
Project: Fairception SKILLERZ
Website: www.fairception.com
Platform: Polygon
Language: Solidity
Date: April 1st, 2022

https://www.fairception.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Fairception team to perform the Security audit of the
Fairception SKILLERZ minting smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 1st, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The Skillerz are the first soft skills based NFT collection reinventing the future of

work on the Ethereum/Polygon blockchain.

● For each soft skill a mini-collection of 300 NFTs will be available from the start.

● The whitelist price is approximately 0.03 ETH rounded off depending on the

ETH/MATIC conversion and slippage volatility during the transaction.

● Those who do not have a crypto wallet yet and decide to not mint their NFTs

themselves will only be able to purchase their NFTs post whitelist during the public

sale using Debit/Credit card and will be charged one-off additional NFT minting,

handling, storing and airdrop fees.

● Fairception Skillerz Contract is an NFT smart contract, having functions like

mintNFT, mintWhitelistNFT, airdopNFT, initDict, getCollectionOfNFT,

switchMintingActive, etc.

● The Fairception Skillerz NFT contract inherits ERC721Enumerable, ERC721,

Ownable standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope. However, we confirm that the

modules/code selected are the right ones with regards to the intent of the minting

process and that they are recognised to be flaw free and not malicious.

Audit scope

Name Code Review and Security Analysis Report for
Fairception SKILLERZ minting Smart Contract

Platform Polygon / Solidity

File Skillerz.sol

Online Code 0x15E6A1C5b54dD540797Dbb8Eb4Eb6F607642E7DF

Audit Date April 1st, 2022

Revision Date April 2nd, 2022

https://polygonscan.com/address/0x15e6a1c5b54dd540797dbb8eb4eb6f607642e7df#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Skillerz

● Symbol: SKZ

● Minting price: 0.01 Matic

● Whitelist minting price: 0.01 Matic

● Maximum mint in single transaction: 10

● Maximum whitelist minting: 3

● Maximum supply: 6000

YES, This is valid.

Ownership control:
● Owner is allowed to make airdrops to users.

He can input a list of wallet addresses along

with a collection number. These wallets then

will receive the NFTs into their wallets.

● Owner can do reserved minting. Owner can

change the number of reserved minting (by

default 15).

● Owners can set prices, max minting, base

URI, based extension, whitelisting, and many

other things as mentioned in the

centralization section below.

● Owner can withdraw the fund (Matic) out of

the smart contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“secure”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 2 low and some very low level issues.
These issues are resolved/acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Fairception contract are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Fairception Token.

The Fairception Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts. And, Ethereum's NatSpec style for

commenting is used, which is a good thing.

Documentation

We were given a Fairception Token smart contract code in the form of File.The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://www.fairception.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.fairception.com

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mintNFT write Passed No Issue
3 mintWhitelistNFT write Passed No Issue
4 tokenURI read Passed No Issue
5 getNFTContract read Passed No Issue
6 isWhitelisted read Passed No Issue
7 getWhitelistClaim read Passed No Issue
8 setmintingPrice write access only Owner No Issue
9 setwhitelistPrice write access only Owner No Issue

10 setmaxMintAmount write access only Owner No Issue
11 setmaxWhitelistAmount write access only Owner No Issue
12 setBaseURI write access only Owner No Issue
13 setContractURI write access only Owner No Issue
14 setBaseExtension write access only Owner No Issue
15 switchMintingActive write access only Owner No Issue
16 switchWhitelistActive write access only Owner No Issue
17 switchPaused write access only Owner No Issue
18 updateReserved write access only Owner No Issue
19 withdraw write access only Owner No Issue
20 bulkSetWhitelist write access only Owner No Issue
21 mintReserved write access only Owner No Issue
22 airdopNFT write access only Owner No Issue
23 getCollectionOfNFT write Passed No Issue
24 initDict write No need for empty

assignment
No Big Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

`
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Owner can not mint reserved tokens

This condition will always fail for collection over 3, as the idCounter will be always more

than maxSupply. More specifically, the owner will never be able to mint the reserved

collection.

Resolution: Please use CollectionsDict[_collectionID].counter instead of

CollectionsDict[_collectionID].idCounter

Status: Fixed

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Consider adding events when a significant state is changed.

It is recommended to fire appropriate events when significant state is being changed. This

helps UI clients to properly coordinate with the blockchain. we suggest to add events in the

following functions:

● mintNFT

● mintWhitelistNFT

● setmintingPrice

● setwhitelistPrice

● setmaxMintAmount

● setmaxWhitelistAmount

● setBaseURI

● setContractURI

● setBaseExtension

● switchMintingActive

● switchWhitelistActive

● switchPaused

● updateReserved

● withdraw

● bulkSetWhitelist

● mintReserved

Status: Fixed / Acknowledged

(2) High gas consuming loops

The functions airdropNFT and bulkSetWhitelist have infinite loop possibility. This is not an

issue in case the owner inputs limited wallets. But it may hit the block’s gas limit if there

are lots of wallets used in the function call.

Resolution: We recommend adding some limit in the functions, or the owner can

acknowledge that he will not input lots of wallets.

Status: Fixed

Very Low / Informational / Best practices:

(1) No need for assigning empty/zero value

These variable’s default values are the same as what were assigned. This is not a security

or logical vulnerability. But it is better not to assign empty values explicitly to save the gas.

More about empty/zero values: https://ethereum.stackexchange.com/a/40571/95100

Resolution: This variable assignments can be removed. or, this can be acknowledged as

this does not raise any big problem.

Status: Fixed / Acknowledged

(2) Remove redundant code before mainnet deployment.

The smart contract hardhat should be removed when deploying in the mainnet. This does

not raise any vulnerabilities, as this is not used anywhere. But, it is best practice to remove

it to make the code clean.

Status: Fixed

https://ethereum.stackexchange.com/a/40571/95100

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setmintingPrice: The Owner can set a new minting price.

● setwhitelistPrice: The Owner can set a new whitelist minting price.

● setmaxMintAmount: The Owner can set a maximum amount of NFT to mint.

● setmaxWhitelistAmount: The Owner can set the maximum amount of NFT to mint

during the whitelist.

● setBaseURI: The Owner can change the collection of base uri.

● setContractURI: The Owner can change the contract URL to the contract.json file.

● setBaseExtension: The Owner can change the string “.json”.

● switchMintingActive: The Owner can activate normal minting.

● switchWhitelistActive: The Owner can enable the whitelistminting state.

● switchPaused: The Owner can switch paused status.

● updateReserved: The Owner can update the reserved amount.

● withdraw: The Owner can withdraw all funds on the contract to his wallet.

● bulkSetWhitelist: The Owner can bulk upload of whitelist users accounts.

● mintReserved: The Owner can minting for the reserved NFTs. It requires the wallet

address, the amount and the collection id.

● airdopNFT: The Owner is allowed to make airdrops to users.He can input a list of

wallet addresses here and the target collection. These wallets then will receive the

NFTs into their wallets.

Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We have observed some issues, but they are fixed / acknowledged. So,

it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Fairception Skillerz Token

Slither Results Log

Slither log >> Skillerz.sol

Solidity Static Analysis
Skillerz.sol

Solhint Linter

Skillerz.sol

Skillerz.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy the
r semver requirement
Skillerz.sol:4:1: Error: Contract name must be in CamelCase
Skillerz.sol:5:2: Error: Explicitly mark visibility of state
Skillerz.sol:10:3: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Skillerz.sol:12:8: Error: Variable "r" is unused
Skillerz.sol:1588:28: Error: Avoid using low level calls.
Skillerz.sol:1662:51: Error: Avoid using low level calls.
Skillerz.sol:1716:51: Error: Avoid using low level calls.
Skillerz.sol:1738:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Skillerz.sol:2024:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
Skillerz.sol:2109:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
Skillerz.sol:2466:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Skillerz.sol:2494:24: Error: Code contains empty blocks
Skillerz.sol:2511:24: Error: Code contains empty blocks
Skillerz.sol:2694:44: Error: Variable name must be in mixedCase
Skillerz.sol:2701:5: Error: Explicitly mark visibility of state
Skillerz.sol:2704:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

