
Project: GaiaStarter Protocol
Platform: Astar Network
Language: Solidity
Date: May 11th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 34

● Solidity static analysis ….……………………………………………………………….. 39

● Solhint Linter …………………………………………………………………….……….. 46

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the GaiaStarter team to perform the Security audit of the
GaiaStarter Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 11th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The GaiaStarter Contracts have functions like Stake, UnStake, Claim, WithDraw, fund,

poolLength, add, set, deposited, pending, totalPending, deposit, burn, mint, AirDrop,

snapshot, release, pending, deposited, etc. The GaiaStarter Contracts inherit the ERC20,

IERC721, Ownable, SafeERC20, SafeMath, ERC20Burnable, ERC20Snapshot,

AccessControl, Pausable, ReentrancyGuard standard smart contracts from the

OpenZeppelin library. These OpenZeppelin contracts are considered community-audited

and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
GaiaStarter Protocol Smart Contracts

Platform Astar / Solidity

File 1 NFTStaking.sol

File 1 MD5 Hash 651D758CE14200112A55C1D6BD92EDEF

File 2 MasterChef.sol

File 2 MD5 Hash 7629993B187DD656965F000778BD9400

File 3 Token.sol

File 3 MD5 Hash CE1686F76467E6D408A18ECBE187447D

File 4 IFO.sol

File 4 MD5 Hash 7BB85D39FACFD583834FE568DF20F05A

File 5 IFOMasterChef.sol

File 5 MD5 Hash C094A68D2B63748691F29DEFFB759EB6

File 6 Crowdsale.sol

File 6 MD5 Hash 1A7CF0D247CC045BF0D937CC6CA04A51

Audit Date May 11th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 NFTStaking.sol
● Deposit Amount: 5 Sextillion.

● Expectation Stake Token CNT: 5000

● Expectation Emission Token CNT: 10,000.

YES, This is valid.

File 2 MasterChef.sol
● MasterChef has functions like: add, set, fund,

poolLength, totalPending, etc.

YES, This is valid.

File 3 Token.sol
● Token has functions like: snapshot, mint, etc.

YES, This is valid.

File 4 IFO.sol
● IFO has functions like: setOfferingAmount,

setStartTimestamp, deposit,etc.

YES, This is valid.

File 5 IFOMasterChef.sol
● IFOMasterChef has functions like: fund,

poolLength, deposited, etc.

● Symbol:

YES, This is valid.

File 6 Crowdsale.sol
● Crowdsale has functions like: buyTokens, release,

releaseAmount, setRate, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 3 low and very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the GaiaStarter Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the GaiaStarter Protocol.

The GaiaStarter team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a GaiaStarter Protocol smart contract code in the form of github weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

NFTStaking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 Stake external Passed No Issue
8 UnStake external Passed No Issue
9 GetClaimableRewardsAll external Passed No Issue
10 GetClaimableRewardsUnit

Address
external Passed No Issue

11 Claim external Passed No Issue
12 GetStakingAddressList read Passed No Issue
13 GetStakingTokenIdList read Passed No Issue
14 SetdepositNFTToken external access only Owner No Issue
15 SetdepositToken external access only Owner No Issue
16 SetdepositAddress external access only Owner No Issue
17 SetRewordToken external access only Owner No Issue
18 DepositRewordToken external access only Owner No Issue
19 SetStakingEndTime external access only Owner No Issue
20 SetStakingDeadTime external access only Owner No Issue
21 UnStakeByOwner external access only Owner No Issue
22 WithDraw external access only Owner No Issue
23 RewardPerERC20Token read Passed No Issue
24 InsertStakingAddressList write Passed No Issue
25 DeleteAllTokenList write Passed No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Visibility for constructor
is ignored

Refer Audit
Findings

2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 poolLength read Passed No Issue

8 fund write Function input
parameters lack of

check, Critical operation
lacks event log

Refer Audit
Findings

9 add write Same LPToken can be
added more than once,

Function input
parameters lack of

check,Critical operation
lacks event log

Refer Audit
Findings

10 set write Critical operation lacks
event log

Refer Audit
Findings

11 deposited external Passed No Issue
12 pending external Passed No Issue
13 totalPending external Passed No Issue
14 massUpdatePools write Critical operation lacks

event log,Infinite loop
Refer Audit

Findings
15 updatePool write Critical operation lacks

event log
Refer Audit

Findings
16 deposit write Passed No Issue
17 withdraw write Function input

parameters lack of
check

Refer Audit
Findings

18 emergencyWithdraw write Passed No Issue
19 erc20Transfer internal Function input

parameters lack of
check

Refer Audit
Findings

Token.sol
Functions

Sl. Functions Type Observation Conclusi
on

1 constructor write Passed No Issue
2 onlyRole modifier Passed No Issue
3 supportsInterface read Passed No Issue
4 hasRole read Passed No Issue
5 _checkRole internal Passed No Issue
6 getRoleAdmin read Passed No Issue
7 grantRole write Passed No Issue
8 revokeRole write Passed No Issue
9 renounceRole write Passed No Issue
10 _setupRole internal Passed No Issue
11 _setRoleAdmin internal Passed No Issue
12 _grantRole internal Passed No Issue
13 _revokeRole internal Passed No Issue
14 name read Passed No Issue
15 symbol read Passed No Issue

16 decimals read Passed No Issue
17 totalSupply read Passed No Issue
18 balanceOf read Passed No Issue
19 transferallowance write Passed No Issue
20 allowance read Passed No Issue
21 approve write Passed No Issue
22 transferFrom write Passed No Issue
23 increaseAllowance write Passed No Issue
24 decreaseAllowance write Passed No Issue
25 _transfer internal Passed No Issue
26 _mint internal Passed No Issue
27 _burn internal Passed No Issue
28 _approve internal Passed No Issue
29 _spendAllowance internal Passed No Issue
30 _beforeTokenTransfer internal Passed No Issue
31 _afterTokenTransfer internal Passed No Issue
32 burn write Passed No Issue
33 burnFrom write Passed No Issue
34 _snapshot internal Passed No Issue
35 _getCurrentSnapshotId internal Passed No Issue
36 balanceOfAt read Passed No Issue
37 totalSupplyAt read Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue
39 _valueAt read Passed No Issue
40 _updateAccountSnapshot write Passed No Issue
41 _updateTotalSupplySnapshot write Passed No Issue
42 _updateSnapshot write Passed No Issue
43 _lastSnapshotId read Passed No Issue
44 snapshot write access only Role No Issue
45 mint write Unlimited minting Refer

Audit
Findings

46 AirDrop write access only Role No Issue
47 _beforeTokenTransfer internal Passed No Issue

IFO.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Compiler warnings Refer Audit
Findings

2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue

7 setOfferingAmount write Function input
parameters lack of

check

Refer Audit
Findings

8 setStartTimestamp write access only Owner No Issue
9 setEndTimestamp write access only Owner No Issue
10 setRasingToken write access only Owner No Issue
11 setOfferingToken write access only Owner No Issue
12 setCrowdsale write access only Owner No Issue
13 setPool write access only Owner No Issue
14 setWhiteList write Function input

parameters lack of
check

Refer Audit
Findings

15 deposit write Function input
parameters lack of

check

Refer Audit
Findings

16 withdraw write Function input
parameters lack of

check

Refer Audit
Findings

17 harvestAndVesting write Function input
parameters lack of

check

Refer Audit
Findings

18 hasHarvested external Passed No Issue
19 hasCollateral external Passed No Issue
20 getUserAllocation read Passed No Issue
21 getOfferingAmount read Passed No Issue
22 getTokenAmount internal Passed No Issue
23 getAddressListLength external Passed No Issue
24 finalOfferingTokenWithdraw write Function input

parameters lack of
check

Refer Audit
Findings

25 release write Passed No Issue
26 releaseAmount read Passed No Issue
27 setAvailableReleaseFlg write access only Owner No Issue

IFOMasterChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 poolLength external Passed No Issue
8 fund write Function input

parameters lack of
Refer Audit

Findings

check, Critical operation
lacks event log

9 add write Function input
parameters lack of

check, Critical operation
lacks event log

Refer Audit
Findings

10 set write Critical operation lacks
event log

Refer Audit
Findings

11 deposited external Passed No Issue
12 pending external Passed No Issue
13 totalPending external Passed No Issue
14 massUpdatePools write Critical operation lacks

event log, Infinite loop
Refer Audit

Findings
15 updatePool write Critical operation lacks

event log
Refer Audit

Findings
16 deposit write Passed No Issue
17 claim write Passed No Issue
18 withdraw write Function input

parameters lack of
check

Refer Audit
Findings

19 withdrawAll write Passed No Issue
20 erc20Transfer internal Function input

parameters lack of
check

Refer Audit
Findings

21 setAvailableClaimFlg write access only Owner No Issue

Crowdsale.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Compiler warnings Refer Audit
Findings

2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 fallback external Passed No Issue
8 buyTokens write Passed No Issue
9 release write Passed No Issue
10 releaseAmount read Passed No Issue
11 _preValidatePurchase internal Compiler warnings Refer Audit

Findings
12 _postValidatePurchase internal Passed No Issue
13 _deliverTokens internal Passed No Issue
14 _processPurchase internal Passed No Issue
15 _updatePurchasingState internal Passed No Issue

16 _getTokenAmount internal Compiler warnings Refer Audit
Findings

17 _forwardFunds internal Passed No Issue
18 setRate external access only Owner No Issue
19 finalOfferingTokenWithdraw write access only Owner No Issue
20 hasClosed read Passed No Issue
21 addToWhitelist external Passed No Issue
22 addManyToWhitelist external access only Owner No Issue
23 removeFromWhitelist external access only Owner No Issue
24 setAvailableReleaseFlg write access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Same LPToken can be added more than once: MasterChef.sol
The owner can add the same lptoken more than once.

Resolution: We suggest putting validation for duplicate lptoken while adding into the pool.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

IFO.sol
● setWhiteList = _whiteListaddress

● deposit = _amount

● withdraw = _amount

● harvestAndVesting = _amount

● finalOfferingTokenWithdraw = stageSecond

● setOfferingAmount = _offerAmount

MasterChef.sol
● add = _lpToken

● erc20Transfer = _to

● fund = _amount

● withdraw = _amount

IFOMaster.sol
● add = _lpToken

● erc20Transfer = _to

● fund = _amount

● withdraw = _amount

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

(2) Critical operation lacks event log:

Missing event log for:

MasterChef.sol
● fund

● add

● set

● updatePool

● massUpdatePools

IFOMaster.sol
● fund

● add

● set

● updatePool

● massUpdatePools

Resolution: Write an event log for listed events.

(3) Infinite loop:

In below functions ,for loops do not have pid length limit , which costs more gas:

MasterChef.sol
● massUpdatePools.

IFOMaster.sol
● massUpdatePools.

Resolution: Upper limit should have a certain limit in for loops.

Very Low / Informational / Best practices:

(1) Unlimited minting: Token.sol
Minter can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

(2) Immutable variables:

These variable values are set in the constructor & will be unchanged:

IFO.sol
stable, offeringToken, collateralToken, startTimestamp, endTimestamp, wallet,

depositFeeBP

MasterChef.sol
rewardPerSecond, erc20 , startTimestamp, endTimestamp, feeAddress

IFOMaster.sol
rewardPerSecond, erc20 , startTimestamp, endTimestamp, feeAddres.

NFTStaking.sol
rewardRate, stakingStartTime, expectationStakeTokenCnt, expectationEmissionTokenCnt

Resolution: We suggest setting all variables as immutable.

(3) Compiler warnings:

CrowdSale.sol

Function state mutability can be restricted to pure.

Resolution: We advise adding "pure" keywords.

Resolution: We advise to remove the "view" keyword and add "pure" keyword.

This declaration shadows an existing declaration.

Resolution: We advise to change the variable name from _firstReleaseRate to

_firstReleaseRate1.

IFO.sol

This declaration shadows an existing declaration.

Resolution: We advise to change the variable name from _firstReleaseRate to

_firstReleaseRate1.

MasterChef.sol

Resolution: Warning: Visibility for constructor is ignored. If you want the contract to be

non-deployable, making it "abstract" is sufficient.

(4) SafeMath Library: MasterChef.sol
SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will be not required to use, solidity automatically handles overflow /

underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

(5) Language Consistency: IFO.sol, NFTStaking.sol

Comment in Chinese and English Language.

Resolution: Consistency, Use the same language for all comments.

(6) Variable set by hardcoded values: NFTStaking.sol

stakingStartTime has been set by hardcoded values.

Resolution: Consider to set it by proper value while deploying.

(7) Integer variable initialized by zero: NFTStaking.sol

The stakingCount is initialized by 0.

Resolution: We suggest removing this line from the constructor as the integer variable’s

default value is 0. So no need to initialize by 0.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● SetdepositNFTToken: NFTStaking owner can change the NFT contract address.

● SetdepositToken: NFTStaking owner can change deposit fee contract address and

value.

● SetdepositAddress: NFTStaking owner can change the address to send the deposit

fee.

● SetRewordToken: NFTStaking owner can reward change of contact address.

● DepositRewordToken: NFTStaking owner can deposit the reward in the contract.

● SetStakingEndTime: NFTStaking owner can change the staking end time.

● SetStakingDeadTime: NFTStaking owner can change the staking dead time.

● UnStakeByOwner: NFTStaking owner can force unStake by owner account.

● WithDraw: NFTStaking owner can withdraw reward from contract.

● add: MasterChef owners can add the same LP token more than once.

● set: MasterChef owners can update the given pool's ERC20 allocation point.

● setOfferingAmount: IFO owner can set offering amount.

● setStartTimestamp: IFO owner can set start timestamp.

● setEndTimestamp: IFO owner can set end timestamp.

● setRasingToken: IFO owner can set rasing token.

● setOfferingToken: IFO owner can set offering token.

● setCrowdsale: IFO owner can set crowd sale value.

● setPool: IFO owner can set ifo MasterChef address and specific pool for call some

function value.

● setWhiteList: IFO owner can set whiteList address and rate.

● finalOfferingTokenWithdraw: IFO owner can withdraw after the end of all sale,

withdraw all offering tokens.

● setAvailableReleaseFlg: IFO owner can set available release flg status.

● add: IFOMasterChef owner can add a new lp to the pool.

● set: IFOMasterChef owner can update the given pool's ERC20 allocation point.

● setAvailableClaimFlg: IFOMasterChef owner can set available release flg status.

● setRate: Crowdsale owner can set private sale rate and public sale rate.

● finalOfferingTokenWithdraw: Crowdsale owner can withdraw after the end of all

sale, withdraw all offering tokens.

● addManyToWhitelist: Crowdsale owner can add list of addresses to whitelist.

● removeFromWhitelist: Crowdsale owner can remove single address from whitelist.

● setAvailableReleaseFlg: Crowdsale owner can set available release flg status.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have observed some issues in the smart contracts.

So, the smart contracts are ready for the mainnet deployment after fixing those
issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - GaiaStarter Protocol

NFTStaking Diagram

MasterChef Diagram

Token Diagram

IFO Diagram

IFOMasterChef Diagram

Crowdsale Diagram

Slither Results Log

Slither log >> NFTStaking.sol

Slither log >> MasterChef.sol

Slither log >> Token.sol

Slither log >> IFO.sol

Slither log >> IFOMasterChef.sol

Slither log >> Crowdsale.sol

Solidity Static Analysis

NFTStaking.sol

MasterChef.sol

Token.sol

IFO.sol

IFOMasterChef.sol

Crowdsale.sol

Solhint Linter

NFTStaking.sol

NFTStaking.sol:421:18: Error: Parse error: missing ';' at '{'
NFTStaking.sol:454:18: Error: Parse error: missing ';' at '{'
NFTStaking.sol:503:18: Error: Parse error: missing ';' at '{'
NFTStaking.sol:554:22: Error: Parse error: missing ';' at '{'

MasterChef.sol

MasterChef.sol:161:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:184:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:210:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:561:18: Error: Parse error: missing ';' at '{'

Token.sol

Token.sol:811:18: Error: Parse error: missing ';' at '{'
Token.sol:862:22: Error: Parse error: missing ';' at '{'

IFO.sol

IFO.sol:185:18: Error: Parse error: missing ';' at '{'
IFO.sol:211:18: Error: Parse error: missing ';' at '{'
IFO.sol:564:18: Error: Parse error: missing ';' at '{'

IFOMasterChef.sol

IFOMasterChef.sol:161:18: Error: Parse error: missing ';' at '{'
IFOMasterChef.sol:184:18: Error: Parse error: missing ';' at '{'
IFOMasterChef.sol:210:18: Error: Parse error: missing ';' at '{'
IFOMasterChef.sol:563:18: Error: Parse error: missing ';' at '{'

Crowdsale.sol

Crowdsale.sol:184:18: Error: Parse error: missing ';' at '{'

Crowdsale.sol:210:18: Error: Parse error: missing ';' at '{'
Crowdsale.sol:561:18: Error: Parse error: missing ';' at '{'

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

