
Project: Mobland
Website: https://mob.land
Platform: Binance Smart Chain
Language: Solidity
Date: February 6th, 2023

https://mob.land

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….9

Technical Quick Stats …..……………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 20

Audit Findings …………………………………………………………………………………… 21

Conclusion ………………………………………………………………………………………. 28

Our Methodology ………………………………………………………………………………... 29

Disclaimers ………………………………………………………………………………………. 31

Appendix

● Code Flow Diagram ……………………………………………………………………... 32

● Slither Results Log ………………………………………………………………………. 50

● Solidity static analysis ….……………………………………………………………….. 56

● Solhint Linter …………………………………………………………………….……….. 69

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Mobland to perform the Security audit of the Mobland
Protocol smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on February 6th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● MOBLAND is introducing a revolutionary NFT borrow and lending marketplace set

to disrupt the way players transact within and beyond the game.

● The Shadow Market gives the Turf & Farm Owners the unique ability to earn by

renting out (lending) their assets within the MOBLAND ecosystem.

● The Shadow Market will allow players to Lend/Borrow Turfs & Farms, Consume

SEED, Grow BUD & Upgrade Farms.

● The in-game Shadow Market is utilized to borrow and/or lend in-game assets.

Owners (Lenders) have the freedom to set lending parameters and list assets on

the marketplace where Renters (Borrowers) can efficiently search the marketplace

to borrow assets.

● Mobland Contracts have functions like mint, burn, lock, unlock, mintMany,

mintBatch, Buy an NFT, etc.

● The Mobland contract inherits the ERC20, AddressUpgradeable,

SafeMathUpgradeable, ERC721Upgradeable, ERC721EnumerableUpgradeable,

AddressUpgradeable, ERC1155, Ownable, Address, ERC721, Pausable,

StringsUpgradeable, OwnableUpgradeable, IERC165Upgradeable,

IERC721Upgradeable, ERC165 standard smart contracts from the OpenZeppelin

library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report
for Mobland Protocol Smart Contracts

Platform BSC / Solidity

File 1 NftFactory.sol

File 2 SuperpowerNFT.sol

File 3 SuperpowerNFTBase.sol

File 4 WhitelistSlot.sol

File 5 Farm.sol

File 6 FarmBridged.sol

File 7 Turf.sol

File 8 TurfBridged.sol

File 9 WormholeCommon.sol

File 10 Wormhole721.sol

File 11 WormholeTunnel.sol

File 12 GamePool.sol

File 13 Signable.sol

File 14 SignableStakes.sol

File 15 SideToken.sol

File 16 BudToken.sol

File 17 SeedToken.sol

Audit Date February 6th,2023

Revision Date February 8th, 2023

https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/NftFactory.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/SuperpowerNFT.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/SuperpowerNFTBase.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/WhitelistSlot.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/Farm.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/FarmBridged.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/Turf.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/tokens/TurfBridged.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole-tunnel/WormholeCommon.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole721/Wormhole721.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/wormhole-tunnel/WormholeTunnel.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/GamePool.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/utils/Signable.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/utils/SignableStakes.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/SideToken.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/BudToken.sol
https://github.com/superpowerlabs/in-game-assets/blob/for-audit/contracts/external-contracts/synr-seed/token/SeedToken.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 NftFactory.sol
● Owner can set a whitelist address.

● Owner can Withdraw proceeds.

● Owner can update the prices of an

existing running Sale.

● Owner can create a new Sale for an NFT

and update an existing Sale.

YES, This is valid.

File 2 SuperpowerNFT.sol
● Owner can set the maximum supply.

● Owner can mint tokens.

YES, This is valid.

File 3 SuperpowerNFTBase.sol
● Owner can set the game address.

● Owner can set the locker address and

remove the locker address.

● Owner can freeze the token URI.

YES, This is valid.

File 4 WhitelistSlot.sol
● Owner can set a new URI.

YES, This is valid.

File 5 Farm.sol
● Name: MOBLAND Farm

● Symbol: mFARM

YES, This is valid.

File 6 FarmBridged.sol
● Name: MOBLAND Farm

● Symbol: mFARM

YES, This is valid.

File 7 Turf.sol
● Name: MOBLAND Turf

● Symbol: mTURF

YES, This is valid.

File 8 TurfBridged.sol
● Name: MOBLAND Turf

● Symbol: mTURF

YES, This is valid.

File 9 WormholeCommon.sol
● WormholeCommon can check if the

transfer is Completed or not.

YES, This is valid.

File 10 WormholeTunnel.sol
● Owner can set wormhole register contract

address

YES, This is valid.

File 11 Wormhole721.sol
● Complete a transfer from Wormhole.

YES, This is valid.

File 12 GamePool.sol
● The Owner can withdraw an amount of

funds in SEEDS or BUDS, or all of them if

the amount is 0.

● The Owner can initialize the attributes of

a turf token and farm token.

YES, This is valid.

File 13 Signable.sol
● The Owner can set a signable address.

YES, This is valid.

File 14 SignableStakes.sol
● SignableStakes contract can check hash

unstake.

YES, This is valid.

File 15 SideToken.sol
● Minter can mint amounts.

● The Owner can set a minter address.

YES, This is valid.

File 16 BudToken.sol
● Name: Mobland Bud Token

● Symbol: BUD

● Decimals: 18

● Version: 1

YES, This is valid.

File 17 SeedToken.sol
● Name: Mobland Seed Token

● Symbol: SEED

● Decimals: 18

● Version: 1

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 2 low and some very low level issues.
All issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Mobland Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Mobland Protocol.

The Mobland team has provided unit test scripts, which have helped to determine the

integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Mobland Protocol smart contract code in the form of a github link. The

links of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://mob.land which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://mob.land

AS-IS overview

NftFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 setWl external access only Owner No Issue
4 setPaymentToken external access only Owner No Issue
5 setNewNft external access only Owner No Issue
6 removeNewNft external access only Owner No Issue
7 getNftIdByAddress external Passed No Issue
8 getNftAddressById external Passed No Issue
9 getPaymentTokenSymbol external Passed No Issue

10 newSale external Infinite loops
possibility

Refer Audit
Findings

11 updateSale external access only Owner No Issue
12 endSale external access only Owner No Issue
13 updatePrice external access only Owner No Issue
14 getSale external Passed No Issue
15 getPrice read Passed No Issue
16 getWlPrice read Passed No Issue
17 buyTokens external Passed No Issue
18 withdrawProceeds write access only Owner No Issue

SuperpowerNFT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyFactory modifier Passed No Issue
3 canMint modifier Passed No Issue
4 setDefaultPlayer external access only Owner No Issue
5 setMaxSupply external access only Owner No Issue
6 setFactory external access only Owner No Issue
7 isFactory read Passed No Issue
8 hasFactories read Passed No Issue
9 canMintAmount read Passed No Issue

10 mint write access only Factory No Issue
11 endMinting external access only Owner No Issue
12 mintEnded external Passed No Issue
13 maxSupply external Passed No Issue
14 nextTokenId external Passed No Issue

SuperpowerNFTBase.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyLocker modifier Passed No Issue
3 onlyGame modifier Passed No Issue
4 tokenExists modifier Passed No Issue
5 __SuperpowerNFTBase_

init
internal initializer No Issue

6 _beforeTokenTransfer internal Passed No Issue
7 preInitializeAttributesFor external access only Owner No Issue
8 attributesOf external Passed No Issue
9 initializeAttributesFor external Passed No Issue

10 updateAttributes external Passed No Issue
11 supportsInterface read Passed No Issue
12 _baseURI internal Passed No Issue
13 updateTokenURI external access only Owner No Issue
14 freezeTokenURI external access only Owner No Issue
15 contractURI read Passed No Issue
16 setGame external access only Owner No Issue
17 locked read Passed No Issue
18 lockerOf external Passed No Issue
19 isLocker read Passed No Issue
20 setLocker external Locker contract not

set
No Issue

21 removeLocker external access only Owner No Issue
22 hasLocks read Passed No Issue
23 lock external access only Locker No Issue
24 unlock external access only Locker No Issue
25 unlockIfRemovedLocker external access only Owner No Issue
26 approve write Passed No Issue
27 getApproved read Passed No Issue
28 setApprovalForAll write Passed No Issue
29 isApprovedForAll read Passed No Issue
30 wormholeTransfer write Passed No Issue

WhitelistSlot.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setURI write access only Owner No Issue
3 setBurner write access only Owner No Issue
4 mintBatch write access only Owner No Issue

5 mintMany write Infinite loops
possibility

Refer Audit
Findings

6 burn write Passed No Issue

Farm.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyFactory modifier Passed No Issue
3 canMint modifier Passed No Issue
4 setDefaultPlayer external access only Owner No Issue
5 setMaxSupply external access only Owner No Issue
6 setFactory external access only Owner No Issue
7 isFactory read Passed No Issue
8 hasFactories read Passed No Issue
9 canMintAmount read Passed No Issue

10 mint write access only Factory No Issue
11 endMinting external access only Owner No Issue
12 mintEnded external Passed No Issue
13 maxSupply external Passed No Issue
14 nextTokenId external Passed No Issue

FarmBridged.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyLocker modifier Passed No Issue
3 onlyGame modifier Passed No Issue
4 tokenExists modifier Passed No Issue
5 __SuperpowerNFTBase_

init
internal initializer No Issue

6 _beforeTokenTransfer internal Passed No Issue
7 preInitializeAttributesFor external access only Owner No Issue
8 attributesOf external Passed No Issue
9 initializeAttributesFor external Passed No Issue

10 updateAttributes external Passed No Issue
11 supportsInterface read Passed No Issue
12 _baseURI internal Passed No Issue
13 updateTokenURI external access only Owner No Issue
14 freezeTokenURI external access only Owner No Issue
15 contractURI read Passed No Issue
16 setGame external access only Owner No Issue
17 locked read Passed No Issue

18 lockerOf external Passed No Issue
19 isLocker read Passed No Issue
20 setLocker external access only Owner No Issue
21 removeLocker external access only Owner No Issue
22 hasLocks read Passed No Issue
23 lock external access only Locker No Issue
24 unlock external access only Locker No Issue
25 unlockIfRemovedLocker external access only Owner No Issue
26 approve write Passed No Issue
27 getApproved read Passed No Issue
28 setApprovalForAll write Passed No Issue
29 isApprovedForAll read Passed No Issue
30 wormholeTransfer write Passed No Issue

Turf.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyFactory modifier Passed No Issue
3 canMint modifier Passed No Issue
4 setDefaultPlayer external access only Owner No Issue
5 setMaxSupply external access only Owner No Issue
6 setFactory external access only Owner No Issue
7 isFactory read Passed No Issue
8 hasFactories read Passed No Issue
9 canMintAmount read Passed No Issue

10 mint write access only Factory No Issue
11 endMinting external access only Owner No Issue
12 mintEnded external Passed No Issue
13 maxSupply external Passed No Issue
14 nextTokenId external Passed No Issue

TurfBridged.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyLocker modifier Passed No Issue
3 onlyGame modifier Passed No Issue
4 tokenExists modifier Passed No Issue
5 __SuperpowerNFTBase_

init
internal initializer No Issue

6 _beforeTokenTransfer internal Passed No Issue
7 preInitializeAttributesFor external access only Owner No Issue

8 attributesOf external Passed No Issue
9 initializeAttributesFor external Passed No Issue

10 updateAttributes external Passed No Issue
11 supportsInterface read Passed No Issue
12 _baseURI internal Passed No Issue
13 updateTokenURI external access only Owner No Issue
14 freezeTokenURI external access only Owner No Issue
15 contractURI read Passed No Issue
16 setGame external access only Owner No Issue
17 locked read Passed No Issue
18 lockerOf external Passed No Issue
19 isLocker read Passed No Issue
20 setLocker external access only Owner No Issue
21 removeLocker external access only Owner No Issue
22 hasLocks read Passed No Issue
23 lock external access only Locker No Issue
24 unlock external access only Locker No Issue
25 unlockIfRemovedLocker external access only Owner No Issue
26 approve write Passed No Issue
27 getApproved read Passed No Issue
28 setApprovalForAll write Passed No Issue
29 isApprovedForAll read Passed No Issue
30 wormholeTransfer write Passed No Issue

Wormhole721.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 wormholeTransfer write Passed No Issue
4 wormholeCompleteTransfer write Passed No Issue

WormholeCommon.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 isTransferCompleted read Passed No Issue
3 contractByChainId read Passed No Issue
4 wormhole read Passed No Issue
5 chainId read Passed No Issue
6 _setWormhole internal Passed No Issue
7 _setChainId internal Passed No Issue
8 _setTransferCompleted internal Passed No Issue

9 _setContract internal Passed No Issue
10 _wormholeCompleteTran

sfer
internal Passed No Issue

11 _wormholeTransferWithV
alue

internal Passed No Issue

12 _logTransfer internal Passed No Issue
13 _verifyContractVM internal Passed No Issue
14 _encodeTransfer internal Passed No Issue
15 _parseTransfer internal Passed No Issue

GamePool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _equalString internal Passed No Issue
3 initialize write initializer No Issue
4 setConf external access only Owner No Issue
5 stakeAsset external Passed No Issue
6 unstakeAsset external Passed No Issue
7 _checkStakeState internal Passed No Issue
8 getStakeIndexByTokenId read Passed No Issue
9 getStakeByIndex external Passed No Issue

10 getNumberOfStakes external Passed No Issue
11 getUserDeposits external Passed No Issue
12 getUserStakes external Passed No Issue
13 _saveSignatureAsUsed internal Passed No Issue
14 depositSeed external Passed No Issue
15 depositBud external Passed No Issue
16 depositSeedAndPayOther

User
external Passed No Issue

17 _depositFT internal Passed No Issue
18 depositByIndex read Passed No Issue
19 numberOfDeposits external Passed No Issue
20 depositById external Passed No Issue
21 depositByIdAndUser external Passed No Issue
22 harvest external Passed No Issue
23 withdrawFT external access only Owner No Issue
24 initializeTurf external access only Owner No Issue
25 updateTurfAttributes external Passed No Issue
26 getTurfAttributes external Passed No Issue
27 initializeFarm external access only Owner No Issue
28 updateFarmAttributes external Passed No Issue
29 getFarmAttributes external Passed No Issue
30 attributesOf external Passed No Issue
31 hashDeposit read Passed No Issue
32 hashDepositAndPay read Passed No Issue

33 hashHarvesting read Passed No Issue
34 hashFarmAttributes read Passed No Issue
35 hashTurfAttributes read Passed No Issue

Signable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal initializer No Issue
4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue

10 __Signable_init internal access only Owner No Issue
11 setValidator external access only Owner No Issue
12 getValidator external Passed No Issue
13 isValidator external Passed No Issue
14 isSignedByValidator read Passed No Issue
15 isSignedByAValidator read Passed No Issue

SignableStakes.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 hashUnstake read Passed No Issue
3 setValidator external access only Owner No Issue
4 getValidator external Passed No Issue
5 isValidator external Passed No Issue
6 isSignedByValidator read Passed No Issue
7 isSignedByAValidator read Passed No Issue

SeedToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write initializer No Issue
3 onlyMinter modifier Passed No Issue

4 __SideToken_init internal initializer No Issue
5 mint write access only Minter No Issue
6 setMinter external access only Owner No Issue
7 __UUPSUpgradableTemplat

e_init
internal initializer No Issue

8 _authorizeUpgrade internal access only Owner No Issue

SideToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 __SideToken_init internal initializer No Issue
4 mint write access only Minter No Issue
5 setMinter external Minter contract not

set
No Issue

BudToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write initializer No Issue
3 __UUPSUpgradableTemplat

e_init
internal initializer No Issue

4 _authorizeUpgrade internal access only Owner No Issue
5 onlyMinter modifier Passed No Issue
6 __SideToken_init internal initializer No Issue
7 mint write access only Minter No Issue
8 setMinter external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Deposit id override by any depositor: - GamePool.sol

Functions depositSeed(), depositBud(), depositSeedAndPayOtherUser() are called internal

functions ""_depositFT()".

● DepositId not checked duplicate in _depositsById mapping

● DepositId has sequence issue

● "_depositFT" internal function comment says - "depositId the id of the deposit based

on User.lastDepositId".

Resolution: DepositId should be auto incremented or check duplicate depositeId from

mapping "_depositsById".

Status: This issue is fixed in the revised contract code.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Compile time error: SuperpowerNFTBase.sol

Function has override specified but does not override anything.

Resolution: Add uint256 4th function parameter to avoid this error.

Status: This issue is acknowledged in the revision of the contract code.

(2) Critical operation lacks event log: - GamePool.sol

Missing event log for:

● stakeAsset()

● unstakeAsset()

Resolution: Please write an event log for listed events.

Status: This issue is fixed in the revised contract code.

Very Low / Informational / Best practices:

(1) Unused Events, Errors, modifier, mappings :

Events are defined but not used in code.
NftFactory.sol

● FactorySetFor

● FactoryRemovedFor

Errors are defined but not used in code.
NftFactory.sol

● NotAFactoryForThisNFT

● FactoryNotFound

● InsufficientPayment

SuperpowerNFT.sol
● NotEnoughWLSlots

● InvalidDeadline

● WhitelistNotSetYet

SuperpowerNFTBase.sol
● AlreadyInitiated

● NotTheAssetOwner

GamePool.sol
● onlyOnTestnet

A modifier is defined but not used.
SuperpowerNFTBase.sol

● onlyGame()

A Mappings is defined but not used.
GamePool.sol

● _stakedByTokenId

Resolution: We suggest removing unused events, modifiers, mappings and errors.

Status: This issue is fixed in the revised contract code.

(2) Infinite loops possibility:

NftFactory.sol: newSale()

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

NftFactory.sol
● newSale() - acceptedTokens.length

WhitelistSlot.sol
● mintMany() - ids.length

Status: This issue is acknowledged in the contract code.

(3) Minter contract not set: - GamePool.sol

There is a SideToken contract checking whether the minter is a Contract or not in the

setMinter() function, so the minter contract is not in scope.

Resolution: A minter contract is not provided, if you provide a minter contract in the future,

make sure this contract is fully secure.

Status: This issue is acknowledged in the contract code.

(4) Locker contract not set: - GamePool.sol

There is a TurfToken contract checking whether the locker is a Contract or not in the

setLocker() function, so the Locker contract is not in scope.

This function is defined in this file - contracts/SuperpowerNFTBase.sol.

Resolution: A locker contract is not provided, if you set a locker contract in the future,

make sure this contract is fully secure.

Status: This issue is acknowledged in the contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

NftFactory.sol
● setWl: Owner can set a whitelist address.

● setPaymentToken: Owner can set, activate or deactivate a payment token address.

● setNewNft: Owner can set a new NFT for sale.

● removeNewNft: Owner can remove an NFT from the sale.

● newSalet: Owner can create a new Sale for an NFT.

● updateSale: Owner can update an existing Sale.

● endSale: Owner can end (removes) an existing Sale.

● updatePrice: Owner can update the prices of an existing running Sale.

● withdrawProceeds: Owner can Withdraw the proceeds.

SuperpowerNFT.sol
● setDefaultPlayer: Owner can set the default player address.

● setMaxSupply: Owner can set the maximum supply.

● setFactory: Owner can set the factory address.

● mint: Owner can mint an amount.

● endMinting: Owner can handle end minting.

SuperpowerNFTBase.sol
● preInitializeAttributesFor: Owner can pre initialized attributes.

● updateTokenURI: Owner can update the token URI.

● freezeTokenURI: Owner can freeze the token URI.

● setGame: Owner can set the game address.

● setLocker: Owner can set the locker address.

● removeLocker: Owner can remove the locker address.

● unlockIfRemovedLocker: Owner can emergency unlock in case a compromised

locker is removed.

WhitelistSlot.sol
● setURI: Owner can set a new URI.

Farm.sol
● setBurner: Owner can set a new burner address.

● mintBatch: Owner can mint the Batch addresses.

● mintMany: Owner can mint the many addresses.

WormholeTunnel.sol
● wormholeInit: Owner can wormhole initialize.

● wormholeRegisterContract: Owner can set a wormhole register contract address.

Signable.sol
● setValidator: Owner can set a signable validator address.

GamePool.sol
● setConf: Owner can set burning points .

● withdrawFT: Owner can withdraw an amount of funds in SEEDS or BUDS, or all of

them if amount is 0.

● initializeTurf: Owner can initialize the attributes of a turf token.

● initializeFarm: Owner can initialize the attributes of a farm.

SideToken.sol
● setMinter: Owner can set a minter address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github link. And we have used all possible

tests based on given objects as files. We had observed 1 high severity issue, 2 low

severity issues and some Informational severity issues in the smart contracts. All issues

have been fixed / acknowledged in the code. So, the smart contracts are ready for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Mobland

NftFactory Diagram

SuperpowerNFT Diagram

SuperpowerNFTBase Diagram

WhitelistSlot Diagram

Farm Diagram

FarmBridged Diagram

Turf Diagram

TurfBridged Diagram

Wormhole721 Diagram

WormholeCommon Diagram

WormholeTunnel Diagram

GamePool Diagram

Signable Diagram

SignableStakes Diagram

SideToken Diagram

BudToken Diagram

SeedToken Diagram

Slither Results Log

Slither log >> NftFactory.sol

Slither log >> SuperpowerNFT.sol

Slither log >> SuperpowerNFTBase.sol

Slither log >> WhitelistSlot.sol

Slither log >> Farm.sol

Slither log >> FarmBridged.sol

Slither log >> Turf.sol

Slither log >> TurfBridged.sol

Slither log >> Wormhole721.sol

Slither log >> WormholeCommon.sol

Slither log >> WormholeTunnel.sol

Slither log >> GamePool.sol

Slither log >> Signable.sol

Slither log >> SignableStakes.sol

Slither log >> SideToken.sol

Slither log >> BudToken.sol

Slither log >> SeedToken.sol

Solidity Static Analysis

NftFactory.sol

SuperpowerNFT.sol

SuperpowerNFTBase.sol

WhitelistSlot.sol

Farm.sol

FarmBridged.sol

Turf.sol

TurfBridged.sol

Wormhole721.sol

WormholeCommon.sol

WormholeTunnel.sol

GamePool.sol

Signable.sol

SignableStakes.sol

SideToken.sol

BudToken.sol

SeedToken.sol

Solhint Linter

NftFactory.sol

NftFactory.sol:3565:64: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3566:60: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3567:79: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3568:99: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3573:99: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3576:67: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3581:106: Error: Parse error: mismatched input '('
expecting {';', '='}
NftFactory.sol:3596:73: Error: Parse error: mismatched input '('
expecting {';', '='}

SuperpowerNFT.sol

SuperpowerNFT.sol:2048:26: Error: Parse error: mismatched input '('
expecting {';', '='}
SuperpowerNFT.sol:2064:25: Error: Parse error: mismatched input '('
expecting {';', '='}
SuperpowerNFT.sol:2068:49: Error: Parse error: mismatched input '('
expecting {';', '='}
SuperpowerNFT.sol:2073:49: Error: Parse error: mismatched input '('
expecting {';', '='}
SuperpowerNFT.sol:2081:55: Error: Parse error: mismatched input '('
expecting {';', '='}
SuperpowerNFT.sol:2086:51: Error: Parse error: mismatched input '('
expecting {';', '='}

SuperpowerNFTBase.sol

SuperpowerNFTBase.sol:1887:48: Error: Parse error: mismatched input
'(' expecting {';', '='}
SuperpowerNFTBase.sol:1942:24: Error: Parse error: mismatched input
'(' expecting {';', '='}
SuperpowerNFTBase.sol:1950:27: Error: Parse error: mismatched input
'(' expecting {';', '='}
SuperpowerNFTBase.sol:1953:34: Error: Parse error: mismatched input
'(' expecting {';', '='}
SuperpowerNFTBase.sol:1963:24: Error: Parse error: mismatched input
'(' expecting {';', '='}

SuperpowerNFTBase.sol:1977:34: Error: Parse error: mismatched input
'(' expecting {';', '='}
SuperpowerNFTBase.sol:2000:43: Error: Parse error: mismatched input
'(' expecting {';', '='}

WhitelistSlot.sol

WhitelistSlot.sol:13:20: Error: Parse error: mismatched input '('
expecting {';', '='}
WhitelistSlot.sol:14:20: Error: Parse error: mismatched input '('
expecting {';', '='}
WhitelistSlot.sol:15:26: Error: Parse error: mismatched input '('
expecting {';', '='}
WhitelistSlot.sol:30:25: Error: Parse error: mismatched input '('
expecting {';', '='}
WhitelistSlot.sol:48:90: Error: Parse error: mismatched input '('
expecting {';', '='}
WhitelistSlot.sol:60:25: Error: Parse error: mismatched input '('
expecting {';', '='}

Farm.sol

Farm.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement

FarmBridged.sol

FarmBridged.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement

Turf.sol

Turf.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the r
semver requirement

TurfBridged.sol

TurfBridged.sol:2:1: Error: Compiler version 0.8.17 does not satisfy
the r semver requirement

Wormhole721.sol

Wormhole721.sol:1010:18: Error: Parse error: missing ';' at '{'
Wormhole721.sol:1030:18: Error: Parse error: missing ';' at '{'
Wormhole721.sol:1054:18: Error: Parse error: missing ';' at '{'

WormholeCommon.sol

WormholeCommon.sol:272:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
WormholeCommon.sol:282:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
WormholeCommon.sol:315:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
WormholeCommon.sol:340:17: Error: Code contains empty blocks
WormholeCommon.sol:461:3: Error: Explicitly mark visibility of state

WormholeTunnel.sol

WormholeTunnel.sol:340:17: Error: Code contains empty blocks
WormholeTunnel.sol:477:3: Error: Explicitly mark visibility of state
WormholeTunnel.sol:587:75: Error: Code contains empty blocks
WormholeTunnel.sol:602:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
WormholeTunnel.sol:641:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

GamePool.sol

GamePool.sol:1605:51: Error: Parse error: mismatched input '('
expecting {';', '='}
GamePool.sol:1646:36: Error: Parse error: mismatched input '('
expecting {';', '='}
GamePool.sol:1648:38: Error: Parse error: mismatched input '('
expecting {';', '='}
GamePool.sol:1690:36: Error: Parse error: mismatched input '('
expecting {';', '='}
GamePool.sol:1692:38: Error: Parse error: mismatched input '('
expecting {';', '='}

Signable.sol

Signable.sol:2:1: Error: Compiler version 0.8.17 does not satisfy the
r semver requirement

Signable.sol:90:13: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Signable.sol:327:5: Error: Function name must be in mixedCase
Signable.sol:331:5: Error: Function name must be in mixedCase

SignableStakes.sol

SignableStakes.sol:310:5: Error: Function name must be in mixedCase
SignableStakes.sol:310:67: Error: Code contains empty blocks
SignableStakes.sol:327:5: Error: Function name must be in mixedCase
SignableStakes.sol:331:5: Error: Function name must be in mixedCase

SideToken.sol

SideToken.sol:347:18: Error: Parse error: missing ';' at '{'
SideToken.sol:366:18: Error: Parse error: missing ';' at '{'
SideToken.sol:382:18: Error: Parse error: missing ';' at '{'
SideToken.sol:397:18: Error: Parse error: missing ';' at '{'
SideToken.sol:427:22: Error: Parse error: missing ';' at '{'

BudToken.sol

BudToken.sol:526:18: Error: Parse error: missing ';' at '{'
BudToken.sol:545:18: Error: Parse error: missing ';' at '{'
BudToken.sol:561:18: Error: Parse error: missing ';' at '{'
BudToken.sol:576:18: Error: Parse error: missing ';' at '{'
BudToken.sol:606:22: Error: Parse error: missing ';' at '{'

SeedToken.sol

SeedToken.sol:524:18: Error: Parse error: missing ';' at '{'
SeedToken.sol:543:18: Error: Parse error: missing ';' at '{'
SeedToken.sol:559:18: Error: Parse error: missing ';' at '{'
SeedToken.sol:574:18: Error: Parse error: missing ';' at '{'
SeedToken.sol:604:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

