passed No Issue
4 totalSupply read Passed No Issue
5 tokenByIndex read Passed No Issue

ERC721Facet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 balanceOf read Passed No Issue
4 name read Passed No Issue
5 symbol read Passed No Issue
6 tokenURI read Passed No Issue
7 _baseURI internal Passed No Issue
8 ownerOf read Passed No Issue
9 getApproved read Passed No Issue

10 isApprovedForAll read Passed No Issue
11 approve write Passed No Issue
12 setApprovalForAll write Passed No Issue
13 transferFrom write Passed No Issue
14 safeTransferFrom write Passed No Issue
15 safeTransferFrom write Passed No Issue

GemFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 SaleLock modifier Passed No Issue
3 onlyGemOwner modifier Passed No Issue
4 onlyActive modifier Passed No Issue
5 mintTimeLimit modifier Passed No Issue
6 _mintGem internal Passed No Issue
7 _compound internal Passed No Issue
8 _maintenance internal Passed No Issue
9 _maintenanceDiscount internal Passed No Issue

10 RedeemMint write Function input
parameters lack of

check

Refer audit
findings

11 RedeemMintBooster write Function input
parameters lack of

check

Refer audit
findings

12 BoostGem write access only Gem
Owner

No Issue

13 MintGem external Passed No Issue
14 Maintenance external access only Gem

Owner
No Issue

15 BatchMaintenance external Passed No Issue
16 Compound external access only Gem

Owner
No Issue

17 isActive read Passed No Issue
18 checkRawReward read Passed No Issue
19 checkTaperedReward read Passed No Issue
20 checkTaxedReward read Passed No Issue
21 checkPendingMaintenanc

e
read Passed No Issue

22 getGemIdsOf read Passed No Issue
23 getGemIdsOfWithType read Passed No Issue
24 _distributePayment internal Passed No Issue
25 _sendRewardTokens internal Passed No Issue
26 ClaimRewards external access only Gem

Owner
No Issue

27 BatchClaimRewards external Passed No Issue

GemGettersFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 GemOf external Passed No Issue
3 GetGemTypeMetadata external Passed No Issue
4 getTotalCharity external Passed No Issue
5 getMeta external Passed No Issue

NodeLimiterFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOwner write Passed No Issue
3 addToWhitelist external access only Owner No Issue
4 transferLimit write Passed No Issue

OwnerFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 initialize external access only Owner No Issue
4 setGemSettings external access only Owner No Issue
5 setAddressAndDistTreasu

ry
external access only Owner No Issue

6 setAddressAndDistRewar
dPool

external access only Owner No Issue

7 setAddressDonation external access only Owner No Issue

8 setAddressAndDistTeam external access only Owner No Issue
9 setAddressAndDistLiquidi

ty
external access only Owner No Issue

10 setAddressVault external access only Owner No Issue
11 setBaseURI external access only Owner No Issue
12 setMinterAddress external access only Owner No Issue
13 setLimiterAddress external access only Owner No Issue
14 setMinReward external access only Owner No Issue
15 setMinRewardTime external access only Owner No Issue
16 setMintLimitHours external access only Owner No Issue
17 setTaperRate external access only Owner No Issue
18 setRewardTax external access only Owner No Issue
19 ToggleSaleLock external access only Owner No Issue
20 ToggleTransferLock external access only Owner No Issue

OwnershipFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 transferOwnership external Function input

parameters lack of
check

Refer audit
findings

3 owner external Passed No Issue

VaultStakingFacet.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyGemOwner modifier Passed No Issue
3 onlyActive modifier Passed No Issue
4 batchAddTovault external Deploy error Refer audit

findings
5 addToVault write access only Gem

Owner
No Issue

6 showStakedAmount read Passed No Issue
7 unstakeTokens write access only Gem

Owner
No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Deploy error: VaultStakingFacet.sol

Calldata arrays are read-only. So _amounts variable cannot be updated.

Resolution: We suggest correcting the code by changing calldata to memory for the

_amounts.

(2) Owner can stop the sell: DefoLimiter.sol

The owner can set sellLimitVsTotalSupply to 0 using setMaxPercentage. Hence users

cannot sell their tokens.

Resolution: We suggest using some minimum limit to set sellLimitVsTotalSupply.

Low

(1) For loops can be merged: Redeem.sol

In the Redeem function, these loops can be merged and use conditions to check for the

last element and avoid transferFrom for that.

Resolution: We suggest using only 1 loop for each balance and use conditions to check

for the last element and avoid transferFrom for that.

(2) Function input parameters lack of check:

Variable validation is not performed in below functions :

GemFacet.sol
● RedeemMint

● RedeemMintBooster

OwnershipFacet.sol
● transferOwnership

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

Very Low / Informational / Best practices:

(1) Unused variable: DefoErc20.sol
The MAXSELLLIMIT is defined but not used anywhere.

Resolution: We suggest removing unused variables.

(2) Critical operation lacks event log: GemFacet.sol
Missing event log for:

● Compound

● BatchClaimRewards

● BatchMaintenance

● RedeemMint

● RedeemMintBooster

● BoostGem

● MintGem

● Maintenance

● BatchMaintenance

● BatchClaimRewards

Resolution: We suggest adding logs for the listed events.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● transferLog: DefoLimiter DefoToken owner can call before any token transfer.

● setMaxPercentage: DefoLimiter role owner can set maximum percentage.

● setTokenAddress: DefoLimiter role owner can set token address.

● setLPAddress: DefoLimiter role owner can set LP address.

● setLPManager: DefoLimiter role owner can set token manager address.

● setDiamond: DefoLimiter role owner can set diamond address.

● setTimeframeExpiration: DefoLimiter role owner can set time frame expiration.

● editWhitelist: DefoLimiter role owner can update whitelist addresses and status.

● editBlocklist: DefoLimiter role owner can update blocklist addresses and status.

● setAllowance: LpManager owner can set allowance status.

● shouldLiquify: LpManager owner should set liquify status.

● setBufferThreshHold: LpManager owner can set buffer threshold value.

● setNodeAddress: Redeem owner can set node address.

● startTimer: Redeem owner can set start timer.

● flipActive: Redeem owner can flip active redeem.

● addToWhitelist: NodeLimiterFacet owner can add new address in whitelist.

● initialize: OwnerFacet owner can initialize address.

● setGemSettings: OwnerFacet owner can create a new gem type or change a gem

type settings.

● setAddressAndDistTreasury: OwnerFacet owner can set distribution treasury

addresses.

● setAddressAndDistRewardPool: OwnerFacet owner can set distribution reward

addresses.

● setAddressDonation: OwnerFacet owner can set donation addresses.

● setAddressAndDistTeam: OwnerFacet owner can set address and dist team.

● setAddressAndDistLiquidity: OwnerFacet owner can set address and dist liquidity

address.

● setAddressVault: OwnerFacet owner can set new vault address.

● setBaseURI: OwnerFacet owner can set base uri.

● setMinterAddress: OwnerFacet owner can set new minter address.

● setLimiterAddress: OwnerFacet owner can set new limiter address.

● setMinReward: OwnerFacet owner can set minimum reward value.

● setMinRewardTime: OwnerFacet owner can set minimum reward time value.

● setMintLimitHours: OwnerFacet owner can set minimum limit hours time value.

● ChangePaymentToken: OwnerFacet owner can change payment token address.

● setTaperRate: OwnerFacet owner can set taper rate value.

● setRewardTax: OwnerFacet owner can set reward tax value.

● ToggleSaleLock: OwnerFacet owner can toggle sale lock.

● ToggleTransferLock: OwnerFacet owner can toggle transfer lock.

● batchAddTovault: VaultStakingFacet owner can set batch address to vault address.

● addToVault: VaultStakingFacet owner can add new vault address.

● unstakeTokens: VaultStakingFacet owner can unstake tokens.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of github links. And we have used all possible

tests based on given objects as files. We have observed some issues in the smart

contracts. So, it’s good to go to production by fixing those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Defo Contracts Protocol

DefoErc20 Diagram

DefoLimiter Diagram

Diamond Diagram

DiamondInit Diagram

LpManager Diagram

Redeem Diagram

DiamondCutFacet Diagram

DiamondLoupeFacet Diagram

ERC721Enumerable Diagram

ERC721Facet Diagram

GemFacet Diagram

GemGettersFacet Diagram

NodeLimiterFacet Diagram

OwnerFacet Diagram

OwnershipFacet Diagram

VaultStakingFacet Diagram

Slither Results Log

Slither log >> DefoErc20.sol

Slither log >> Diamond.sol

Slither log >> DiamondInit.sol

Slither log >> LpManager.sol

Slither log >> Redeem.sol

Slither log >> DiamondCutFacet.sol

Slither log >> DiamondLoupeFacet.sol

Slither log >> ERC721Enumerable.sol

Slither log >> ERC721Facet.sol

Slither log >> GemFacet.sol

Slither log >> GemGettersFacet.sol

Slither log >> NodeLimiterFacet.sol

Slither log >> OwnerFacet.sol

Slither log >> OwnershipFacet.sol

Slither log >> VaultStakingFacet.sol

Slither log >> DefoLimiter.sol

Solidity Static Analysis
DefoErc20.sol

DefoLimiter.sol

Diamond.sol

DiamondInit.sol

LpManager.sol

Redeem.sol

DiamondCutFacet.sol

DiamondLoupeFacet.sol

ERC721Enumerable.sol

ERC721Facet.sol

GemFacet.sol

GemGettersFacet.sol

NodeLimiterFacet.sol

OwnerFacet.sol

OwnershipFacet.sol

VaultStakingFacet.sol

Solhint Linter

DefoErc20.sol

DefoErc20.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
DefoErc20.sol:59:28: Error: Avoid using low level calls.
DefoErc20.sol:133:51: Error: Avoid using low level calls.
DefoErc20.sol:187:51: Error: Avoid using low level calls.
DefoErc20.sol:209:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DefoErc20.sol:221:1: Error: Contract name must be in CamelCase
DefoErc20.sol:222:2: Error: Explicitly mark visibility of state
DefoErc20.sol:227:3: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DefoErc20.sol:229:8: Error: Variable "r" is unused
DefoErc20.sol:2179:24: Error: Code contains empty blocks
DefoErc20.sol:2199:24: Error: Code contains empty blocks
DefoErc20.sol:2236:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DefoErc20.sol:2374:5: Error: Explicitly mark visibility of state
DefoErc20.sol:2374:13: Error: Variable name must be in mixedCase
DefoErc20.sol:2377:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

DefoLimiter.sol

DefoLimiter.sol:889:33: Error: Parse error: mismatched input '('
expecting {';', '='}
DefoLimiter.sol:889:54: Error: Parse error: extraneous input ')'
expecting {';', '='}
DefoLimiter.sol:984:46: Error: Parse error: mismatched input '('
expecting {';', '='}

Diamond.sol

Diamond.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy the
r semver requirement
Diamond.sol:42:5: Error: Explicitly mark visibility of state
Diamond.sol:76:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Diamond.sol:358:50: Error: Avoid using low level calls.
Diamond.sol:375:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Diamond.sol:384:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Diamond.sol:401:5: Error: Fallback function must be simple
Diamond.sol:405:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

Diamond.sol:412:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Diamond.sol:430:32: Error: Code contains empty blocks

DiamondInit.sol

DiamondInit.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy
the r semver requirement
DiamondInit.sol:114:5: Error: Explicitly mark visibility of state
DiamondInit.sol:148:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DiamondInit.sol:430:50: Error: Avoid using low level calls.
DiamondInit.sol:447:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

LpManager.sol

LpManager.sol:2418:18: Error: Parse error: missing ';' at '{'
LpManager.sol:2425:18: Error: Parse error: missing ';' at '{'
LpManager.sol:2447:18: Error: Parse error: missing ';' at '{'

Redeem.sol

Redeem.sol:12:18: Error: Parse error: missing ';' at '{'
Redeem.sol:25:18: Error: Parse error: missing ';' at '{'
Redeem.sol:37:18: Error: Parse error: missing ';' at '{'
Redeem.sol:54:18: Error: Parse error: missing ';' at '{'
Redeem.sol:66:18: Error: Parse error: missing ';' at '{'
Redeem.sol:162:18: Error: Parse error: missing ';' at '{'
Redeem.sol:185:18: Error: Parse error: missing ';' at '{'
Redeem.sol:211:18: Error: Parse error: missing ';' at '{'

DiamondCutFacet.sol

DiamondCutFacet.sol:2:1: Error: Compiler version ^0.8.4 does not
satisfy the r semver requirement
DiamondCutFacet.sol:39:5: Error: Explicitly mark visibility of state
DiamondCutFacet.sol:73:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DiamondCutFacet.sol:355:50: Error: Avoid using low level calls.
DiamondCutFacet.sol:372:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

DiamondLoupeFacet.sol

DiamondLoupeFacet.sol:2:1: Error: Compiler version ^0.8.4 does not
satisfy the r semver requirement
DiamondLoupeFacet.sol:87:5: Error: Explicitly mark visibility of
state
DiamondLoupeFacet.sol:121:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases
DiamondLoupeFacet.sol:403:50: Error: Avoid using low level calls.
DiamondLoupeFacet.sol:420:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases

ERC721Enumerable.sol

ERC721Enumerable.sol:3:1: Error: Compiler version ^0.8.4 does not
satisfy the r semver requirement
ERC721Enumerable.sol:191:1: Error: Contract name must be in CamelCase
ERC721Enumerable.sol:192:2: Error: Explicitly mark visibility of
state
ERC721Enumerable.sol:197:3: Error: Avoid using inline assembly. It is
acceptable only in rare cases
ERC721Enumerable.sol:199:8: Error: Variable "r" is unused
ERC721Enumerable.sol:1745:9: Error: Variable name must be in
mixedCase
ERC721Enumerable.sol:1762:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases
ERC721Enumerable.sol:1802:13: Error: Avoid using inline assembly. It
is acceptable only in rare cases
ERC721Enumerable.sol:1822:9: Error: Avoid using inline assembly. It
is acceptable only in rare cases
ERC721Enumerable.sol:2106:16: Error: Code contains empty blocks
ERC721Enumerable.sol:2139:9: Error: Avoid using inline assembly. It
is acc

ERC721Facet.sol

ERC721Facet.sol:2583:18: Error: Parse error: missing ';' at '{'
ERC721Facet.sol:2591:18: Error: Parse error: missing ';' at '{'

GemFacet.sol

GemFacet.sol:2398:18: Error: Parse error: missing ';' at '{'
GemFacet.sol:2406:18: Error: Parse error: missing ';' at '{'

GemGettersFacet.sol

GemGettersFacet.sol:257:18: Error: Parse error: missing ';' at '{'
GemGettersFacet.sol:265:18: Error: Parse error: missing ';' at '{'

NodeLimiterFacet.sol

NodeLimiterFacet.sol:115:18: Error: Parse error: missing ';' at '{'
NodeLimiterFacet.sol:123:18: Error: Parse error: missing ';' at '{'

OwnerFacet.sol

OwnerFacet.sol:230:18: Error: Parse error: missing ';' at '{'
OwnerFacet.sol:238:18: Error: Parse error: missing ';' at '{'

OwnershipFacet.sol

OwnershipFacet.sol:2:1: Error: Compiler version ^0.8.4 does not
satisfy the r semver requirement
OwnershipFacet.sol:54:5: Error: Explicitly mark visibility of state
OwnershipFacet.sol:88:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
OwnershipFacet.sol:370:50: Error: Avoid using low level calls.
OwnershipFacet.sol:387:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

VaultStakingFacet.sol

VaultStakingFacet.sol:2054:18: Error: Parse error: missing ';' at '{'
VaultStakingFacet.sol:2062:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

