
Project: MVHQ Token
Platform: Ethereum
Language: Solidity
Date: April 27th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 27

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the MVHQ team to perform the Security audit of the
MVHQ Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 27th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The MVHQ is a NFT token smart contract which uses an upgradeable proxy contract,

which means the MVHQ contract can be changed after the mainnet deployment. The

MVHQ contract inherits the Initializable, AccessControlUpgradeable, StringsUpgradeable,

ERC1155, IERC1155Receiver standard smart contracts from the OpenZeppelin library.

These OpenZeppelin contracts are considered community-audited and time-tested, and

hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
MVHQ Token Smart Contract

Platform Ethereum / Solidity

File MVHQ.sol

File MD5 Hash C885E5B4D4AD580E767AF745FF8800A4

Online Code - Proxy https://rinkeby.etherscan.io/address/0xECcc2594956AF
12Ef783E3376a91A9191f7201D3#code

Online Code -
Implementation

https://rinkeby.etherscan.io/address/0x2809a8737477a5
34df65c4b4cae43d0365e52035#code

Audit Date April 27th, 2022

https://rinkeby.etherscan.io/address/0xECcc2594956AF12Ef783E3376a91A9191f7201D3#code
https://rinkeby.etherscan.io/address/0xECcc2594956AF12Ef783E3376a91A9191f7201D3#code
https://rinkeby.etherscan.io/address/0x2809a8737477a534df65c4b4cae43d0365e52035#code
https://rinkeby.etherscan.io/address/0x2809a8737477a534df65c4b4cae43d0365e52035#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

ERC1967Proxy.sol

● ERC1967 Proxy standard

● Forwards all read/write calls to implementation

● Implementation contract can be changed by

the owner of proxy

YES, This is valid.
This proxy contract allows
the owner to change the main
contract logic after mainnet
deployment

MVHQ.sol

● Upgradeable Contracts

● Token standard: ERC721A - upgradable

● Token Name: MVHQ

● Token Symbol: MVHQ

● Whale Requirement: 5 Tokens

● The owner can flag any keys and addresses

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.
All these issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in MVHQ Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the MVHQ Token.

The MVHQ Token team has provided scenario and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a MVHQ Token smart contract code in the form of a File.The hash of that

code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 claimKeys external Passed No Issue
4 isWhale external Passed No Issue
5 isKeyFlagged read Infinite loop

possibility
use limited

array elements
6 getFlaggedKeys external Passed No Issue
7 isAddressFlagged read Infinite loop

possibility
use limited

array elements
8 getFlaggedAddresses read Passed No Issue
9 setWhaleRequirement external access by

manager or a
default admin

No Issue

10 flagAddress external access by
manager or a
default admin

No Issue

11 unflagAddress external Infinite loop
possibility

use limited
array elements

12 flagKey external access by
manager or a
default admin

No Issue

13 unflagKey external Infinite loop
possibility

use limited
array elements

14 adminTransfer external access only
Role

No Issue

15 transferLegacyKeys external access only
Role

No Issue

16 burn write access only
Role

No Issue

17 setClaimActive external access only
Role

No Issue

18 setBaseURI external access only
Role

No Issue

19 withdraw external access only
Role

No Issue

20 transferOwnership external access only
Role

No Issue

21 _startTokenId internal Passed No Issue
22 tokenURI read Passed No Issue
23 supportsInterface read Passed No Issue
24 _beforeTokenTransfers internal Infinite loop

possibility
use limited

array elements
25 onERC1155Received external Passed No Issue

26 onERC1155BatchReceived external Passed No Issue
27 managed modifier Passed No Issue
28 initializer modifier Passed No Issue
29 reinitializer modifier Passed No Issue
30 onlyInitializing modifier Passed No Issue
31 _disableInitializers internal Passed No Issue
32 _setInitializedVersion write Passed No Issue
33 __AccessControl_init internal Passed No Issue
34 __AccessControl_init_unchained internal Passed No Issue
35 onlyRole modifier Passed No Issue
36 hasRole read Passed No Issue
37 _checkRole internal Passed No Issue
38 getRoleAdmin read Passed No Issue
39 grantRole write Passed No Issue
40 revokeRole write Passed No Issue
41 renounceRole write Passed No Issue
42 _setupRole internal Passed No Issue
43 _setRoleAdmin internal Passed No Issue
44 _grantRole internal Passed No Issue
45 _revokeRole internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) High gas consuming loops

If the flaggedAddresses array size becomes larger, then it will cost more and more gas to

to flag/unflag the wallets. In case this array length becomes so large that it will hit the

block's limit and stop this admin function. This is also true for the flaggedKeys array.

Resolution: We suggest adjusting the logic such that it avoids using loops to add/remove

elements from the array. For example, if you can store the array index in the mapping,

then the array index for a particular wallet can be obtained from the mapping and there

would not be any need for the "loop" to remove the element from this array.

Status: Acknowledged

(2) Owner can move anyone's tokens

Using the function adminTransfer, the owner can transfer any user's tokens. If this is a

desired feature, then this point can be ignored. But this may create fear in users that their

tokens can be taken away anytime, if the owner's wallet private key would be

compromised. The same thing with the "Burn" function. The owner can burn any user's

tokens.

Resolution: If this is not a required feature, then we suggest removing it.

Status: Acknowledged

(3) Missing event logs

It is recommended to fire an event where the significant state of the smart contract is being

changed. This helps clients (UI) to interact with the blockchain. Following function can

have events:

● Withdraw

Resolution: Add an event in above function

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Redundant withdraw function

The contract does not have a fallback or receive function. So, there is no way the ether

can enter into the smart contract. Therefore the withdraw function will never be used and

thus it becomes redundant.

Resolution: We suggest removing it, if that does not serve any purpose.

Status: Acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setWhaleRequirement: An admin / manager can be used to set the whale

requirement values.

● flagAddress: It is used to flag an address and remove the ability for it to transfer

keys callable by admin or manager.

● unflagAddress: It is used to remove the flag of an address and restore the ability

for it to transfer keys callable by admin or manager.

● flagKey: It is used to flag a key and make it non transferrable callable by admin or

manager.

● unflagKey: It is used to remove the flag of a key and restore the ability for it to be

transferable callable by the admin or manager.

● adminTransfer: Admin can transfer a token from one address to another and is

meant to be used with extreme care only callable from an address with the admin

role.

● transferLegacyKeys: Admin can be used to transfer legacy keys to an address.

● burn: Admin will burn the keys minted from this address.

● setClaimActive: Admin can toggle the claiming functionality.

● setBaseURI: Admin can set the baseURI for metadata.

● withdraw: Admin can withdraw amount in case anyone sends ETH to contract by

mistake.

● transferOwnership: Admin can be used to set a new owner value.

● _authorizeUpgrade: Admin can UUPS Upgradeable authorization.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We have observed some issues and they are acknowledged by the MVHQ

team. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - MVHQ Token

Slither Results Log

Slither log >> MVHQ.sol

Solidity Static Analysis

MVHQ.sol

Solhint Linter

MVHQ.sol

MVHQ.sol:1250:18: Error: Parse error: missing ';' at '{'
MVHQ.sol:1292:22: Error: Parse error: missing ';' at '{'
MVHQ.sol:1417:18: Error: Parse error: missing ';' at '{'
MVHQ.sol:1451:22: Error: Parse error: missing ';' at '{'
MVHQ.sol:1586:6: Error: Parse error: missing 'constant' at
'ClaimingNotActive'
MVHQ.sol:1586:23: Error: Parse error: missing '=' at '('
MVHQ.sol:1587:6: Error: Parse error: missing 'constant' at
'ApprovalRequired'
MVHQ.sol:1587:22: Error: Parse error: missing '=' at '('
MVHQ.sol:1588:6: Error: Parse error: missing 'constant' at
'NoClaimableKeys'
MVHQ.sol:1588:21: Error: Parse error: missing '=' at '('
MVHQ.sol:1589:6: Error: Parse error: missing 'constant' at
'NoLegacyKeysToTransfer'
MVHQ.sol:1589:28: Error: Parse error: missing '=' at '('
MVHQ.sol:1590:6: Error: Parse error: missing 'constant' at
'FailedToWithdraw'
MVHQ.sol:1590:22: Error: Parse error: missing '=' at '('
MVHQ.sol:1591:6: Error: Parse error: missing 'constant' at
'FromFlaggedAddress'
MVHQ.sol:1591:24: Error: Parse error: missing '=' at '('
MVHQ.sol:1592:6: Error: Parse error: missing 'constant' at
'ToFlaggedAddress'
MVHQ.sol:1592:22: Error: Parse error: missing '=' at '('
MVHQ.sol:1593:6: Error: Parse error: missing 'constant' at
'KeyIsFlagged'
MVHQ.sol:1593:18: Error: Parse error: missing '=' at '('
MVHQ.sol:1594:6: Error: Parse error: missing 'constant' at
'Unauthorized'
MVHQ.sol:1594:18: Error: Parse error: missing '=' at '('
MVHQ.sol:1664:50: Error: Parse error: mismatched input '(' expecting
{';', '='}
MVHQ.sol:1665:86: Error: Parse error: mismatched input '(' expecting
{';', '='}
MVHQ.sol:1668:50: Error: Parse error: mismatched input '(' expecting
{';', '='}
MVHQ.sol:1797:55: Error: Parse error: mismatched input '(' expecting
{';', '='}
MVHQ.sol:1829:45: Error: Parse error: mismatched input '(' expecting
{';', '='}
MVHQ.sol:1885:111: Error: Parse error: mismatched input '(' expecting
{';', '='}

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

