
Project: Libra Finance
Website: http://librafinance.xyz
Platform: Astar Network
Language: Solidity
Date: April 25th, 2022

http://librafinance.xyz

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 20

Audit Findings …………………………………………………………………………………… 21

Conclusion ………………………………………………………………………………………. 27

Our Methodology ………………………………………………………………………………... 28

Disclaimers ………………………………………………………………………………………. 30

Appendix

● Code Flow Diagram ……………………………………………………………………... 31

● Slither Results Log ………………………………………………………………………. 39

● Solidity static analysis ….……………………………………………………………….. 43

● Solhint Linter …………………………………………………………………….……….. 53

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Libra Finance team to perform the Security audit of
the Libra Finance Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 25th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Libra Finance Contracts have functions like stake, withdraw, earned, setTaxTiersRate,

mint, burn, setPeriod, setEpoch, twap, safeLibraTransfer, etc. The Libra Finance contract

inherits the IERC20, SafeERC20, Math, ReentrancyGuard, Ownable, SafeMath,

ERC20Burnable, ERC20 standard smart contracts from the OpenZeppelin library. These

OpenZeppelin contracts are considered community-audited and time-tested, and hence

are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Libra Finance Protocol Smart Contracts

Platform Astar Network / Solidity

File 1 RebateTreasury.sol

File 1 MD5 Hash E47E3B0F229E0AEF5C189B155AE16BE3

File 2 Treasury.sol

File 2 MD5 Hash 9FC141FB230D3E477E8C59A4A8EACF68

File 3 Boardroom.sol

File 3 MD5 Hash D5DB6E807C7AD5C7AEE42F7C6E57E6F5

File 4 LBond.sol

File 4 MD5 Hash 38AA3DEE2FCE8AAB9AC7101E2255E384

File 5 Libra.sol

File 5 MD5 Hash DDC50DCB39D71472C423E3D20FA45428

File 6 LShare.sol

File 6 MD5 Hash 187A780003A79C87B459EA162E28CCA1

File 7 Oracle.sol

File 7 MD5 Hash CEDE169255BB09E06B929403162CE52B

File 8 LibraGenesisRewardPool.sol

File 8 MD5 Hash B3618BE29B29169AA85CAA2BA1EF7201

File 9 LibraRewardPool.sol

File 9 MD5 Hash 62BBC991E6B8DE5C1E29C8DE17C9F461

File 10 LShareRewardPool.sol

File 10 MD5 Hash 8858D9A5DA0E3E7B8C2D3E41CAF0D6B5

Audit Date April 25th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Boardroom.sol
● Withdraw Lockup Epochs: 6 epochs

● Reward Lockup Epochs: 3 epochs

● Decimals: 18

YES, This is valid.

File 2 LBond.sol
● Name: Libra Finance BOND

● Symbol: LBOND

● Decimals: 18

● Max Minting Limit: No limit. An operator can mint

unlimited tokens

YES, This is valid.

File 3 Libra.sol
● Name: LIBRA

● Symbol: LIBRA Token

● Decimals: 18

● Initial Genesis Pool Distribution: 11,000 Tokens

● Initial Libra Pool Distribution: 140,000 Tokens

● Initial Airdrop Wallet Distribution: 10,000 Tokens

● Initial Supply: 1 LIBRA

● Burn Threshold: 1.1

● Max minting limit: No limit. An operator can mint

unlimited tokens.

YES, This is valid.

File 4 LShare.sol
● Name: Libra Finance SHARE

● Symbol: LSHARE

● Decimals: 18

● Farming Pool Reward Allocation: 45500 Tokens;

● Treasury Fund Pool Allocation: 3500 Tokens

● Community Fund Pool Allocation: 14000 Tokens

YES, This is valid.

● Dev Fund Pool Allocation: 7000 Tokens

● Vesting Duration: 365 Days

File 5 Oracle.sol
● Oracle has functions like: update, consult, twap.

YES, This is valid.

File 6 RebateTreasury.sol
● Bond Vesting: 3 days

● Bound Factor: 800,000

● Bound threshold: 200,000

● Buy Back Amount: 100,000

● Denominator: 1 million

● Secondary Factor: 150,000

● Secondary Threshold: 700,000

YES, This is valid.

File 7 Treasury.sol
● Period: 6 hours

● Treasury has functions like: nextEpochPoint,

setOperator, setLibraOracle,etc.

YES, This is valid.

File 8 LibraGenesisRewardPool.sol
● Libra Per Second: 0.11574 LIBRA

● Running Time: 24 hours

● Total Rewards: 10000 LIBRA

YES, This is valid.

File 9 LibraRewardPool.sol
● Pool Start Time: 4 days

● Pool End Time: 5 days after start time

● LibraRewardPool has functions like:

checkPoolDuplicate, getGeneratedReward, etc.

YES, This is valid.

File 10 LShareRewardPool.sol
● LShare Per Second: 0.00187687 Lshare

● Running Time: 370 days

● Total Rewards: 60000 Lshare

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.
These are fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Acknowledged

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 10 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Libra Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Libra Finance Protocol.

The Libra Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Libra Finance Protocol smart contract code in the form of a github link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Boardroom.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 checkSameOriginReentra

nted
internal Passed No Issue

3 checkSameSenderReentr
anted

internal Passed No Issue

4 onlyOneBlock modifier Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 stake write Passed No Issue
8 withdraw write Passed No Issue
9 onlyOperator modifier Passed No Issue
10 memberExists modifier Passed No Issue
11 updateReward modifier Passed No Issue
12 notInitialized modifier Passed No Issue
13 initialize write Passed No Issue
14 setOperator external access only

Operator
No Issue

15 setLockUp external access only
Operator

No Issue

16 latestSnapshotIndex read Passed No Issue
17 getLatestSnapshot iinternal Passed No Issue
18 getLastSnapshotIndexOf read Passed No Issue
19 getLastSnapshotOf internal Passed No Issue
20 canWithdraw external Passed No Issue
21 canClaimReward external Passed No Issue
22 epoch external Passed No Issue
23 nextEpochPoint external Passed No Issue
24 getLibraPrice external Passed No Issue
25 rewardPerShare read Passed No Issue
26 earned read Passed No Issue
27 stake write access only

One Block
No Issue

28 withdraw write access only
One Block

No Issue

29 exit external Passed No Issue
30 claimReward write Passed No Issue
31 allocateSeigniorage external access only

One Block
No Issue

32 governanceRecoverUnsu
pported

external access only
Operator

No Issue

LBond.sol
Functions

Sl. Functions Type Observation Concluburnsion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 operator read Passed No Issue
5 onlyOperator modifier Passed No Issue
6 isOperator read Passed No Issue
7 transferOperator write access only Owner No Issue
8 _transferOperator internal Passed No Issue
9 mint write access only

Operator
No Issue

10 burn write Passed No Issue
11 burnFrom write access only

Operator
No Issue

Libra.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 operator read Passed No Issue
5 onlyOperator modifier Passed No Issue
6 isOperator read Passed No Issue
7 transferOperator write access only Owner No Issue
8 _transferOperator internal Passed No Issue
9 onlyTaxOffice modifier Passed No Issue
10 onlyOperatorOrTaxOffice modifier Passed No Issue
11 getTaxTiersTwapsCount read Passed No Issue
12 getTaxTiersRatesCount read Passed No Issue
13 isAddressExcluded read Passed No Issue
14 setTaxTiersTwap write access only

TaxOffice
No Issue

15 setTaxTiersRate write access only
TaxOffice

No Issue

16 setBurnThreshold write access only
TaxOffice

No Issue

17 _getLibraPrice internal Passed No Issue
18 _updateTaxRate internal Passed No Issue
19 enableAutoCalculateTax write access only

TaxOffice
No Issue

20 disableAutoCalculateTax write access only
TaxOffice

No Issue

21 setLibraOracle write access only
Operator Or

TaxOffice

No Issue

22 setTaxOffice write access only
Operator Or

TaxOffice

No Issue

23 setTaxCollectorAddress write access only
TaxOffice

No Issue

24 setTaxRate write access only
TaxOffice

No Issue

25 excludeAddress write access only
Operator Or

TaxOffice

No Issue

26 includeAddress write access only
Operator Or

TaxOffice

No Issue

27 mint write access only
Operator

No Issue

28 burn write Passed No Issue
29 burnFrom write access only

Operator
No Issue

30 transferFrom write Passed No Issue
31 _transferWithTax internal Passed No Issue
32 distributeReward external access only

Operator
No Issue

33 governanceRecoverUnsu
pported

external access only
Operator

No Issue

LShare.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 operator read Passed No Issue
5 onlyOperator modifier Passed No Issue
6 isOperator read Passed No Issue
7 transferOperator write access only Owner No Issue
8 _transferOperator internal Passed No Issue
9 setCommunityFund external access only

Operator
No Issue

10 setTreasuryFund external access only
Operator

No Issue

11 setDevFund external Passed No Issue

12 unclaimedCommunityFun
d

read Passed No Issue

13 unclaimedDevFund read Passed No Issue
14 unclaimedTreasuryFund read Passed No Issue
15 claimRewards external Passed No Issue
16 distributeReward external access only

Operator
No Issue

17 burn write Passed No Issue
18 governanceRecoverUnsu

pported
write access only

Operator
No Issue

Oracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 checkStartTime modifier Passed No Issue
3 checkEpoch modifier Passed No Issue
4 getCurrentEpoch read Passed No Issue
5 getPeriod read Passed No Issue
6 getStartTime read Passed No Issue
7 getLastEpochTime read Passed No Issue
8 nextEpochPoint read Passed No Issue
9 setPeriod external access only

Operator
No Issue

10 setEpoch external access only
Operator

No Issue

11 update external Passed No Issue
12 consult external Passed No Issue
13 twap external Passed No Issue

RebateTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 onlyAsset modifier Passed No Issue
8 bond external access only Asset No Issue
9 claimRewards external Passed No Issue
10 setLibra external access only Owner No Issue
11 setLibraOracle external access only Owner No Issue

12 setTreasury external access only Owner No Issue
13 setAsset external access only Owner No Issue
14 setBondParameters external access only Owner No Issue
15 redeemAssetsForBuybac

k
external access only Owner No Issue

16 _claimVested internal Passed No Issue
17 getLibraReturn read access only Asset No Issue
18 getBondPremium read Passed No Issue
19 getLibraPrice read Passed No Issue
20 getTokenPrice read access only Asset No Issue
21 claimableLibra external No Issue

Treasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 checkSameOriginReentra

nted
internal Passed No Issue

3 checkSameSenderReentr
anted

internal Passed No Issue

4 onlyOneBlock modifier Passed No Issue
5 onlyOperator modifier Passed No Issue
6 checkCondition modifier Passed No Issue
7 checkEpoch modifier Passed No Issue
8 checkOperator modifier Passed No Issue
9 notInitialized modifier Passed No Issue
10 isInitialized read Passed No Issue
11 nextEpochPoint read Passed No Issue
12 getLibraPrice read Passed No Issue
13 getLibraUpdatedPrice read Passed No Issue
14 getReserve read Passed No Issue
15 getBurnableLibraLeft read Passed No Issue
16 getRedeemableBonds read Passed No Issue
17 getBondDiscountRate read Passed No Issue
18 getBondPremiumRate read Passed No Issue
19 initialize write Passed No Issue
20 setOperator external access only

Operator
No Issue

21 setBoardroom external access only
Operator

No Issue

22 setBondTreasury external access only
Operator

No Issue

23 setLibraOracle external access only
Operator

No Issue

24 setLibraPriceCeiling external access only
Operator

No Issue

25 setMaxSupplyExpansion
Percents

external access only
Operator

No Issue

26 setSupplyTiersEntry external access only
Operator

No Issue

27 setMaxExpansionTiersEn
try

external access only
Operator

No Issue

28 setBondDepletionFloorPe
rcent

external access only
Operator

No Issue

29 setMaxSupplyContraction
Percent

external access only
Operator

No Issue

30 setMaxDebtRatioPercent external access only
Operator

No Issue

31 setBootstrap external access only
Operator

No Issue

32 setExtraFunds external access only
Operator

No Issue

33 setMaxDiscountRate external access only
Operator

No Issue

34 setMaxPremiumRate external access only
Operator

No Issue

35 setDiscountPercent external access only
Operator

No Issue

36 setPremiumThreshold external access only
Operator

No Issue

37 setPremiumPercent external access only
Operator

No Issue

38 setMintingFactorForPayin
gDebt

external access only
Operator

No Issue

39 setBondSupplyExpansion
Percent

external access only
Operator

No Issue

40 _updateLibraPrice internal Passed No Issue
41 getLibraCirculatingSupply read Passed No Issue
42 buyBonds external access only One

Block
No Issue

43 redeemBonds external access only One
Block

No Issue

44 _sendToBoardroom internal Passed No Issue
45 _sendToBondTreasury internal Passed No Issue
46 _calculateMaxSupplyExp

ansionPercent
internal Passed No Issue

47 allocateSeigniorage external access only One
Block

No Issue

48 governanceRecoverUnsu
pported

external access only
Operator

No Issue

49 boardroomSetOperator external access only
Operator

No Issue

50 boardroomSetLockUp external access only
Operator

No Issue

51 boardroomAllocateSeigni
orage

external access only
Operator

No Issue

52 boardroomGovernanceR
ecoverUnsupported

external access only
Operator

No Issue

LibraGenesisRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only

Operator
No Issue

5 set write access only
Operator

No Issue

6 getGeneratedReward read Passed No Issue
7 pendingLIBRA external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue
10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeLibraTransfer internal Passed No Issue
14 setOperator external access only

Operator
No Issue

15 governanceRecoverUnsu
pported

external access only
Operator

No Issue

LibraRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only

Operator
No Issue

5 set write access only
Operator

No Issue

6 getGeneratedReward read Passed No Issue
7 pendingLIBRA external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue
10 deposit write Passed No Issue
11 withdraw write Passed No Issue

12 emergencyWithdraw write Passed No Issue
13 safeLibraTransfer internal Passed No Issue
14 setOperator external access only

Operator
No Issue

15 governanceRecoverUnsu
pported

external access only
Operator

No Issue

LShareRewardPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOperator modifier Passed No Issue
3 checkPoolDuplicate internal Passed No Issue
4 add write access only

Operator
No Issue

5 set write access only
Operator

No Issue

6 getGeneratedReward read Passed No Issue
7 pendingShare external Passed No Issue
8 massUpdatePools write Passed No Issue
9 updatePool write Passed No Issue
10 deposit write Passed No Issue
11 withdraw write Passed No Issue
12 emergencyWithdraw write Passed No Issue
13 safeLShareTransfer internal Passed No Issue
14 setOperator external access only

Operator
No Issue

15 governanceRecoverUnsu
pported

external access only
Operator

No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Token max minting limits can be set

It is advisable to set an upper minting limit in the LIBRA and LBOND tokens contracts. This

is considered good for healthy tokenomics.

Resolution: We advise setting a max minting limit. On the other hand, this also can be

acknowledged by the owner to mint it responsibly.

Status: Acknowledged

(2) Missing Event Log: There are some events missing in the LibraRewardPool.sol,

LibraGenesisRewardPool and LShareRewardPool.sol smart contracts. It is recommended

to fire appropriate events in case of important state change.

Some functions need an event log.

● add

● set

● updatePool

● governanceRecoverUnsupported

Resolution: We suggest adding an event log for above listed functions.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:

Input variable validation is not performed in the function of LibraGenesisRewardPool.sol,

LibraRewardPool.sol, LShareRewardPool smart contracts.

Variable validation is not performed in below functions :

● governanceRecoverUnsupported

Resolution: We advise using validation like address type variables should not be

address(0). This helps protect the information to be added mistakenly.

Status: Acknowledged

(2) Variables should be made immutable:

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

● LibraGenesisRewardPool.sol
○ libra, poolStartTime, poolEndTime

● LibraRewardPool.sol
○ libra, poolStartTime, epochEndTimes, epochLibraPerSecond

● LShareRewardPool.sol
○ lshare, poolStartTime, poolEndTime

● Treasury.sol
○ libra, lbond, lshare, libraPriceOne

● LShare.sol
○ startTime, endTime, communityFundRewardRate, devFundRewardRate,

treasuryFundRewardRate

Resolution: We suggest setting these variables as immutable.

Status: Acknowledged

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setOperator: Boardroom operator can set operator address.

● setLockUp: Boardroom operator can withdraw Lockup Epochs, reward Lockup

Epochs values set.

● allocateSeigniorage: Boardroom operators can allocate seigniorage.

● governanceRecoverUnsupported: Boardroom operators can governance recover

unsupported tokens.

● mint: LBond Operator mints basis bonds to a recipient.

● burnFrom: LBond Operator can burn from amount.

● governanceRecoverUnsupported: LBond operators can governance recover

unsupported tokens.

● distributeReward: Libra operators can distribute to the reward pool.

● burnFrom: Libra operators can burn from amount.

● mint: Libra Operator mints LIBRA to a recipient.

● includeAddress: Libra operators can include addresses.

● setTaxOffice: Libra operators can set tax office addresses.

● setLibraOracle: Libra operators can set libra oracle addresses.

● governanceRecoverUnsupported: LShare operators can governance recover

unsupported tokens.

● distributeReward: LShare operators can distribute to the reward pool.

● setTreasuryFund: LShare operators can set treasury fund addresses.

● setCommunityFund: LShare operators can set community fund addresses.

● setLibra: RebateTreasury owner can set libra token address.

● setLibraOracle: RebateTreasury owner can set libra oracle address.

● setTreasury: RebateTreasury owner can set Libra treasury address.

● setAsset: RebateTreasury owner can set bonding parameters of token.

● setBondParameters: RebateTreasury owners can set bond pricing parameters.

● redeemAssetsForBuyback: RebateTreasury owners can redeem assets for buyback

under peg.

● add: LibraGenesisRewardPool owner can add a new token to the pool.

● set: LibraGenesisRewardPool owner can update the given pool's LIBRA allocation

point.

● setOperator: LibraGenesisRewardPool owner can set operator address.

● governanceRecoverUnsupported: LibraGenesisRewardPool operators can

governance recover unsupported tokens.

● add: LibraRewardPool owner can add a new token to the pool.

● set: LibraRewardPool owner can update the given pool's LIBRA allocation point.

● setOperator:LibraRewardPool owner can set operator address.

● governanceRecoverUnsupported: LibraRewardPool operators can governance

recover unsupported tokens.

● governanceRecoverUnsupported: LShareRewardPool operators can governance

recover unsupported tokens.

● setOperator: LShareRewardPool can set operator address.

● set: LShareRewardPool owner can update the given pool's lSHARE allocation

point.

● add: LShareRewardPool owner can add a new lp to the pool.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved / acknowledged in the revised smart contract code. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Libra Finance Protocol

Boardroom Diagram

LBond Diagram

Libra Diagram

LShare Diagram

Oracle Diagram

RebateTreasury Diagram

Treasury Diagram

Libra Genesis Reward Pool Diagram

Libra Reward Pool Diagram

LShare Reward Pool Diagram

Slither Results Log

Slither log >> Boardroom.sol

Slither log >> LBond.sol

Slither log >> Libra.sol

Slither log >> LShare.sol

Slither log >> Oracle.sol

Slither log >> RebateTreasury.sol

Slither log >> Treasury.sol

Slither log >> LibraGenesisRewardPool.sol

Slither log >> LibraRewardPool.sol

Slither log >> LShareRewardPool.sol

Solidity Static Analysis

Boardroom.sol

LBond.sol

Libra.sol

LShare.sol

Oracle.sol

RebateTreasury.sol

Treasury.sol

LibraGenesisRewardPool.sol

LibraRewardPool.sol

LShareRewardPool.sol

Solhint Linter

Boardroom.sol

Boardroom.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
Boardroom.sol:134:71: Error: Code contains empty
blocksBoardroom.sol:289:51: Error: Avoid using low level calls.
Boardroom.sol:311:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Boardroom.sol:408:38: Error: Avoid to use tx.origin
Boardroom.sol:421:31: Error: Avoid to use tx.origin

LBond.sol

LBond.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
LBond.sol:433:24: Error: Code contains empty blocks
LBond.sol:453:24: Error: Code contains empty blocks
LBond.sol:579:63: Error: Code contains empty blocks

Libra.sol

Libra.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Libra.sol:711:24: Error: Code contains empty blocks
Libra.sol:731:24: Error: Code contains empty blocks

LShare.sol

LShare.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
LShare.sol:737:24: Error: Code contains empty blocks
LShare.sol:757:24: Error: Code contains empty
blocksLShare.sol:888:27: Error: Avoid to make time-based decisions in
your business logic

Oracle.sol

Oracle.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirementOracle.sol:119:5: Error: Contract name must be in
CamelCase

Oracle.sol:567:47: Error: Use double quotes for string literals
Oracle.sol:576:21: Error: Avoid to make time-based decisions in your
business logic
Oracle.sol:606:60: Error: Use double quotes for string literals

RebateTreasury.sol

RebateTreasury.sol:2:1: Error: Compiler version ^0.6.12 does not
satisfy the r semver requirement
RebateTreasury.sol:465:29: Error: Avoid to make time-based decisions
in your business logic
RebateTreasury.sol:465:77: Error: Avoid to make time-based decisions
in your business logic

Treasury.sol

Treasury.sol:602:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Treasury.sol:1310:30: Error: Avoid to make time-based decisions in
your business logic
Treasury.sol:1313:34: Error: Variable "_amount" is unused

LibraGenesisRewardPool.sol

LibraGenesisRewardPool.sol:3:1: Error: Compiler version 0.6.12 does
not satisfy the r semver requirement
LibraGenesisRewardPool.sol:474:51: Error: Avoid using low level
calls.
LibraGenesisRewardPool.sol:496:17: Error: Avoid using inline
assembly. It is acceptable only in rare cases
LibraGenesisRewardPool.sol:645:17: Error: Avoid to make time-based
decisions in your business logic
LibraGenesisRewardPool.sol:675:13: Error: Avoid to make time-based
decisions in your business logic

LibraRewardPool.sol

LibraRewardPool.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
LibraRewardPool.sol:691:35: Error: Avoid to make time-based decisions
in your business logic
LibraRewardPool.sol:694:85: Error: Avoid to make time-based decisions
in your business logic
LibraRewardPool.sol:777:31: Error: Avoid to make time-based decisions
in your business logic

LibraRewardPool.sol:853:13: Error: Avoid to make time-based decisions
in your business logic

LShareRewardPool.sol

LShareRewardPool.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
LShareRewardPool.sol:319:71: Error: Code contains empty blocks
LShareRewardPool.sol:771:31: Error: Avoid to make time-based
decisions in your business logic
LShareRewardPool.sol:843:13: Error: Avoid to make time-based
decisions in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

