
Project: LibraX Finance
Website: https://librax.finance
Platform: Astar Network
Language: Solidity
Date: April 26th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the LibraX Finance team to perform the Security audit of
the LibraX protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 26th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
LibraX is an automated market-making (AMM) decentralized exchange (DEX) for the Astar

network. LibraX Finance smart Contract has functions like mint, transfer, permit,

createPair, setFeeToSetter, setFeeTo, burn, swap, skim, getBlockHash, etc.

Audit scope

Name Code Review and Security Analysis Report for
LibraX Protocol Smart Contracts

Platform Astar Network / Solidity

File 1 UniswapV2ERC20.sol

File 1 Github Commit 037f07f46d9e921f5fdf28a07e2ce7885ad0e20f

File 2 UniswapV2Factory.sol

File 2 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042

File 3 UniswapV2Pair.sol

File 3 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042

File 4 UniswapV2Router02.sol

File 4 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042

File 5 Multicall.sol

File 5 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042

Audit Date April 26th, 2022

https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2ERC20.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Factory.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Pair.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Router02.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/multicall/Multicall.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 UniswapV2ERC20.sol
● Name: LibraX LP

● Symbol: LXLP

● Decimals: 18

YES, This is valid.

File 2 UniswapV2Factory.sol
● Generates trading pairs

YES, This is valid.

File 3 UniswapV2Pair.sol
● It serves as an automated market maker and

keeps track of pool token balances.

● Minimum Liquidity: 1000

YES, This is valid.

File 4 UniswapV2Router02.sol
● It supports all the trading functions for many pairs.

● It has functions like: receive, addLiquidity,

addLiquidityETH, etc.

YES, This is valid.

File 5 Multicall.sol
● It Aggregates results from multiple read-only

function calls

● It has functions like: aggregate, getEthBalance,

getBlockHash, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do not contain owner control, which does make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
These issues are fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the LibraX Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the LibraX Protocol.

The LibraX team has provided unit test scripts, which have helped to determine the

integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a LibraX Protocol smart contract code in the form of a Github web link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

UniswapV2ERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _mint internal Passed No Issue
3 _burn internal Passed No Issue
4 _approve write Passed No Issue
5 _transfer write Passed No Issue
6 approve external Passed No Issue
7 transfer external Passed No Issue
8 transferFrom external Passed No Issue
9 permit external Passed No Issue

UniswapV2Factory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 pairCodeHash external Passed No Issue
4 createPair external Passed No Issue
5 setFeeTo external Passed No Issue
6 setFeeToSetter external Passed No Issue

UniswapV2Pair.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _mint internal Passed No Issue
3 _burn internal Passed No Issue
4 _approve write Passed No Issue
5 _transfer write Passed No Issue
6 approve external Passed No Issue
7 transfer external Passed No Issue
8 transferFrom external Passed No Issue
9 permit external Passed No Issue

10 lock modifier Passed No Issue
11 getReserves read Passed No Issue
12 _safeTransfer write Passed No Issue
13 initialize external Passed No Issue

14 _update write Passed No Issue
15 _mintFee write Passed No Issue
16 mint external Passed No Issue
17 burn external Passed No Issue
18 swap external Passed No Issue
19 skim external Passed No Issue
20 sync external Passed No Issue

UniswapV2Router02.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 _addLiquidity internal Passed No Issue
5 addLiquidity external Passed No Issue
6 addLiquidityETH external Passed No Issue
7 removeLiquidity write Passed No Issue
8 removeLiquidityETH write Passed No Issue
9 removeLiquidityWithPermit external Passed No Issue

10 removeLiquidityETHWithPermit external Passed No Issue
11 removeLiquidityETHSupporting

FeeOnTransferTokens
write Passed No Issue

12 removeLiquidityETHWithPermit
SupportingFeeOnTransferToke
ns

external Passed No Issue

13 _swap internal Passed No Issue
14 swapExactTokensForTokens external Passed No Issue
15 swapTokensForExactTokens external Passed No Issue
16 swapExactETHForTokens external Passed No Issue
17 swapTokensForExactETH external Passed No Issue
18 swapExactTokensForETH external Passed No Issue
19 swapETHForExactTokens external Passed No Issue
20 _swapSupportingFeeOnTransf

erTokens
internal Passed No Issue

21 swapExactTokensForTokensSu
pportingFeeOnTransferTokens

external Passed No Issue

22 swapExactETHForTokensSupp
ortingFeeOnTransferTokens

external Passed No Issue

23 swapExactTokensForETHSupp
ortingFeeOnTransferTokens

external Passed No Issue

24 quote write Passed No Issue
25 getAmountOut write Passed No Issue
26 getAmountIn write Passed No Issue
27 getAmountsOut read Passed No Issue
28 getAmountsIn read Passed No Issue

Multicall.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 aggregate write Passed No Issue
3 getEthBalance read Passed No Issue
4 getBlockHash read Passed No Issue
5 getLastBlockHash read Passed No Issue
6 getCurrentBlockTimestamp read Passed No Issue
7 getCurrentBlockDifficulty read Passed No Issue
8 getCurrentBlockGasLimit read Passed No Issue
9 getCurrentBlockCoinbase read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Missing event logs in UniswapV2Factory.sol

It is best practice to fire an event when a significant state change is happening. It helps

clients interact with the blockchain. We suggest to add events in following functions:

● setFeeTo

● setFeeToSetter

Resolution: Add appropriate events in above functions.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Consider using the latest solidity version while contract deployment to prevent any

compiler version level bugs. There are many features introduced and many security bugs

are fixed so it is a good practice to use the latest solidity version.

Resolution: Please use the latest solidity version.

Status: Acknowledged

Conclusion

We were given a contract code in the form of github repositories. And we have used all

possible tests based on given objects as files. We had observed some issues in the smart

contracts, but those issues are not critical ones. So, the smart contracts are ready for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - LibraX Protocol

UniswapV2ERC20 Diagram

Multicall Diagram

UniswapV2Factory Diagram

UniswapV2Pair Diagram

UniswapV2Router02 Diagram

Slither Results Log

Slither log >> UniswapV2ERC20.sol

Slither log >> UniswapV2Factory.sol

Slither log >> UniswapV2Pair.sol

Slither log >> UniswapV2Router02.sol

Slither log >> Multicall.sol

Solidity Static Analysis

UniswapV2ERC20.sol

UniswapV2Factory.sol

UniswapV2Pair.sol

UniswapV2Router02.sol

Multicall.sol

Solhint Linter

UniswapV2ERC20.sol

UniswapV2ERC20.sol:3:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
UniswapV2ERC20.sol:7:35: Error: Use double quotes for string literals
UniswapV2ERC20.sol:11:35: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:15:49: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:22:28: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2ERC20.sol:22:35: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:23:28: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2ERC20.sol:23:37: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:24:27: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2ERC20.sol:29:20: Error: Variable name must be in mixedCase
UniswapV2ERC20.sol:39:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
UniswapV2ERC20.sol:44:27: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:46:33: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:115:29: Error: Avoid to make time-based decisions
in your business logic
UniswapV2ERC20.sol:115:46: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:118:17: Error: Use double quotes for string
literals
UniswapV2ERC20.sol:124:78: Error: Use double quotes for string
literals

UniswapV2Factory.sol

UniswapV2Factory.sol:3:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
UniswapV2Factory.sol:26:5: Error: Explicitly mark visibility of state
UniswapV2Factory.sol:76:35: Error: Use double quotes for string
literals
UniswapV2Factory.sol:80:35: Error: Use double quotes for string
literals
UniswapV2Factory.sol:84:49: Error: Use double quotes for string
literals
UniswapV2Factory.sol:91:28: Error: Constant name must be in
capitalized SNAKE_CASE
UniswapV2Factory.sol:91:35: Error: Use double quotes for string

literals
UniswapV2Factory.sol:92:28: Error: Constant name must be in
capitalized SNAKE_CASE
UniswapV2Factory.sol:92:37: Error: Use double quotes for string
literals
UniswapV2Factory.sol:93:27: Error: Constant name must be in
capitalized SNAKE_CASE
UniswapV2Factory.sol:98:20: Error: Variable name must be in mixedCase
UniswapV2Factory.sol:108:9: Error: Avoid using inline assembly. It is

UniswapV2Pair.sol

UniswapV2Pair.sol:3:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
UniswapV2Pair.sol:27:5: Error: Explicitly mark visibility of state
UniswapV2Pair.sol:77:35: Error: Use double quotes for string literals
UniswapV2Pair.sol:81:35: Error: Use double quotes for string literals
UniswapV2Pair.sol:85:49: Error: Use double quotes for string literals
UniswapV2Pair.sol:92:28: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2Pair.sol:92:35: Error: Use double quotes for string literals
UniswapV2Pair.sol:93:28: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2Pair.sol:93:37: Error: Use double quotes for string literals
UniswapV2Pair.sol:94:27: Error: Constant name must be in capitalized
SNAKE_CASE
UniswapV2Pair.sol:99:20: Error: Variable name must be in mixedCase
UniswapV2Pair.sol:109:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
UniswapV2Pair.sol:114:27: Error: Use double quotes for string
literals
UniswapV2Pair.sol:116:33: Error: Use double quotes for string
literals
UniswapV2Pair.sol:185:29: Error: Avoid to make time-based decisions
in your business logic
UniswapV2Pair.sol:185:46: Error: Use double quotes for string
literals
UniswapV2Pair.sol:188:17: Error: Use double quotes for string
literals
UniswapV2Pair.sol:194:78: Error: Use double quotes for string
literals
UniswapV2Pair.sol:204:63: Error: Use double quotes for string
literals
UniswapV2Pair.sol:220:32: Error: Use double quotes for string
literals
UniswapV2Pair.sol:233:45: Error: Avoid using low level calls.
UniswapV2Pair.sol:234:76: Error: Use double quotes for string
literals
UniswapV2Pair.sol:255:40: Error: Use double quotes for string
literals
UniswapV2Pair.sol:262:69: Error: Use double quotes for string
literals
UniswapV2Pair.sol:263:40: Error: Avoid to make time-based decisions

in your business logic
UniswapV2Pair.sol:313:32: Error: Use double quotes for string
literals
UniswapV2Pair.sol:334:45: Error: Use double quotes for string
literals
UniswapV2Pair.sol:348:51: Error: Use double quotes for string
literals
UniswapV2Pair.sol:350:67: Error: Use double quotes for string
literals
UniswapV2Pair.sol:357:49: Error: Use double quotes for string
literals
UniswapV2Pair.sol:366:49: Error: Use double quotes for string
literals
UniswapV2Pair.sol:370:104: Error: Use double quotes for string
literals

UniswapV2Router02.sol

UniswapV2Router02.sol:2:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
UniswapV2Router02.sol:8:45: Error: Avoid using low level calls.
UniswapV2Router02.sol:9:76: Error: Use double quotes for string
literals
UniswapV2Router02.sol:14:45: Error: Avoid using low level calls.
UniswapV2Router02.sol:15:76: Error: Use double quotes for string
literals
UniswapV2Router02.sol:31:5: Error: Function name must be in mixedCase
UniswapV2Router02.sol:173:35: Error: Use double quotes for string
literals
UniswapV2Router02.sol:177:35: Error: Use double quotes for string
literals
UniswapV2Router02.sol:181:49: Error: Use double quotes for string
literals
UniswapV2Router02.sol:231:5: Error: Function name must be in
mixedCase
UniswapV2Router02.sol:232:5: Error: Function name must be in
mixedCase
UniswapV2Router02.sol:249:5: Error: Function name must be in
mixedCase
UniswapV2Router02.sol:273:35: Error: Use double quotes for string
literals
UniswapV2Router02.sol:275:39: Error: Use double quotes for string
literals
UniswapV2Router02.sol:354:35: Error: Use double quotes for string
literals
UniswapV2Router02.sol:369:35: Error: Use double quotes for string
literals
UniswapV2Router02.sol:384:39: Error: Variable name must be in
mixedCase
UniswapV2Router02.sol:387:29: Error: Avoid to make time-based
decisions in your business logic
UniswapV2Router02.sol:387:46: Error: Use double quotes for string
literals
UniswapV2Router02.sol:391:35: Error: Variable name must be in
mixedCase
UniswapV2Router02.sol:419:55: Error: Use double quotes for string
literals

Multicall.sol

Multicall.sol:2:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall.sol:19:48: Error: Avoid using low level calls.
Multicall.sol:35:21: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

