@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Mobland
Website: https://mob.land

Platform: Binance Smart Chain

Language: Solidity
Date: February 6th, 2023

https://mob.land

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 9
Technical QUICK Stats ..o e 10
Code QUANIRY ... e 1
DOoCUMENTAtION ... 11
USE Of DEPENUENCIES ... e e nenaenes 11
ASIS OVEIVIEW ... 12
Severity DefinitioNS ... 20
AUt FINAINGS oo e 21
@70 o T3 1017 T o 28
(@ 0] 1Y/ =1 1 T To [o] 0T) 29
DISCIAIMEIS ... e 31
Appendix
o Code FIOW Diagram ..o 32
o Slither RESUIS LOQ ...uviiiiii i e e e 50
e Solidity staticanalysis ... 56
® SOININt LiNtEr oo 69

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Mobland to perform the Security audit of the Mobland
Protocol smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on February 6th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.
Project Background

e MOBLAND is introducing a revolutionary NFT borrow and lending marketplace set
to disrupt the way players transact within and beyond the game.

e The Shadow Market gives the Turf & Farm Owners the unique ability to earn by
renting out (lending) their assets within the MOBLAND ecosystem.

e The Shadow Market will allow players to Lend/Borrow Turfs & Farms, Consume
SEED, Grow BUD & Upgrade Farms.

e The in-game Shadow Market is utilized to borrow and/or lend in-game assets.
Owners (Lenders) have the freedom to set lending parameters and list assets on
the marketplace where Renters (Borrowers) can efficiently search the marketplace
to borrow assets.

e Mobland Contracts have functions like mint, burn, lock, unlock, mintMany,
mintBatch, Buy an NFT, etc.

e The Mobland contract inherits the ERC20, AddressUpgradeable,
SafeMathUpgradeable, ERC721Upgradeable, ERC721EnumerableUpgradeable,
AddressUpgradeable, ERC1155, Ownable, Address, ERC721, Pausable,
StringsUpgradeable, OwnableUpgradeable, IERC165Upgradeable,
IERC721Upgradeable, ERC165 standard smart contracts from the OpenZeppelin
library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report
for Mobland Protocol Smart Contracts

Platform BSC / Solidity

File 1 NftFactory.sol

File 2 SuperpowerNFT.sol

File 3 SuperpowerNFTBase.sol

File 4 WhitelistSlot.sol

File 5 Farm.sol

File 6 FarmBridged.sol

File 7 Turf.sol

File 8 TurfBridged.sol

File 9 WormholeCommon.sol

File 10 Wormhole721.sol

File 11 WormholeTunnel.sol

File 12 GamePool.sol

File 13 Signable.sol

File 14 SignableStakes.sol

File 15 SideToken.sol

File 16 BudToken.sol

File 17 SeedToken.sol

Audit Date February 6th,2023

Revision Date February 8th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/NftFactory.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/SuperpowerNFT.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/SuperpowerNFTBase.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/WhitelistSlot.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/Farm.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/FarmBridged.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/Turf.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/TurfBridged.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole-tunnel/WormholeCommon.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole721/Wormhole721.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole-tunnel/WormholeTunnel.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/GamePool.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/utils/Signable.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/utils/SignableStakes.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/SideToken.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/BudToken.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/SeedToken.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 NftFactory.sol YES, This is valid.
e Owner can set a whitelist address.
e Owner can Withdraw proceeds.
e Owner can update the prices of an
existing running Sale.
e Owner can create a new Sale for an NFT

and update an existing Sale.

File 2 SuperpowerNFT.sol YES, This is valid.
e Owner can set the maximum supply.

e Owner can mint tokens.

File 3 SuperpowerNFTBase.sol YES, This is valid.
e Owner can set the game address.
e Owner can set the locker address and
remove the locker address.

e Owner can freeze the token URI.

File 4 WhitelistSlot.sol YES, This is valid.

e Owner can set a new URI.

File 5 Farm.sol YES, This is valid.
e Name: MOBLAND Farm
e Symbol: mMFARM

File 6 FarmBridged.sol YES, This is valid.
e Name: MOBLAND Farm
e Symbol: mMFARM

File 7 Turf.sol YES, This is valid.
e Name: MOBLAND Turf
e Symbol: mTURF

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 8 TurfBridged.sol
e Name: MOBLAND Turf
e Symbol: mTURF

YES, This is valid.

File 9 WormholeCommon.sol
o \WormholeCommon can check if the

transfer is Completed or not.

YES, This is valid.

File 10 WormholeTunnel.sol
e Owner can set wormhole register contract

address

YES, This is valid.

File 11 Wormhole721.sol

e Complete a transfer from Wormhole.

YES, This is valid.

File 12 GamePool.sol
e The Owner can withdraw an amount of
funds in SEEDS or BUDS, or all of them if
the amount is 0.
e The Owner can initialize the attributes of

a turf token and farm token.

YES, This is valid.

File 13 Signable.sol
e The Owner can set a signable address.

YES, This is valid.

File 14 SignableStakes.sol
e SignableStakes contract can check hash

unstake.

YES, This is valid.

File 15 SideToken.sol
e Minter can mint amounts.

e The Owner can set a minter address.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 16 BudToken.sol
e Name: Mobland Bud Token

e Symbol: BUD YES, This is valid.
e Decimals: 18
e \ersion: 1

File 17 SeedToken.sol YES, This is valid.

e Name: Mobland Seed Token
e Symbol: SEED
e Decimals: 18

e \ersion: 1

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 2 low and some very low level issues.

All issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Mobland Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Mobland Protocol.

The Mobland team has provided unit test scripts, which have helped to determine the

integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Mobland Protocol smart contract code in the form of a github link. The

links of that code are mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://mob.land which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://mob.land

AS-IS overview

NftFactory.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initialize write Passed No Issue
3 | setWI external access only Owner No Issue
4 [setPaymentToken external access only Owner No Issue
5 | setNewNft external access only Owner No Issue
6 | removeNewNft external access only Owner No Issue
7 | getNftidByAddress external Passed No Issue
8 | getNftAddressByld external Passed No Issue
9 | getPaymentTokenSymbol | external Passed No Issue
10 | newSale external Infinite loops Refer Audit

possibility Findings

11 | updateSale external access only Owner No Issue
12 | endSale external access only Owner No Issue
13 | updatePrice external access only Owner No Issue
14 | getSale external Passed No Issue
15 | getPrice read Passed No Issue
16 | getWIPrice read Passed No Issue
17 | buyTokens external Passed No Issue
18 | withdrawProceeds write access only Owner No Issue

SuperpowerNFT.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyFactory modifier Passed No Issue
3 | canMint modifier Passed No Issue
4 | setDefaultPlayer external access only Owner No Issue
5 | setMaxSupply external access only Owner No Issue
6 | setFactory external access only Owner No Issue
7 | isFactory read Passed No Issue
8 | hasFactories read Passed No Issue
9 | canMintAmount read Passed No Issue
10 | mint write access only Factory No Issue
11 | endMinting external access only Owner No Issue
12 | mintEnded external Passed No Issue
13 | maxSupply external Passed No Issue
14 | nextTokenld external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SuperpowerNFTBase.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyLocker modifier Passed No Issue
3 | onlyGame modifier Passed No Issue
4 | tokenExists modifier Passed No Issue
5 | _ SuperpowerNFTBase_ internal initializer No Issue

init
6 beforeTokenTransfer internal Passed No Issue
7 | prelnitializeAttributesFor external access only Owner No Issue
8 | attributesOf external Passed No Issue
9 [initializeAttributesFor external Passed No Issue
10 | updateAttributes external Passed No Issue
11 | supportsinterface read Passed No Issue
12 | baseURI internal Passed No Issue
13 | updateTokenURI external access only Owner No Issue
14 | freezeTokenURI external access only Owner No Issue
15 | contractURI read Passed No Issue
16 | setGame external access only Owner No Issue
17 | locked read Passed No Issue
18 [lockerOf external Passed No Issue
19 | isLocker read Passed No Issue
20 | setLocker external Locker contract not No Issue
set

21 | removelocker external access only Owner No Issue
22 | hasLocks read Passed No Issue
23 | lock external access only Locker No Issue
24 | unlock external access only Locker No Issue
25 | unlocklfRemovedLocker external access only Owner No Issue
26 | approve write Passed No Issue
27 | getApproved read Passed No Issue
28 | setApprovalForAll write Passed No Issue
29 | isApprovedForAll read Passed No Issue
30 [wormholeTransfer write Passed No Issue

WhitelistSlot.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 |[setURI write access only Owner No Issue
3 [setBurner write access only Owner No Issue
4 | mintBatch write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

5 | mintMany write Infinite loops Refer Audit
possibility Findings

6 | burn write Passed No Issue

Farm.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyFactory modifier Passed No Issue
3 [canMint modifier Passed No Issue
4 | setDefaultPlayer external access only Owner No Issue
5 [setMaxSupply external access only Owner No Issue
6 | setFactory external access only Owner No Issue
7 |isFactory read Passed No Issue
8 | hasFactories read Passed No Issue
9 | canMintAmount read Passed No Issue
10 | mint write access only Factory No Issue
11 | endMinting external access only Owner No Issue
12 | mintEnded external Passed No Issue
13 | maxSupply external Passed No Issue
14 | nextTokenld external Passed No Issue

FarmBridged.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyLocker modifier Passed No Issue
3 | onlyGame modifier Passed No Issue
4 | tokenExists modifier Passed No Issue
5 | __ SuperpowerNFTBase internal initializer No Issue

init

6 beforeTokenTransfer internal Passed No Issue
7 | prelnitializeAttributesFor external access only Owner No Issue
8 | attributesOf external Passed No Issue
9 | initializeAttributesFor external Passed No Issue
10 | updateAttributes external Passed No Issue
11 | supportsinterface read Passed No Issue
12 | baseURI internal Passed No Issue
13 | updateTokenURI external access only Owner No Issue
14 | freezeTokenURI external access only Owner No Issue
15 | contractURI read Passed No Issue
16 | setGame external access only Owner No Issue
17 | locked read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

18 | lockerOf external Passed No Issue
19 | isLocker read Passed No Issue
20 | setLocker external access only Owner No Issue
21 | removelocker external access only Owner No Issue
22 | haslLocks read Passed No Issue
23 | lock external access only Locker No Issue
24 | unlock external access only Locker No Issue
25 | unlocklfRemovedLocker external access only Owner No Issue
26 | approve write Passed No Issue
27 | getApproved read Passed No Issue
28 | setApprovalForAll write Passed No Issue
29 | isApprovedForAll read Passed No Issue
30 [wormholeTransfer write Passed No Issue

Turf.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyFactory modifier Passed No Issue
3 | canMint modifier Passed No Issue
4 | setDefaultPlayer external access only Owner No Issue
5 | setMaxSupply external access only Owner No Issue
6 | setFactory external access only Owner No Issue
7 |isFactory read Passed No Issue
8 | hasFactories read Passed No Issue
9 [canMintAmount read Passed No Issue
10 | mint write access only Factory No Issue
11 | endMinting external access only Owner No Issue
12 | mintEnded external Passed No Issue
13 | maxSupply external Passed No Issue
14 | nextTokenld external Passed No Issue

TurfBridged.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyLocker modifier Passed No Issue
3 | onlyGame modifier Passed No Issue
4 | tokenExists modifier Passed No Issue
5 |__ SuperpowerNFTBase internal initializer No Issue

init

6 beforeTokenTransfer internal Passed No Issue
7 | prelnitializeAttributesFor external access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 | attributesOf external Passed No Issue
9 | initializeAttributesFor external Passed No Issue
10 | updateAttributes external Passed No Issue
11 | supportsinterface read Passed No Issue
12 | baseURI internal Passed No Issue
13 [updateTokenURI external access only Owner No Issue
14 | freezeTokenURI external access only Owner No Issue
15 | contractURI read Passed No Issue
16 | setGame external access only Owner No Issue
17 | locked read Passed No Issue
18 | lockerOf external Passed No Issue
19 | isLocker read Passed No Issue
20 | setLocker external access only Owner No Issue
21 | removelocker external access only Owner No Issue
22 | haslLocks read Passed No Issue
23 | lock external access only Locker No Issue
24 | unlock external access only Locker No Issue
25 | unlocklfRemovedLocker external access only Owner No Issue
26 | approve write Passed No Issue
27 | getApproved read Passed No Issue
28 | setApprovalForAll write Passed No Issue
29 | isApprovedForAll read Passed No Issue
30 [wormholeTransfer write Passed No Issue

Wormhole721.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | supportsinterface read Passed No Issue
3 | wormholeTransfer write Passed No Issue
4 | wormholeCompleteTransfer write Passed No Issue

WormholeCommon.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [isTransferCompleted read Passed No Issue
3 | contractByChainld read Passed No Issue
4 | wormhole read Passed No Issue
5 | chainld read Passed No Issue
6 setWormhole internal Passed No Issue
7 setChainld internal Passed No Issue
8 setTransferCompleted internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

9 setContract internal Passed No Issue
10 | _wormholeCompleteTran internal Passed No Issue
sfer
11 | _wormholeTransferWithV internal Passed No Issue
alue
12 | logTransfer internal Passed No Issue
13 | verifyContractVM internal Passed No Issue
14 | encodeTransfer internal Passed No Issue
15 | parseTransfer internal Passed No Issue
GamePool.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 equalString internal Passed No Issue
3 |initialize write initializer No Issue
4 | setConf external | access only Owner No Issue
5 | stakeAsset external Passed No Issue
6 | unstakeAsset external Passed No Issue
7 checkStakeState internal Passed No Issue
8 | getStakelndexByTokenld read Passed No Issue
9 [getStakeBylndex external Passed No Issue
10 | getNumberOfStakes external Passed No Issue
11 | getUserDeposits external Passed No Issue
12 | getUserStakes external Passed No Issue
13 | saveSignatureAsUsed internal Passed No Issue
14 | depositSeed external Passed No Issue
15 | depositBud external Passed No Issue
16 | depositSeedAndPayOther | external Passed No Issue
User
17 | depositFT internal Passed No Issue
18 | depositBylndex read Passed No Issue
19 | numberOfDeposits external Passed No Issue
20 | depositByld external Passed No Issue
21 | depositByldAndUser external Passed No Issue
22 | harvest external Passed No Issue
23 | withdrawFT external [access only Owner No Issue
24 | initializeTurf external | access only Owner No Issue
25 | updateTurfAttributes external Passed No Issue
26 | getTurfAttributes external Passed No Issue
27 | initializeFarm external | access only Owner No Issue
28 | updateFarmAttributes external Passed No Issue
29 | getFarmAttributes external Passed No Issue
30 | attributesOf external Passed No Issue
31 | hashDeposit read Passed No Issue
32 | hashDepositAndPay read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

33 | hashHarvesting read Passed No Issue
34 | hashFarmAttributes read Passed No Issue
35 | hashTurfAttributes read Passed No Issue
Signable.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _Ownable_init internal access only No Issue
Initializing
3 Ownable init unchained internal initializer No Issue
4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 Signable init internal | access only Owner No Issue
11 | setValidator external | access only Owner No Issue
12 | getValidator external Passed No Issue
13 | isValidator external Passed No Issue
14 | isSignedByValidator read Passed No Issue
15 | isSignedByAValidator read Passed No Issue

SignableStakes.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | hashUnstake read Passed No Issue
3 [setValidator external | access only Owner No Issue
4 | getValidator external Passed No Issue
5 |isValidator external Passed No Issue
6 | isSignedByValidator read Passed No Issue
7 |isSignedByAValidator read Passed No Issue

SeedToken.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initialize write initializer No Issue
3 | onlyMinter modifier Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

4 SideToken init internal initializer No Issue
5 | mint write access only Minter No Issue
6 | setMinter external | access only Owner No Issue
7 | _UUPSUpgradableTemplat | internal initializer No Issue
e init

8 authorizeUpgrade internal | access only Owner No Issue

SideToken.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyMinter modifier Passed No Issue
3 SideToken init internal initializer No Issue
4 | mint write access only Minter No Issue
5 | setMinter external | Minter contract not No Issue

set

BudToken.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initialize write initializer No Issue
3 | __UUPSUpgradableTemplat | internal initializer No Issue

e init

4 authorizeUpgrade internal | access only Owner No Issue
5 | onlyMinter modifier Passed No Issue
6 SideToken init internal initializer No Issue
7 | mint write access only Minter No Issue
8 [setMinter external | access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Deposit id override by any depositor: - GamePool.sol

amount) ;

(), amount);

tokenType, amount);

Functions depositSeed(), depositBud(), depositSeedAndPayOtherUser() are called internal

functions ""_depositFT()".

e Depositld not checked duplicate in _depositsByld mapping
e Depositld has sequence issue
e " depositFT" internal function comment says - "depositld the id of the deposit based

on User.lastDepositld".

Resolution: Depositld should be auto incremented or check duplicate depositeld from

mapping "_depositsByld".

Status: This issue is fixed in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Medium

No Medium severity vulnerabilities were found.

Low

(1) Compile time error: SuperpowerNFTBase.sol

able, ERC721EnumerableUpgradeable) {

1EnumerableUpgradeable) {

o, tokenId);

Function has override specified but does not override anything.

Resolution: Add uint256 4th function parameter to avoid this error.

Status: This issue is acknowledged in the revision of the contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Critical operation lacks event log: - GamePool.sol

Missing event log for:
o stakeAsset()

e unstakeAsset()

Resolution: Please write an event log for listed events.

Status: This issue is fixed in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Unused Events, Errors, modifier, mappings :

Events are defined but not used in code.

NftFactory.sol
e FactorySetFor

e FactoryRemovedFor

Errors are defined but not used in code.
NftFactory.sol

e NotAFactoryForThisNFT

e FactoryNotFound

e InsufficientPayment
SuperpowerNFT.sol

e NotEnoughWLSlots

e InvalidDeadline

e WhitelistNotSetYet

SuperpowerNFTBase.sol
e Alreadylnitiated
e NotTheAssetOwner

GamePool.sol

e onlyOnTestnet

A modifier is defined but not used.
SuperpowerNFTBase.sol

e onlyGame()

A Mappings is defined but not used.
GamePool.sol

e stakedByTokenld

Resolution: We suggest removing unused events, modifiers, mappings and errors.

Status: This issue is fixed in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Infinite loops possibility:
NftFactory.sol: newSale()

ActiveForThisNFT();

.length) InconsistentArrays();

alidPaymentToken();
2ns.length; j++) {

Repé dAcceptedToken();

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

NftFactory.sol
e newSale() - acceptedTokens.length

WhitelistSlot.sol
e mintMany() - ids.length

Status: This issue is acknowledged in the contract code.

(3) Minter contract not set: - GamePool.sol

There is a SideToken contract checking whether the minter is a Contract or not in the

setMinter() function, so the minter contract is not in scope.

Resolution: A minter contract is not provided, if you provide a minter contract in the future,

make sure this contract is fully secure.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Status: This issue is acknowledged in the contract code.

(4) Locker contract not set: - GamePool.sol

There is a TurfToken contract checking whether the locker is a Contract or not in the
setLocker() function, so the Locker contract is not in scope.

This function is defined in this file - contracts/SuperpowerNFTBase.sol.

Resolution: A locker contract is not provided, if you set a locker contract in the future,

make sure this contract is fully secure.

Status: This issue is acknowledged in the contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

NftFactory.sol
e setWI: Owner can set a whitelist address.
e setPaymentToken: Owner can set, activate or deactivate a payment token address.
o setNewNft: Owner can set a new NFT for sale.
e removeNewNft: Owner can remove an NFT from the sale.
e newSalet: Owner can create a new Sale for an NFT.
e updateSale: Owner can update an existing Sale.
e endSale: Owner can end (removes) an existing Sale.
e updatePrice: Owner can update the prices of an existing running Sale.

e withdrawProceeds: Owner can Withdraw the proceeds.

SuperpowerNFT.sol
e setDefaultPlayer: Owner can set the default player address.
e setMaxSupply: Owner can set the maximum supply.
e setFactory: Owner can set the factory address.
e mint: Owner can mint an amount.

e endMinting: Owner can handle end minting.

SuperpowerNFTBase.sol
e prelnitializeAttributesFor: Owner can pre initialized attributes.
e updateTokenURI: Owner can update the token URI.
o freezeTokenURI: Owner can freeze the token URI.
e setGame: Owner can set the game address.
e setlLocker: Owner can set the locker address.
e removelocker: Owner can remove the locker address.
e unlocklfRemovedLocker: Owner can emergency unlock in case a compromised

locker is removed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WhitelistSlot.sol

e setURI: Owner can set a new URI.

Farm.sol
e setBurner: Owner can set a new burner address.
e mintBatch: Owner can mint the Batch addresses.

e mintMany: Owner can mint the many addresses.

WormholeTunnel.sol
e wormholelnit: Owner can wormhole initialize.

e wormholeRegisterContract: Owner can set a wormhole register contract address.

Signable.sol

e setValidator: Owner can set a signable validator address.

GamePool.sol
e setConf: Owner can set burning points .
e withdrawFT: Owner can withdraw an amount of funds in SEEDS or BUDS, or all of
them if amount is 0.
e initializeTurf: Owner can initialize the attributes of a turf token.

e initializeFarm: Owner can initialize the attributes of a farm.

SideToken.sol

e setMinter: Owner can set a minter address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github link. And we have used all possible
tests based on given objects as files. We had observed 1 high severity issue, 2 low
severity issues and some Informational severity issues in the smart contracts. All issues
have been fixed / acknowledged in the code. So, the smart contracts are ready for the

mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - Mobland

NftFactory Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SuperpowerNFT Diagram

et
ety
© Qnecraenn

© st

anzaote " >4
i
e
G
O
5 ey 4
=L
B
e e ey @ i
HE s
e § oo
Fere & i,
Sy
e,
- @ ez | .
o Erripeshi f \
e 4 |

9 v S 58 T

S o EE

- | np—
o e | :
_— b=
- S | i
o Do) y, | | | s
it \ | \ '
\ X | | { fer satteas
S i
) |
H .
. = \ B
- o T '
\ .
B | / \ ® | . |
/ | == s \ S ek -
| @ i . 1
R ; .
i Ry ‘ \ ~
p | | | - |
[CL . i @ o © esihrene \ | \ : | w
—_— Pt frenere f L —— ! y | ke @ smresvoganans
@ womosris [ey il / @
| | | T
Ol et e 2 oo
o = | | K
rtpas ST o | - e
" [y) | | * sy < LA
busa L — = | | \ Sy 5 et
e | er S Qe
o | 2 Aty
8 \ ey
“Cronsw S St met | I
7 Y ‘
{ |
| | . |
| | ot / / y | \
. . [s |
\ . / Iy ey \
\ f - |
1 [2 S |
. i
K . / [@ererssmsssvsmatean) 1\ | |
| |) [y \ | | {
Bmsn . / | A L
@ ‘ ' .
— | ST
S \ [
) iokzeut |
& aadersan) \ lilzante |
Sl e |
QA Do i etk \ [
SRR =) | sk \ /
i i 3
tan \ ey s {
it S enairs: 2 Soherorsy
& ety | ey / \ e o
iy |
£ sty |
3
e —
| A

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SuperpowerNFTBase Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WhitelistSlot Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Farm Diagram

B e

S s
sttt

s T

5 e
& L s e i
He=y

[y————

@ st

ST
[resests 29

g
© kg
© A prripmrs

@ v o

Encraipaneite
SR Eopersbigroieane
[
s g s

SR,

o TR

R e e
S 4y

@ ceorisma

Cotrasgrasusnss
ke
T
R

)
B ey

i
s

e

@ o

et

2 gty

@ / @ vt \
e { oaane L
e
[e |
| \
=it s
ey | e |
O _Dweeie_rl) s
by S e
et e ||
- |
] ey
e \

,' / B
pe / | -
O e

[} uss e
[N ey
/ / | \ & ERCIGEIN_inaha s
/ < B

=R 0 TUpyradelpg e

\ Copme jeenes] |
A
2 s

e
= i i)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FarmBridged Diagram

@ W

= punmesasney
& ooty

i)

(@ mossree) @ ercramssernaee]

@ sorepmrrions

oo
B

R st

[

[ttty

hsestimiess o s

© ST e s s s hsestades
Pl

ERrTe—

< esestart iy

o P

[Crmr—

= g
© Qoecoumiet]

xS

o
ey
_ & Dompaet it .

@rcresipmcnn

! s I

E— T e
T - ' \ @ crormitrana o
: i
L, [et .
@ rwsmnenrress [oo
| e \
R [.
2 S E—r \
S ety e \
|
[B \
/ \
/ " \ |
g fov acvess. \ /
ya @ ercrrims p
. oy /
H et
' S } \
F— ‘
© gting _rane : \
p : Sy
. i C Uz s e anAcpone
e e acrin— |
s ey .
e !
iy
o '
oo rtess : ‘
> '
-
S e runoaan : ‘
-
f e Py . |
/ / I : > ot ww’ ot
/ | \ / | \ \ \
% . | . / | }
/ / U s [| tocantise
s / | ! .
5 ra | ' @ wammasconmon : [\
@ uorsusamseats @ ownsontea | [@pasaretpanssanis | . T \ [|
il Conteatradeate Couraupgradeatie | { N \ |
[ey @ Wbt ! [) \
. © Qo) \
Smmniveln) f [C bplese £ SMEOLE.
O ndd e ol @ nctiercal). /
i ey = {
e ‘ | i anns) \
®. ' iRm0y T o) ! i oS g \
S i \ |
. ey \

\ P [/
\ . o \
| \ \ » i _ERCIES_nil)
\) o ety |
\ \ / : S St /
\) : |
\ — \ q v X /
\ \ Ly @ e /
gt s o \
\ SmEaeas =
SR @] | e
3 e e ot 2 Qaton)
c \ 2 b
P ety — A © quaween
& oA enes wacs_sw | © Qe
5 ; T | pever] y /
3 e | [e /
i e e y
e ey / v ey
pEveions / S Nty . . vt
S \ / S)
8 Smteo pver :
mpame \ / y /
ey .
= /)
. itrmreetin

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Turf Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

TurfBridged Diagram

@ W

= punmesasney
& ooty

i)

@i

(@ mossree) @ ercramssernaee]

@ sorepmrrions

oo
s TBise
R st
[
[ttty

hsestimiess o s

© ST e s s s hsestades

S Gtrny
S
S foaamint)
St
0
=
G
=
ey
rtsin0
3
0
E Soiemetecen
- & ey .
— Y — —— v —
y B - ' \ @ o Eruma aLowcenic
/ : [~
, e P
(@ swsorrens) b [oo
| e \
R [P
o Sorinn T \
& P bassag || e \
1|8 ooty
[e \
/ \
/ ‘ \ |
4 o s \ /
S/ @ cromiomssen /
H st
H e e
] G . \
sy o sttess ‘
4 e d \
y I]
g | £ i e Jnmaon
el HE |
oy |
Crrsneurysrss H
iy
Excitmpaiinn H
P] |
; :
g
e] |
-
b oy ! |
. / | ; i
/ | H 7| vt
/ | . [\ \
/ . | . / | |
/ / o | ' toantise
/ / | ! .
> Ird | | © wormascommn ! . \
@ vorsusseae @ ownenossave | [@pavsatiomassve | . Ty \ [y
e Compasesoe Comesee = / | kY \ \
o | S wmmnan | ® \
Sambiinty | | © oo e enene
Snu i < tmrcan /
e ey E e S i st e
e ‘ \ tneshi awmra) \
g . S | | / oty \
o e [\ |
‘ Ehwiin \
= / \ /
Crare \
\ y j - |
\ \ P ot |
\ . s s |
\ \ \ | ! T
\) © o |
\ \ / : * Trpeven) /
\) ! |
\ et \ 4 v A /
\ \ Ly @ oo /
o \
\ R a0 —
SR (=1 IR =1,
. o Sl S
By oo §)
\ Teideer)
i o S
e — e | * Sy
- & pancimen s om Sda
H 3 T corsa) | £ Sy /
o | pi i — © R /
e I e e /
& e bl | e 1 ral]
pEycri © i) y / EE T
s \ / S p
2 Srenaines v Y g
SR \ / y /
= ey .
[- / .
. o e

[Crmr—

= g
© Qoecoumiet]

Pl

S s il
< esestart iy
o P

xS

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ mwormnoierunner

© wormholelni()

© wormholeRegisterContract()
© QwormholeGetCortract()

© BwormholeTransfer(

© wormholeCompleteTransfer()

Wormhole721 Diagram

(©) Worrnhale721

ERGT21
WormholeTunne!

@ _constructor__()

© Qsupportsinterface()

© @wormholeTransfer()

© wormheleCompleteTransferf)

@ momnore

IWormhofestructs

© Bpublishilessage()

© QparseAndVerify/M()
© Querifyvi

© QuerifySignatures()

© Qarsevi) IERCT21Receiver]
eqQ

© QgetCurrentouardianSetindex() e onERo721Recsivedty
o

0
© QgovernanceActionisConsumed()
© Qsintialized()

[
(©) wormholsTunne!

WormholeTunne!
Wormhole Common
Cwnable
Pausable

ERC165

WNBytesLib for bytes

@ Qsupportsinterface()

© Qgetinterfaceid()

© wormholeinitt)

© wormholeRegisterContract()
@ QuormholeGetCortrac()

© Wormhole Gommon

mBytestib for bytes

© State _wormholeState

© QsTransterCompisted()
© QeontractByChainid()
© Quwormholel)

© Qchaind()
forbjtes | & setwormhole()
© _setChainicl()
© ZsetTransferCompieted()
© ZsetCortract()
© wormholeCompleteTransfer()
& _wormhole Transferith Value()
© ogTransfer(
© 3 _verifyConiractug)
© Q_encodeTransfer()
' © QparseTransier()
,
N Jfor bytes
L
N
@) stestiv
© Qeoneat()
© concatStorage()
© Qgles)
© QoAddress()
< Qtolint8()

< Qolints4(y

© QoUntss(y

< QoUnt1260,

© Qpolint256()

© QoBytesa2()
< Qequally

© Qequalstorage(y

(©) ercies
IERC165
© Qeupportairterface()

© Qchainid()

© QgovermanceChainld(y
© QgovermanceContract()
© QmessageFee()

(@© erern

Context
ERG165

IERCT21
IERCT21Metadata
mAddress for address
mStrings for tint256

0 string _name
symi

fokenApprovals

0 address=>mapping address==bool _operatorApprovals

© _constructor_(
© Qsupportsinterface()

© Qsymbol)

© QokenURI)

© Q_paseURI()

& approve()

© QgetApproved()

© setapprovalForAl()

© QsApprovedFerAll)

© transferFrom()

@ safeTransferFrom()

< _sateTranster()

© Q_ownerof)

© Qexists()

© QisApprovedOrOwner()
< _safehint()

< ()

< humn()

© Transter()

< approve()

< setApprovalFor Ay

< Q@ _requirehited()

B _checkOnERCT21Received()
© TheforeTokenTransfer()

© ZafterTokenTransfer ()

< hetoreConsecutiveTokenTranster ()
% ZafterConsecutveTokenTransfer()

(@©) Pausable

J
(©) ownakle

i
/ for address

Context

O bool _paused

GContext

O address _owner

© _constructor_()

© _constructor_()
°

© Qpaused))
©Q_req

Qowner()
a

© Q_req
< _pause()
© Lunpause0)

°)
© transferownership()
© _transferOwnership)

& Qeupportinterface) |

@ sercres

<
© Gontext

© Q_msgSender()
© @& _msgData()

ivd by
g
/ @) adaress @) suings (@) rercr21uetadars) \
Eyr—— O byteste_SYMBOLS IERC721 |
O it _ADDRESS_LENGTH @ qnan=) |
 functionCall) >
QoString() © Qsymbolf)
© functionCall\th\alue() o © QokenlRI)

@ rererar

IERC165

© Qpalanceot))

© Qownerof))

© safeTransferFrom()y

| ® transferFromiy

@ approve()

© setApprovalForAll)

© QgetApproveds)

© QisApprovedForAll(}

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WormholeCommon Diagram

© WormhaoleComman
@ IWeormhole
inByteslib for bytes
IWormholeStructs
< Stat holeStat
=dE _wormhoe-ae @ @publishMessage()
@ QisTransferCompleted() @ QparsednderifyyM()
@ QcontractByChainld() @ Qverify'M()
@ Qwormhole)) @ QuerifySignatures)
@ Qchainld() @ CQparse’/M()
& _setWormhole() @ QoetGuardianSet()
< _setChainld() @ QgetCurrentGuardianSetindex()
< _setTransferCompleted() @ QgetGuardianSetExpiry()
< _setContract() @ QgovernancefctionisConsumed()
< _wormholeCompleteTransfer() @ Qzinitialized()
< _wormholeTransferVith'alue() @ Qchainld()
< logTransfer() @ QgovernanceChainld()
O 0_verifyContractVM{) @ QgovernanceContract()
© O,_encodeTransfer() @ O messageFee()
< 8,_parseTransfer()
I
I
:for bytes
'||'.
(®) sytestit
» Quooncat()
“ concatStorage()
 Qslicel) w7
o Qiobddress()
&)
= AL @ IWormholeStructs

< Qollint1 6()

< Qiollint32()

< GoUintB4()

< Qiollinta6()

< Qtolint1 28()

< Qrollirt256()

o QioBytes32)

o Ceequal()

© QequalStoragel)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

for bytes

@ wormnoteTunnel

@ wormhelenit()

@ wormholeRegisterContract()
@ QuwormhaleGetContract()

® &wormholeTransfer()

@ wormholeComplete Transfer()

’
’

WormholeTunnel Diagram

@ WarmholeTunnel

iWormholeTunne!
Wormhole Common
QOwnable

Pausable

ERC165

_ = = 7 | mBytesLib for bytes

@ Qsupportsinterface()
@ Qgetirterfaceld()
® wormholehnit()

@ wormholeRegisterContract()
/| ® awormholeGetContract()

@ WormholeComman

nBytesLib for bytes

< State _waormholeState

@ Ownable

@ Pausable

@ QsTransferCompleted()

@ QeontractByChainld()

@ Quwarmhole()

@ Qchainld()

< _setwormhole()

© _setChainid()

© _sefTransferCompleted()

© _sefCortract()

© _wormholeCompleteTransfer()
© “wormholeTransfertithValue()
< _logTransfer()

© Q_verifyContract\/M()

< Q_encodeTransfer()

& Q_parseTransfer()

;
, “for bytes

(&) sytestiv 0

© Qeoncat()

< concatStorage()
© Qulice()

< Qiosddress()
& QoUintsi)

< Qralint16()

< Qrolint32()

& QgolintB4()

< Qrolintas()

< Qgolint128()
< Qolint256()
< QloBytes32()
< Qequal()

© QequalStorage()

Context

O address _owner

Context

bool _paused

@ IWormhole

WoermholeStructs

® dpublishiMessage()

® QuparseAndVerify ()

© Qverify V()

© QuerifySignaturesi)

® QparseVM()

o QgetGuardianSet()

© QetCurrentGuardianSetindex()
© QgetGuardianSetExpiry()

© QgovernanceActionlsConsumed()
@ Qsinitialized()

© Gchainld()

@ QgovernanceChainld()

® QgovernanceContract()

© QmessageFes()

(©) erciss

tructs

@ _ constructor__(}
@ Qowner()

< Q_checkOwner()

@ renounceCwnership()
@ transferOwnership()

o

© _ constructor__{}
@ Qpaused))

< Q_requirehotPaused()
© Q_requirePaused()
< _pause()

IERC185

@

@ Qsupportsinterface()

< _transferOwnership()
T

@ Context

< _unpausei)

< Q_msgSender()
< Q_msgData()

@ féRC155

© Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ o

®

O bytestn_nEx SvipoLs
O un_AGDRESS LEvG:

© asiing)

© QoHexSting)

GamePool Diagram

@ oo

UPSpgradaple Tempiate
AtriuatiePiagee

SateMstpgraceable for int25E

@ rmmaroe

@ Qatiihuesdt)

< Q@AUNESISAN

e (@ srevarsrornmane) | § Somimmsmeso |
§ ettty
< Qry
T < e ey
e 3 S
) sy :
it
25 & dpel)
ppel S
=l B el
oo | |30 ety

© QmshTutatrbues).

(@ rcrarcsorsenn

@ rromrec

© asappovedForal)

@ @ |
F |
s = | |

© sonane

Inaizaie
OwnabeUpgradeadle

© vorstporasaeTempise

Intaizan
OnnabieLbgraceasie
radeatle

o aldetors

IAgiressUpgradeabe for agess
INECOSAUDgradeabie or ytes 3t

& _UlpSpgadaseTenpiae int0)

& Turorzelpgradel)

Sgrecy Vicetor)

s
o AsSgecsyAvaliatar)

@ |

[—

e _naizea

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Yortytesi2 or addiess
@ rsthamiesie [CET ; B
ntatzable ialzabe i ®
o e ®
Eryr—
cencvamt
= ranEron e
2 Qiyrecoer) v
Qseovr) © Qe
© QuoTypedDataHast() © QuentyCatResute)
Ppestn;
etzatie \ \
© bytess2_ROLLBACK SLOT | <]
I
| © covnaiae
“mbatzatie
© ZeRcieyarade .« o ws _om /
© T gelmeienertatiert) —
. 5 _conea o /
\ h O Cortas ik urhaivt)
\ N T megSendeil
0 oy ToAKCAlLFS0 © Qnsabela) /
) /
\ | / Y,
\ _SBeacot} | / /
& opmieeacontoracas) | /
& ictonbaomeca) / /

@ StringsUpgradeable

O bytes16 _HEX_SYMBOLS
O uintd _ADDRESS_LENGTH

< QtoString()
& QtoHexString()

L

@ ECDSAUpgradeable

B Q,_throwErrar()
< QtryRecover()

< Qrecover()
< QtoEthSignediessageHash()

< QtoTypedDataHash()

Signable Diagram

@ Signable

Initializable
OwnabileUpgradeable

mnAddressUpgradeable for address
MECDSAUpgradeable for hytesl?

O uint256=>address _validators

< __ Signable_init()

@ setValidator()

@ GgetValidator()

@ GisValidator()

@ QisSignedBy"alidator()

@ QisSignedBy AV alidator()
7 T =

7
'

&
' \
(for address

- for bytes3?

' @ OwnablelUpgradeable

o
[/
I

@ AddressUpgradeable

< QisContract()
< sendvalue()

< functionCall()
< functionCallyith/ aluel)

< QfunctionStaticCall()
< QuerifyCalResultFromTarget()
< QuerifyCalResult()

B G, revert()

Initializable
ContexdUpgradeable

O address _owner
O uirt256 _ gap

< __ Ownable_init()
< __ Ownable_init_unchained()
@ Qowner()

< G,_checkOwner()

@ renounceCwnership)
@ transferOwnership()
< _transferCwnership()

7 T

| @ ContextUpgradeable

I Initializable

O uint256 _ gap

' & Context_init()

©_ Context_jnit_unchained()
< Q_msgSender()
< Q_msgDatal)

@ Initializable

O uintg _intialized
O bool _inttializing

< _disableinftislizers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

SignableStakes Diagram

@ StringsUpgradeable
@Signahlestakes

O bytes16 _HEX _SYMBOLS

O uints _ADDRESS LENGTH Signable

< QtoString() @ G hashlnstake()

< QtoHexString()

@ S;gnahle

Initializable
OwnableUpgradeable

mAddressUpgradeable for address
MECDSAUpgradeable for bytes3z

O uint256=>address _validators

< Signable_init()

@ set'alidator()

@ CQget\Validator()

@ GisValidator()

@ QisSignedBy/alidator()

@ QisSignedBy A\ alidator()
. "-. \.\
- ! h
IV I
« for bytes32 for address
. [
! \ }
y] '-. |
r i |1
L7 'I'} @ OwnableUpgradeable
s i
\ Initializable
p @ AddressUpgradeable i ContextUpgradeable
(B) scosaupgradeabte
< QisContract()
< sendvalue() O address _owner
; &t—thé"w'f”‘”o < functionCall() O uint256 __ gap
b4y ryRecover() & functionCalVvith\alue() \ T
L] thr:I:E:‘t‘:'u\rSEi!r(rEedMessa eHash() © QfunctionStaticCal() l < ownable_int unchained()
& QtaT egDataHash(? < QuyerifyCalResultFromTarget() @ Eowner() - -
B & QuerifyCalResult() R —
S U raunrii) L= rer?ounceOwnership()
| @ transferOwnership()
< _transferOwnership()
T T

| | @ ContextUpgradeable

] Initializable

1 O uint256 _ gap

\ | < Context_int()

| | < Cortext_init_unchained()

\ f < O, _msgSender()
< 4,_msgDatal)

i

(©) mitializable
O uintd _intialized
O bool _initializing
< _disableintializers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

SideToken Diagram

, for address
/!

14

@ AddressUpgradeable

© QisContract()

< sendvalue()

< functionCall()

< functionCallvith'/alue()

© QfunctionStaticCall()

© QuerifyCallResultFromTarget()
© QuerifyCallResult()

B Q_revert()

¥

© SideToken

Versionable

Initializable
Ownablelpgradeable
ERC20Upgradeable
ERC20Burnablelpgradeable

nAddressUpgradeable for address

- O address==hool minters
- O uirt256 _ gap
/7| & _ SideToken_init()

,f © mirt))
- o setMinter()

/ >
| |

©ERCQUBumahIeUpgradeahle

Initializable |
ContextlUpgradeable |
ERC20Upgradeable |

O uint256 _ gap |
& __ERC20Burnable_init() |
< __ERC20Burnable_init_unchained() |
@ burn) |
@ burnFrom() [

@ ERC20Upgradeabls

Initializable
ContextUpgradeable
IERCZ20Upgradeable

IER C20Metadatalpgradeable

O address==uint256 _balances

O address=>mapping address==uint256 _allowances
O uint256 _totalSupply

O string _name

O string _symbol

O uirt256 __gap

\<|

S
©Versionable

@ Quersion()

[l @ OwnahleUpgradeahle

| | Initializable
| ContextUpgradeable

& __ERC20_init])
< __ERC20_nit_unchained()
@ Qnamel)

@ Qsymbol()

@ Qdecimals()

@ QatalSupply()

® QhalanceOf])

@ transfer()

@ Qallowance()

@ approvel)

@ transferFrom()

@ increaseAlowance()

@ decreaseAllowance()

< _transfer()

< _mint{)

< _burn()

< _approve()

< _spendAllowance()

< _beforeTokenTransfer()
< _afterTokenTransfer()

| | O address _owner
O uint256 _ gap

| | < __Ownable_init()

& __Dwnable_init_unchained()
@ Qowner()

< Q_checkOwner()

@ renouncelwnership()

| @ transferOwnership()

| < _transferOwnership()

4 |

V4 | © ContextUpgradeable | |

Initializable

@ IERC20Mstadatalpgradeabls| |

IERC20Upgradeable |

@ G name()
@ Qsymbol() |

O uirt256 _ gap

© _ Cortext_init() | |

<

< @_msgSender() | |
| \ @ 8,_msgData() | |

__Context_init_unchained() | |

\ f
R
\\: \

@ IERC20Upgraceable

@ QiotalSupply()
@ QbalanceQf()
@ transfer()
@ Qallowance()
@ approvel)
@ transferFrom()

% .
@ Initializable F—

O uint8 _initialized
O kool _initislizing

< _disablelntializers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BudToken Diagram

(©) BudToken
SideToken © QgelAddressSily)
late 29 © Qmplementation()
implementation
© infiaize() SO B
(©) sieToren
Versionable
Initializable
Ownablelpgradeable
ERC20Upgradeable
ERC208umablelpgradeable
AddressUpgradeable for address
© _SideToken_init) ™~
© mint()
© sefbinter()
,
| / /
| rHor address
D @ERcmBumameupgraueame A
/ (@) addressupgraceale
(©) uuPsupgratableTemplate aRinizeb \
© QisContract() \
Initializable [< sendvalue() @ wersionable EREII D \
Ownablelpgradeable f < functionCall(y
UUPSUpgradeable © functionCallihValus() P — \
& __UUPSUpgradableTemplate_irtt & QunctionStaticCall) — — U8 ot \
. PRt e TRE S Y < QuerifyCalResultFromTarget() % _ERC20Burnable_int() \
5 Ibgrade() | < QuerifyCalResult() © _ERC20Burnable_int_unchainzd()
8 I B Q _rever() © bur()
\ @ burnFrem()

|

(©) ercanupgradeanis

Inttializable
| ContextUpgradeable
JERC20Upgradeable
IERC20MetadataLipgradeable

O address=-Uint256 _balances

§

(©) vupsupgradeanis (©) ownavleupgradeabis | [m‘t‘:su::p\yadwess_}umag e
Inttizizable Initalizable | g 3::9 g
IERG1822Proxiablelipgradeable Contextipgradeable | D %5 g
ERG1967UpgraceUpgradeable 258,

| < __ERC20_initf)
O address _owner © ZERC20_ink_unchainec)
O address _self O urt256 __gap ‘ © Qname(y
|urts6 oo © __Ownable_ink() | 5 Rj;ﬂ:,‘;'&,
© _UUPSUpgradeable_int() © _ownable_int_unchained() | © QotalSuppiy()
& _UUPSUpgradeable_init_unchained() © Qowner() Qbslancedt()
|

© Q_checkOwner() | © transfer()
© renounceOwnership() i © Qalowance()
© transferOwnership() [© approve()
© _iransferOwnership() | © transferFromg)
\ @ increaseAllowance()

© QproxiableUUID()

© upgradeTof)

© BupgradeToAndCall)
@ _authorizeUpgrade()

N\ © decreasellowance()
/ | © transfer()
/ © “mintf)
/ | < burn()
| © “approve()
/ © ZspendAlowance()
| _beforeTokenTransfer()
/ / < _afterTokenTransfer()
“u | T
| \ | |
| 4 |
() ERci 367UpgradzUpgradeable | |
|
Initializable |
/ | |
O bytes32 ROLLBACK_SLOT [[/ \
© bytes32_IMPLEENTATION_SLOT \
\ © byles32_ADMIN_SLOT @ ContextUpgradeable y \
\ | < hytes32 BEACON SLOT I
| O unt25 _gap Intializable | (@) erc20vetadaialporadeable |
|
(:) IERC1822ProxiableUpgradeable| © __FRC1967Upgrade_nt()
| © _ERC1967Upgrade_init_unchained() 0 s gmp WERC20teoachebie |
o QproahieLIn0 © Q_getimplemertation(y e © Qname()
\ " | © __Cortext_int) © Qsymbok)
< ZupgradeTo() | © _Context_int_unchaned() © Quecimals()
¥ _upgradeToAndCal() ¥ Q_msgSender()
© _uparadeToAndCalLUPS() © Q_msgData() /
/ | /

© Q_getAdmin()

B _setadming)

< _changeAdmin)

< @_getBeacon()

B _setBeacon)

© _upgradeBeaconToAndCall()
B _functionDelegateCall)

~7E

<) NV - (: IERC20
@ Initializable -
— T ® QotalSupply()
O unts _intialized — © Qualance0t)
O bool _initializing © transfer()
< _disablelnitiaizers{) : :’:ﬂr‘;ﬂ;ce{)
© transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SeedToken Diagram

(©) sezaToken
SideToken © QgelAddressSily)
late 29 © Qmplementation()
implementation
© infiaize() SO B
(©) sieToren
Versionable
Initializable
Ownablelpgradeable
ERC20Upgradeable
ERC208umablelpgradeable
AddressUpgradeable for address
© _SideToken_init) ™~
© mint()
© sefbinter()
,
| / /
| rHor address
D @ERcmBumameupgraueame A
/ (@) addressupgraceale
(©) uuPsupgratableTemplate aRinizeb \
© QisContract() \
Initializable [< sendvalue() @ wersionable EREII D \
Ownablelpgradeable f < functionCall(y
UUPSUpgradeable © functionCallihValus() P — \
& __UUPSUpgradableTemplate_irtt & QunctionStaticCall) — — U8 ot \
. PRt e TRE S Y < QuerifyCalResultFromTarget() % _ERC20Burnable_int() \
5 Ibgrade() | < QuerifyCalResult() © _ERC20Burnable_int_unchainzd()
8 I B Q _rever() © bur()
\ @ burnFrem()

|

(©) ercanupgradeanis

Inttializable
| ContextUpgradeable
JERC20Upgradeable
IERC20MetadataLipgradeable

O address=-Uint256 _balances

§

(©) vupsupgradeanis (©) ownavleupgradeabis | [m‘t‘:su::p\yadwess_}umag e
Inttizizable Initalizable | g 3::9 g
IERG1822Proxiablelipgradeable Contextipgradeable | D %5 g
ERG1967UpgraceUpgradeable 258,

| < __ERC20_initf)
O address _owner © ZERC20_ink_unchainec)
O address _self O urt256 __gap ‘ © Qname(y
|urts6 oo © __Ownable_ink() | 5 Rj;ﬂ:,‘;'&,
© _UUPSUpgradeable_int() © _ownable_int_unchained() | © QotalSuppiy()
& _UUPSUpgradeable_init_unchained() © Qowner() Qbslancedt()
|

© Q_checkOwner() | © transfer()
© renounceOwnership() i © Qalowance()
© transferOwnership() [© approve()
© _iransferOwnership() | © transferFromg)
\ @ increaseAllowance()

© QproxiableUUID()

© upgradeTof)

© BupgradeToAndCall)
@ _authorizeUpgrade()

N\ © decreasellowance()
/ | © transfer()
/ © “mintf)
/ | < burn()
| © “approve()
/ © ZspendAlowance()
| _beforeTokenTransfer()
/ / < _afterTokenTransfer()
“u | T
| \ | |
| 4 |
() ERci 367UpgradzUpgradeable | |
|
Initializable |
/ | |
O bytes32 ROLLBACK_SLOT [[/ \
© bytes32_IMPLEENTATION_SLOT \
\ © byles32_ADMIN_SLOT @ ContextUpgradeable y \
\ | < hytes32 BEACON SLOT I
| O unt25 _gap Intializable | (@) erc20vetadaialporadeable |
|
(:) IERC1822ProxiableUpgradeable| © __FRC1967Upgrade_nt()
| © _ERC1967Upgrade_init_unchained() 0 s gmp WERC20teoachebie |
o QproahieLIn0 © Q_getimplemertation(y e © Qname()
\ " | © __Cortext_int) © Qsymbok)
< ZupgradeTo() | © _Context_int_unchaned() © Quecimals()
¥ _upgradeToAndCal() ¥ Q_msgSender()
© _uparadeToAndCalLUPS() © Q_msgData() /
/ | /

© Q_getAdmin()

B _setadming)

< _changeAdmin)

< @_getBeacon()

B _setBeacon)

© _upgradeBeaconToAndCall()
B _functionDelegateCall)

~7E

<) NV - (: IERC20
@ Initializable -
— T ® QotalSupply()
O unts _intialized — © Qualance0t)
O bool _initializing © transfer()
< _disablelnitiaizers{) : :’:ﬂr‘;ﬂ;ce{)
© transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Iog >> thFactory soI

WormholeT
WormholeT
WormholeT
Wormhole72
Wormhole72

) (function)
1449) (fun

ns(uint8,address,uint256) (NftFactory #3454-3476) uses timestamp for comparisons
pari :)
k. ‘tlr»stcrr < sa »s[l‘rtI“] -|"'Lte'listLrtﬂ (NftFact .sol#3461)
i ock-timestamp

not in mixedCase
ot in mix
etector-Documentation#conformance-to-solidity-naming-conventions

erals wit

) should be immutable
immutable
immutable
ik i/Detector-Documentation#state-variables-that-could-be-declared- immutable
result{s) found

should emit an even

ocumentat ion¥miss Lng-even

attributes0f{uint2 5 255, uint2 i ¢ . z is not in mi
ateAttributes{uint256,ui 6,ul id (Supe NFT. #1843) 1is not in mixedCase
ateAttributes{uint2 1 Ui index (Superp NFT. : is not in
ateAttributes(ui i ,ul ibutes (po NFT.sol#1245) is not in mixedCase

.-\‘t‘t\'L|L,‘t es E. pe # is not in mixedCase
7 mixedCase

is not in
sol#1979) is not in mix
fwik i/Detector-Documentation#conformance-to-solidity-naming ventions

) uses literals 3 its:
/ 8x10 (Superpt

on
ess-validation

|s1.-|s of Solidity are used:

rsions

r-Documentation#incorrect-versions-of-solidity

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

not in mixedCase
ase
ormance-to-solidity-naming-c

r used ir S

rNFTBase.attribute (ui 6, 255, U1n ; (ot. i in mixedCase
rNFTBase.attributes0f{uint2 255 ,U1ln elistSlot. is not in mix
rNFTBase.attribute (uint2 255, U1n i (15t5S . is not in mi
rNFTBase.up ttributes{uir 1 256, istSlot. is |'“t in mix e
rNFTBase. ttributes{uint 1 . ¢ hitelistSlot.) ot in mixedCase
TBase. teAttributes{uint256,uin ,uin es {Whitelists . 7 is not in mixedCase
Attributes (Whiteli
itelistSlot.so 45) is not in r'if.»:-:Cas»:
whitelistslo) is not in mi
itelistSlot.s is not in mi
) is not in mi
is |-t "LI I"’"L/» Case

Parameter e _
Parameter D rNFTBase.preInitializeAttributes (1 _ ib c 3) 1 in mixedCas
Parameter Sup ..c‘t‘tI'L|L,‘t‘—S'T'L,'LIt“ c a L =

eter Sup ase. 0f(uin 2S5 ,Uln B er (Farm.sols is not in

is not in
= (Farm.sol#1818) is not in mi
‘t.a‘ttl'l|L,‘t s(uint2s i i 6)._index (Farm.sol#1819) 1is not in mixedCase
teAttributes(uint2 in i _attributes (Farm.sol#1820) is not in mixedCase
ttributes (Farm. 752) 1is not in mixedCase
i ot in mixedCase
not in mixedCase
in mixedCase
y-naming
) uses literals with t
start) / 8x1 (Farm.sol#492)
/ rwik i/Detector-Documentati i
Farm.sol analyzed (35 contracts \-I'Lth a4 detectors) 192 result(s) found

WormholeTunnelU
W .
WormholeTunne A = I (. #1568) shadows:
- Wormh
WormholeTunne lL

Wormhole72

Wormhole72

-Documentation#missing-zero-address-validation

751) is not in mixedcCase
is not in mixedCase
-Documentation#conformance-to-solidity-naming- /entlons

) ik i/
FarmBr'Ldged sol analyzed (33 contracts \-:Lth 84 detectors), 185 result(s) 'Found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Sllther log >> Turf sol

Supe
Refere :)
7 numerable_init() (Turf.) is not in mixedCase
i i #1662-1663) 1s not in mixedCase
5 is not in mixedCase
Parameter S g id (Turf. mixedCase
Parameter S i = : L E cttlllLt» 'LrT.s.l«lL_. is not in mixedCase
rNFTBase. (i g) T .sol# J 15 not in mix ase
i ,uin r (Turf,) is not in mi Case
.] . . - oo
1 Case
mixedCase
is not in mixedCase

eter § | < i
ariable Superp 2. A '. s (T 3 is not in mixedCase
|1=I1 5 = Turf.sols) is not in mixedCase
nex (Turf. :) is \-t in mi Case
mixedCase
.|—Ew-Lre|taticr#ccrfcrrerce—tc—sclluity—rerirg—_

ith t

.attributes0f{uint256, 255, ‘ ~is not in
teAttributes(uint i ,ul }._id (Turf is not in mi
teattributes(uint2 i 1 ax (Turf < } is not in mixedCase
t»dttlllLt s(uint2 1 (T . #1219) 1is not in mixed

t»-t-l—E--Lr
185 result(s) Found

Reference: |ttp
TurfBridged.sol analyzed (33 contracts wlth 84 detectors),

n mixedCase
is not in mixedCase

ase
ormance-to-solidity-naming-conventions

#182-191) 2 i
_d-|rk“1»?’1.scl#18?}

) allows old versions
r/wiki/Detector-Documentation#incorrect-versions-of-solidit

is not in mixed
J is not in mix
is not in mixedCase
s not in mixedCase
is not in mi
is not in

ase

Detector-Documentati

Reference: https i b y
wormholeCommon.sol analyzed (4 contracts thh 84 detectors), 99 result(s) found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> WormholeTunnel.sol

WormholeTunnel .wormholeIn 1t\ uintils,

Wormh
WormholeTunnel .wo
- Wormhole C-
: https

ransfer, L,'ll t_‘SE ,uint32)

_parseTransfer(by
_setTransferCo rlt

sersion™@.8.4 (WormholeTunnel ; allows old versions
:_-'slltl er/wiki/Detector-Documentation#incorrect-versions-of-solidity
Parameter eslib. al(s | _ reBytes (WormholeTunnel.sol# is not in mixedCase
Paramete ytesLib al(q e ytes (er-:l.s- is not in mixedCase
Parameter Byte ib. es ,byte e 25 | oleT L|r»1 sol# 15 not in mixe
Parameter BytesLib. es ,bytes). rtes (Wor nel. is not in mix
..Lr’-:rtati-: nformance-to-solidity

n "this (WormholeTunnel.sol#)" inContext {WormholeTunnel.so
thub . com, ytic/slither, i/Detector-Documentation#redunda

ol#180- 16-_. uses litera

oleTunnel .sol#185)

684-7
omplet
|c| sfer{utn t
= /slither/ etec 2 n#un implemented-function
wormholeTunnel so'L analyzed (11 contracts thh 24 detectors), 106 result(s) found

=able. functionCallWithvalue(
arget.call{value: ,clL»:fl_-.
functionstaticcall(

) is not in mixedCase
g (GameP "1 S0 1-}'-‘—9
UUPSUp - = le init()) d
UUPSUpgrade =.__UUPSUpgradeable_in 1t ine (2 .s50l# pE1) is not in mixedCase
UUPSUp 2, se 1T 'Gcr‘—l:'
UUPSUpg :
Function ContextUpgra) 8 : # Z not in mixedCase
Function ContextUpgrade C) (Game . #1039-1040) is not in mixedCase
Vari e (ool. #104 i
Function OwnableUpgra 2. cl.le_"' () {] c : 7-1659 n mixedCase
Function OwnableUpgra = nable_1ini ined() (Game : 06 B62) 1is not in mixedCase
Variable . . i
Function SUp JETN S r’|:lat»:_1'.rit[} (2 c #1097-1180) is not in mixedCase
Function Sig i ble_init() (= c #1126-1128) 1is not in mi =
Pclcr»t»' GamePo . i oken {GamePool.sol#1721) is not in mixedCase

ector-Documentat #conformance-to-solidity-naming-conventions

_stake e (Game . =)i used in GamePo (GamePool.sol#1197-187
: https i b.c ic/sli .-ikl Detector-Documentation#unused-state-variable

ws old versions
yment
'slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low level call in A essUpgr
- {succe C 0
Low level call in £ : 2 - functionCa 11 iith
- (success, a t.call{value: va
Low level call in A : eable. functionStati
- (succe a)

ntext_init() (E 5) is not in mixedCase
ntext init L,I"|c'LI (= #310-311) is not in mixedCase
(Sig n cl le.

) is not in mixedCase

is |-t ir ri/ 5
#conformance-to-solidity-naming-conventions

) is not in mixedCase
#310-3211) is not in mixedCase

mixedCase
J is not in mixedCase

: https
SLgnableStakes sol

allows old versions
loyment)
c/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

ken.sol#48-45

:.‘ru ctionCa 11 iitl
t.call{value: va
functionStati

Function ContextUp 2. init() (Si . -) i |'“t in mixedCase

Function ContextUp e 2o c (2 2-183) 1is not in mixedCase
Variable (s i 2

Function able 2, e_init() (. 1 in mixedCase

Function OwnableUp = Y :_"' _unchai () (eToken.) i1s not in mixedCase

is not in mixedCase

-288) is not in mixedCase
) is not in mixedCase
"1#452—453} is not in mixedCase

(S en.sol#504-507) is not in mixedCase
n.so 1 =1L is n i Case)
ic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

in ERClC‘—f'L| s pgra _._- C o1 2 2 =5) (BudToken.sol#
CCess, \»TLII ata

com/crytic/ i her /w [i-level-calls

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reference
BudToke

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

NftFactory.sol

Block timestamp:

Use of "block timestamp™: "block imestamp” can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 3571:16:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas Limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful

more

Pos: 3446:4:

ERC
ERC20:

ERC20 contract's "decimals” function should have "uint8" as return type
maore

Pos: 200:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

Pos: 3255:4:

SuperpowerNFT.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low level calls:

Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

more

Pos: 1415:50:

Gas & Economy

Gas costs:

Gas requirement of function SuperpowerMFT.endMinting is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Fos: 2058:2:

Miscellaneous

Delete from dynamic array:

Using "delete"” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
more

Pos: 1954:4:

SuperpowerNFTBase.sol

Low level calls:

Use of "delegatecall™: should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

more

Pos: 1395:50:

Gas & Economy

Gas costs:

Gas requirement of funciion Wormhole721Upgradeable wormholeTransfer is infinite: If the gas
requirement of a function is higher than the block gas Umit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 1925:2:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

Pos: 1649:8:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
more

Pos: 1919:4:

WhitelistSlot.sol

Low level calls:

Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity Ubrary feature if possible.

more

Pos: 1415:50:

Gas & Economy

Gas costs:

Gas requirement of function WhitelistSlot safe TransferFrom is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 117:4:

Gas costs:

Gas requirement of function WhitelistSlot. mintMany is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

FPos: 43:2:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1685:8:

Delete from dynamic array:

Using "delete"” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length” property.
more

Pos: 1082:8:

Farm.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
more

Pos: 1151:20:

Gas & Economy

Gas costs:

Gas requirement of function Farm.initialize is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 11:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

Pos: 1685:8:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FarmBridged.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
more

Pos: 1292:8:

Gas & Economy

Gas costs:

Gas requirement of function FarmBridged. unlocklfRemovedLocker is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1921:2:

Gas costs:

Gas requirement of function FarmBridged.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1949:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1234:4:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length” property.
more

Pos: 1917:4:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Turf.sol

Low level calls:

Use of "delegatecall”: should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

more

Pos: 1432:50:

Gas & Econom

Gas costs:

Gas requirement of function Turf attributesOf is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1835:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

Pos: 1686:8:

TurfBridged.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
more

Pos: 1281:8:

Gas & Economy

Gas costs:

Gas requirement of function TurfBridged.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 10:2:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1463:8:

Wormhole721.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address._functionCallWithValue(address,bytes,uint256 string): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 715:4:

Gas & Economy

Gas costs:

Gas requirement of function Wormhole721 wormholeCompleteTransfer is infinite: If the gas
requirement of a function is higher than the block gas Umit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 1202:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1197:4:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
more

Pos: 1052:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WormholeCommon.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
WormholeCommon._wormholeCompleteTransfer(bytes): Could potentially lead to re-entrancy
vulnerability.

Pos: 495:2:

Miscellaneous

Similar variable names:

WormholeCommon._wormholeCompleteTransfer(bytes) : Variables have very similar names "vm"
and "to".
Pos: 502:48:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

Pos: b63:4:

WormholeTunnel.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

WormholeCommon. _wormholeComplete Transfer(bytes): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 511:2:

Miscellaneous

Constant/View/Pure functions:

WormholeTunnel getinterfaceld() : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.
more

Pos: 691:2:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

GamePool.sol

Block timestamp:

Use of "block timestamp": "block timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 1568:23:

Gas & Economy

Gas costs:

Gas requirement of function GamePool.getUserStakes is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 1405:5:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)” if x can be false, due to e g. invalid input or a failing external
component.

Pos: 1131:7:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values
since those yield rational constants.

Pos: 102:19:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Signable.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

AddressUpgradeable functionCallWithValue(address bytes,uint2 56, string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

Pos: 195:/:

Gas & Economy

(Gas costs:

Gas requirement of function Signable setValidator is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 380:5:

Miscellaneous

Constant/View/Pure functions:

StringsUpgradeable toString(uint256) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
more

Pos: 11:4:

Guard conditions:

Use "assert(x])" if you never ever want x to be false, not in any cdrcumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 381:7:

SignableStakes.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

AddressUpgradeable functionCallwithValue(address,bytes,uint256,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

Pos: 195:7:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function Signable_ isValidator is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 390:5:

Miscellaneous

Constant/View/Pure functions:

StringsUpgradeable toString(uint256) - Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
more

Pos: 11:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 363:11:

SideToken.sol

Security

Check-effects-interaction:

Potential viclation of Checks-Effects-Interaction pattern in

AddressUpgradeable functionCallWithValue (address bytes uint256, string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

Pos: 67:4:

Gas & Economy

Gas costs:

Gas requirement of function ERC20Upgradeable name is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 290:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

IERC20Upgradeable transfer(address,uint256) - Potentially should be constant/view/pure but is
not. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 14:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: b14:4:

BudToken.sol

Low level calls:

Use of "delegatecall”: should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity lbrary feature if possible.

more

Pos: 303:50:

Gas & Economy

Gas costs:

Gas requirement of function BudToken.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
FPos: 705:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 693:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SeedToken.sol

curity

Low level calls:

Use of "delegatecall™ should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.

Pos: 302:50:

Gas & Economy

Gas costs:

Gas requirement of function SeedToken.initialize is infinite: If the gas requirement of a function is

higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
ons that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 703:2:

Miscellaneous

Guard conditions:

Use "assert(x])" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

NftFactory.sol

NftFactory.sol:3565:64: Error: Parse mismatched
expecting {';', '='}
NftFactory.sol:3566:60:
expecting {';', '='}
NftFactory.sol:3567:79:
expecting {';', '='"}
NftFactory.sol:3568:99:
expecting {';', '='}
NftFactory.sol:3573:99:
expecting {';', '='}
NftFactory.sol:3576:67:
expecting {';', '='}
NftFactory.sol:3581:106:
expecting {';', '='}
NftFactory.sol:3596:73:
expecting {';', '='}

input

Error: Parse mismatched input

Error: Parse mismatched input

Error: Parse mismatched input

Error: Parse mismatched input

Error: Parse error: mismatched input

Error: Parse error: mismatched input

V('

Error: Parse error: mismatched input

|(|

SuperpowerNFT.sol

SuperpowerNFT.so0l:2048: mismatched
expecting {';', '='}
SuperpowerNFT.so0l:2064:

expecting {';', '='}

input

mismatched input

SuperpowerNFT.so0l:2068:
expecting {';', '='}
SuperpowerNFT.so0l:2073:
expecting {';', '='}
SuperpowerNFT.so0l:2081:
expecting {';', '='}
SuperpowerNFT.so0l:2086:

mismatched

mismatched

mismatched

mismatched

input
input
input

input

expecting {';', '='}

SuperpowerNFTBase.sol

SuperpowerNFTBase.sol:1887: mismatched
'('" expecting {';', '='}
SuperpowerNFTBase.sol:1942:
'('" expecting {';', '='}
SuperpowerNFTBase.sol:1950:
'('" expecting {';', '='}
SuperpowerNFTBase.sol:1953:
'('" expecting {';', '='}
SuperpowerNFTBase.so0l:1963:
'('" expecting {';', '='}

mismatched
mismatched
mismatched

mismatched

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SuperpowerNFTBase.so0l:1977:34: Error: P«)r: mismatched input
'('" expecting {';', '='}
SuperpowerNFTBase.so0l:2000:43: Error: P« or: mismatched input

'(' expecting {';', '='}

WhitelistSlot.sol

WhitelistSlot.s : : : : e "ror: mismatched input
expecting {';'

WhitelistSlot.sol:14: : or: se error: mismatched input
expecting {';' }

WhitelistSlot. :15:26: C : ¢ error: mismatched input
expecting {';'

WhitelistSlot.so0l:30:25: Cror: s rror: mismatched input
expecting {';', '='}

WhitelistSlot.sol:48:90: rror: Parse error: mismatched input
expecting {'; J

WhifeliQt”lot 0l:60:25: Nl rse : mismatched input
expecting {'

Farm.sol

Farm.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement

FarmBridged.sol

FarmBridged.sol:2:1: Error: Compiler version 0.8.17 does not sa
the r semver requirement

Turf.sol

Turf.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver Lequlz@ment

TurfBridged.sol

TurfBridged.sol:2:1: Error: Compiler

the r semver requirement

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Wormhole721.sol

Wormhole721.s01:1010:18: Parse error: missing
Wormhole721.s01:1030:18: Parse error: missing

Wormhole721.s01:1054:18: Parse error: missing

WormholeCommon.sol

WormholeCommon.sol:272:5: : Avoid using inline assembly.
acceptable only in

WormholeCommon.sol:282:5: : Avoid using inline assembly.
acceptable only in rare

WormholeCommon.sol:315:5: Error: Avoid using inline assembly.
acceptable only in rare cases

WormholeCommon.sol:340:17: Error: Code contains empty blocks
WormholeCommon.sol:461:3: Error: Explicitly mark visibility of state

WormholeTunnel.sol

(WormholeTunnel.sol:340: : Error: Code contains empty blocks
WormholeTunnel.sol:477:3: Error: Explicitly mark visibility of state
WormholeTunnel.sol:587: : Error: Code contains empty blocks
WormholeTunnel.sol:602:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.
WormholeTunnel.sol:641:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.

GamePool.sol

GamePool.so0l:1605:51: Error: error: mismatched input
expecting {';', '='}

GamePool.sol:1646:36: Error: : mismatched input
expecting {';', '='

GamePool.sol:1648:38: Error: error: mismatched input
expecting {';', '=')

GamePool.so0l:1690:36: Error: ror: mismatched input
expecting {';', '=

GamePool.sol:169 8: Error: error: mismatched input
expecting {';"',

Signable.sol

Signable.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the

r
r semver requirement

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Signable.so0l:90:13: Error: Avoid using inline assembly.
acceptable only in rare cases
Signable.so0l:327:5: Error: Function name must be in

:331:5: Error: Function name must be in

SignableStakes.sol

Error: Function name must be in mixedCase
Error: Code contains empty blocks

Error: Function name must be in

Error:

SignableStakes.
SignableStakes.
SignableStakes.
SignableStakes.

w W W W
N~ =

= J O O
J e

U1 U1 oy U1

w

SideToken.sol

Q.
)

Parse error: missing
Parse error: missing
Parse error: missing
Parse error: missing
Parse error: missing

(@)
~
)
=)

0.
0)
@)
®
s

N

(O,

M

(@)
NRANEAR
® ® O
S5 B8 B

(@)
~

[H= [H= [F= [F= [

Q Q Q

D ()

H H = 3
(@)

0 0 0 1

BudToken.sol

()

Error: error: missing
Error: error: missing
Error: error: missing
Error: error: missing
Error: error: missing

(@)

BudToken.
BudToken.
BudToken.
BudToken.
BudToken.s

ol
o BN
ol

o U1 U1
o

[@REN|
o

SeedToken.sol

error: missing
error: missing
error: missing
error: missing
error: missing

..
o o1 O

24
43
59
574
04

v

0 0 0 1

(@)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

