
Project: Scrub-Finance Protocol
Platform: Cronos Blockchain
Language: Solidity
Date: April 18th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 20

Audit Findings …………………………………………………………………………………… 21

Conclusion ………………………………………………………………………………………. 29

Our Methodology ………………………………………………………………………………... 30

Disclaimers ………………………………………………………………………………………. 32

Appendix

● Code Flow Diagram ……………………………………………………………………... 33

● Slither Results Log ………………………………………………………………………. 43

● Solidity static analysis ….……………………………………………………………….. 51

● Solhint Linter …………………………………………………………………….……….. 65

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Scrub-Finance to perform the Security audit of the
Scrub-Finance Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 18th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Scrub-Finance Contracts have functions like burn, mint, stake, setTaxTiersRate,

setTaxTiersTwapenableAutoCalculateTax, setBurnTax, buyBonds, setOraclesetLockUp,

withdraw,claimReward, setScrub, setBearOracle, setEpoch, twap, OpenTrade, exit,

claimReward, etc. The Scrub-Finance contract inherits the SafeMath, ERC20Burnable,

Math, SafeERC20, Address, IERC20, Ownable standard smart contracts from the

OpenZeppelin library. These OpenZeppelin contracts are considered community-audited

and time-tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Scrub-Finance Protocol Smart Contracts

Platform Cronos / Solidity

File 1 BBond.sol

File 1 MD5 Hash F9FFE0D5221DD35ECA5F77EAB915AF98

File 2 Bear.sol

File 2 MD5 Hash AE82BF4B25B372858EBE7A5EEFA089B7

File 3 BearScrub.sol

File 3 MD5 Hash E60D0930A85D33D2B430C1A248A4874E

File 4 BearTreasury.sol

File 4 MD5 Hash B741E67511B83B73DEBB628414919D59

File 5 LionOracle.sol

File 5 MD5 Hash FB0A6BD007CFC9DC0940D6B6224BB989

File 6 RewardManager.sol

File 6 MD5 Hash 9F0DD1DC0D5A87FFB9C43E537FA20C94

File 7 Tiger.sol

File 7 MD5 Hash 3535D3002619F1468C5C1D16DA51A8CC

File 8 UserVault.sol

File 8 MD5 Hash 763125AEC6DD5FCAB51AC9C6D29B8570

File 9 SaleBatch.sol

File 9 MD5 Hash 6AA52F732489F818F984A354E0D0273C

File 10 Zap.sol

File 10 MD5 Hash 9E3C51F160113FBD5516D5765DCDD902

Audit Date April 18th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BBond.sol
● Name: Bear Bonds

● Symbol: BBOND

● Decimals: 18

YES, This is valid.

File 2 Bear.sol
● Name: BEAR

● Symbol: BEAR

● Decimals: 18

● Initial distribution for the MMF launchpad: 0.4

Million BEAR

● Get Tax Tiers Rates Count: 14

● Get Tax Tiers Twaps Count: 14

● Burn Threshold: 1,100

● Total Supply: 400,001 BEAR

YES, This is valid.

File 3 BearScrub.sol
● Withdraw Lockup Epochs: 6 epochs

● Reward Lockup Epochs: 3 epochs

YES, This is valid.

File 4 BearTreasury.sol
● Maximum Supply Expansion: 4%

● Bond supply for depletion floor: 100%

● At least 35% of expansion is reserved for scrub.

● Maximum Supply for contraction: 35%

● Premium Threshold: 110

● Premium Percentage: 70%

● Period: 8 hours

YES, This is valid.

Owner authorized wallet
can set some percentage
value and we suggest
handling the private key of
that wallet securely.

File 5 LionOracle.sol
● LionOracle has functions like: update, consult,

twap.

YES, This is valid.

File 6 RewardManager.sol
● RewardManager has functions like: earned,

claimRewards, stake, exit.

YES, This is valid.

File 7 Tiger.sol
● Name: Tiger

● Symbol: TIGER

● Decimals: 18

● Initial distribution for the MMF launchpad: 0.4

Million TIGER

● Get Tax Tiers Rates Count: 14

● Get Tax Tiers Twaps Count: 14

● Burn Threshold: 1,100

● Total Supply: 400,001 TIGER

YES, This is valid.

File 8 UserVault.sol
● UserVault has functions like: withdrawAll, stake,

withdraw, claimReward, exit.

YES, This is valid.

File 9 SaleBatch.sol
● SaleBatch has functions like: togglePaused,

configureVotingToken, setRaisingAmount, etc.

YES, This is valid.

File 10 Zap.sol
● Zap has functions like: zapInToken,

estimateZapInToken, zapIn, estimateZapIn,etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 4 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 10 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Scrub-Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Scrub-Finance Protocol.

The Scrub-Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Scrub-Finance Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

BBond.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 mint write Unlimited mint Refer Audit

Findings
3 burn write Passed No Issue
4 burnFrom write access only

Operator
No Issue

5 burn write Passed No Issue
6 burnFrom write Passed No Issue
7 operator read Passed No Issue
8 onlyOperator modifier Passed No Issue
9 isOperator read Passed No Issue

10 transferOperator write access only Owner No Issue
11 _transferOperator internal Passed No Issue

Bear.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue
4 operator read Passed No Issue
5 onlyOperator modifier Passed No Issue
6 isOperator read Passed No Issue
7 transferOperator write access only Owner No Issue
8 _transferOperator write Passed No Issue
9 onlyTaxOffice modifier Passed No Issue

10 onlyOperatorOrTaxOffice modifier Passed No Issue
11 getTaxTiersTwapsCount read Passed No Issue
12 getTaxTiersRatesCount read Passed No Issue
13 isAddressExcluded read Passed No Issue
14 setTaxTiersTwap write access only Tax

Office
No Issue

15 setTaxTiersRate write access only Tax
Office

No Issue

16 setBurnThreshold write access only Tax
Office

No Issue

17 _getLionPrice internal Passed No Issue
18 _updateTaxRate internal Passed No Issue
19 enableAutoCalculateTax write Passed No Issue

20 disableAutoCalculateTax write access only Tax
Office

No Issue

21 setOracle write access only Operator
Or Tax Office

No Issue

22 setTaxOffice write access only Operator No Issue
23 setTaxCollectorAddress write access only Tax

Office
No Issue

24 setTaxRate write Critical operation
lacks event log

Refer Audit
Findings

25 setBurnTax write access only Tax
Office

No Issue

26 excludeAddress write access only Operator
Or Tax Office

No Issue

27 includeAddress write access only Operator
Or Tax Office

No Issue

28 OpenTrade external Critical operation
lacks event log

Refer Audit
Findings

29 includeToWhitelist write access only Operator
Or Tax Office

No Issue

30 excludeFromWhitlist write access only Operator
Or Tax Office

No Issue

31 mint write Unlimited mint Refer Audit
Findings

32 burn write Passed No Issue
33 burnFrom write access only Operator No Issue
34 transferFrom write Passed No Issue
35 _transferWithTax internal Passed No Issue
36 _transfer internal Passed No Issue
37 governanceRecoverUnsu

pported
external Function input

parameters lack of
check

Refer Audit
Findings

BearScrub.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 totalSupply read Passed No Issue
3 balanceOf read Passed No Issue
4 stake write Passed No Issue
5 withdraw write Passed No Issue
6 checkSameOriginReentra

nted
internal Passed No Issue

7 checkSameSenderReentr
anted

internal Passed No Issue

8 onlyOneBlock modifier Passed No Issue
9 onlyOperator modifier Passed No Issue

10 onlyRewardManager modifier Passed No Issue

10 masonExists modifier Passed No Issue
11 updateReward modifier Passed No Issue
12 notInitialized modifier Passed No Issue
13 initialize write Passed No Issue
14 setRewardManager write access only Operator No Issue
15 setOperator external Function input

parameters lack of
check

Refer Audit
Findings

16 setLockUp external access only Operator No Issue
17 latestSnapshotIndex read Passed No Issue
18 getLatestSnapshot internal Passed No Issue
19 getLastSnapshotIndexOf read Passed No Issue
20 getLastSnapshotOf internal Passed No Issue
21 canWithdraw external Passed No Issue
22 canClaimReward external Passed No Issue
23 epoch external Passed No Issue
24 nextEpochPoint external Passed No Issue
25 getBearPrice external Passed No Issue
26 rewardPerShare read Passed No Issue
27 earned read Passed No Issue
28 stake write access only One

Block
No Issue

29 withdraw write access only One
Block

No Issue

30 exit write access only Reward
Manager

No Issue

31 claimReward write access only Reward
Manager

No Issue

32 allocateSeigniorage external access only Operator No Issue
33 governanceRecoverUnsu

pported
external Function input

parameters lack of
check

Refer Audit
Findings

BearTreasury.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 checkSameOriginReentra

nted
internal Passed No Issue

3 checkSameSenderReentr
anted

internal Passed No Issue

4 onlyOneBlock modifier Passed No Issue
5 onlyOperator modifier Passed No Issue
6 checkCondition modifier Passed No Issue
7 checkEpoch modifier Passed No Issue
8 checkOperator modifier Passed No Issue

9 notInitialized modifier Passed No Issue
10 isInitialized read Passed No Issue
11 nextEpochPoint read Passed No Issue
12 getBearPrice read Passed No Issue
13 getBearUpdatedPrice read Passed No Issue
14 getReserve read Passed No Issue
15 getBurnableBearLeft read Passed No Issue
16 getRedeemableBonds read Passed No Issue
17 getBondDiscountRate read Passed No Issue
18 getBondPremiumRate read Passed No Issue
19 initialize write Passed No Issue
20 setOperator external access only Operator No Issue
21 setScrub external access only Operator No Issue
22 setBearOracle external access only Operator No Issue
23 setBearPriceCeiling external access only Operator No Issue
24 setMaxSupplyExpansion

Percents
external access only Operator No Issue

25 setSupplyTiersEntry external access only Operator No Issue
26 setMaxExpansionTiersEn

try
external access only Operator No Issue

27 setBondDepletionFloorPe
rcent

external access only Operator No Issue

28 setMaxSupplyContraction
Percent

external access only Operator No Issue

29 setMaxDebtRatioPercent external access only Operator No Issue
30 setBootstrap external access only Operator No Issue
31 setExtraFunds external access only Operator No Issue
32 setMaxDiscountRate external access only Operator No Issue
33 setMaxPremiumRate external access only Operator No Issue
34 setDiscountPercent external access only Operator No Issue
35 setPremiumThreshold external access only Operator No Issue
36 setPremiumPercent external access only Operator No Issue
37 setMintingFactorForPayin

gDebt
external access only Operator No Issue

38 _updateBearPrice internal Passed No Issue
39 getBearCirculatingSupply read Infinite loop Refer Audit

Findings
40 buyBonds external access only One

Block
No Issue

41 redeemBonds external access only One
Block

No Issue

42 _sendToScrub internal Passed No Issue
43 _calculateMaxSupplyExp

ansionPercent
internal Passed No Issue

44 allocateSeigniorage external access only One
Block

No Issue

45 excludeFromTotalSupply external Infinite loop Refer Audit
Findings

46 includeToTotalSupply external access only Operator No Issue
47 governanceRecoverUnsu

pported
external access only Operator No Issue

48 scrubSetOperator external access only Operator No Issue
49 scrubSetLockUp external access only Operator No Issue
50 scrubAllocateSeigniorage external access only Operator No Issue
51 scrubGovernanceRecove

rUnsupported
external access only Operator No Issue

LionOracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 checkStartTime modifier Passed No Issue
3 checkEpoch modifier Passed No Issue
4 getCurrentEpoch read Passed No Issue
5 getPeriod read Passed No Issue
6 getStartTime read Passed No Issue
7 getLastEpochTime read Passed No Issue
8 nextEpochPoint read Passed No Issue
9 setPeriod external access only Operator No Issue

10 setEpoch external access only Operator No Issue
11 update external checkEpoch No Issue
12 consult external Passed No Issue
13 twap external Passed No Issue

RewardManager.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 checkSameOriginReentra

nted
internal Passed No Issue

3 checkSameSenderReentr
anted

internal Passed No Issue

4 onlyOneBlock modifier Passed No Issue
5 earned read Passed No Issue
6 claimRewards write Passed No Issue

7 stake write access only One
Block

No Issue

8 exit external Passed No Issue

Tiger.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 operator read Passed No Issue
3 onlyOperator modifier Passed No Issue
4 isOperator read Passed No Issue
5 transferOperator write access only Owner No Issue
6 _transferOperator internal Passed No Issue
7 burn write Passed No Issue
8 burnFrom write Passed No Issue
9 onlyTaxOffice modifier Passed No Issue

10 onlyOperatorOrTaxOffice modifier Passed No Issue
11 getTaxTiersTwapsCount read Passed No Issue
12 getTaxTiersRatesCount read Passed No Issue
13 isAddressExcluded read Passed No Issue
14 setTaxTiersTwap write access only Tax

Office
No Issue

15 setTaxTiersRate write access only Tax
Office

No Issue

16 setBurnThreshold write access only Tax
Office

No Issue

17 _getLionPrice internal Passed No Issue
18 _updateTaxRate internal Passed No Issue
19 enableAutoCalculateTax write access only Tax

Office
No Issue

20 disableAutoCalculateTax write access only Tax
Office

No Issue

21 setOracle write access only Operator
Or Tax Office

No Issue

22 setTaxOffice write access only Operator
Or Tax Office

No Issue

23 setTaxCollectorAddress write access only Tax
Office

No Issue

24 setTaxRate write access only Tax
Office

No Issue

25 setBurnTax write access only Tax
Office

No Issue

26 excludeAddress write access only Operator
Or Tax Office

No Issue

27 includeAddress write access only Operator
Or Tax Office

No Issue

28 OpenTrade external access only Operator
Or Tax Office

No Issue

29 includeToWhitelist write access only Operator
Or Tax Office

No Issue

30 excludeFromWhitlist write access only Operator
Or Tax Office

No Issue

31 mint write access only Operator No Issue
32 burn write Passed No Issue
33 burnFrom write access only Operator No Issue
34 transferFrom write Passed No Issue
35 _transferWithTax internal Passed No Issue
36 _transfer internal Passed No Issue
37 governanceRecoverUnsu

pported
external Function input

parameters lack of
check

Refer Audit
Findings

UserVault.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 checkSameOriginReentra

nted
internal Passed No Issue

3 checkSameSenderReentr
anted

internal Passed No Issue

4 onlyOneBlock modifier Passed No Issue
5 onlyManager modifier Passed No Issue
6 withdrawAll write Passed No Issue
7 stake external access only Manager No Issue
8 withdraw external access only Manager No Issue
9 claimReward external access only Manager No Issue

10 exit external access only Manager No Issue

SaleBatch.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 configureVotingToken write access only Owner No Issue
9 setRaisingAmount write access only Owner No Issue

10 togglePaused write access only Owner No Issue
11 finalize write Critical operation

lacks event log
Refer Audit

Findings
12 getAddressListLength external Passed No Issue

13 getParams external Passed No Issue
14 getVotingParams external Passed No Issue
15 _deposit write Passed No Issue
16 deposit write Passed No Issue
17 onTokenTransfer write Passed No Issue
18 harvestRefund write Passed No Issue
19 harvestTokens write Passed No Issue
20 harvestAll write Passed No Issue
21 getUserAllocation read Passed No Issue
22 getOfferingAmount read Passed No Issue
23 getRefundingAmount read Passed No Issue
24 withdrawToken write Owner can drain all

tokens
Refer Audit

Findings
25 _transferFrom write Passed No Issue

Zap.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 zapInToken external Passed No Issue
7 estimateZapInToken read Passed No Issue
8 receive external Passed No Issue
9 zapIn external Function input

parameters lack of
check

Refer Audit
Findings

10 estimateZapIn read Passed No Issue
11 zapAcross external Function input

parameters lack of
check

Refer Audit
Findings

12 zapOut external Function input
parameters lack of

check

Refer Audit
Findings

13 zapOutToken external Function input
parameters lack of

check

Refer Audit
Findings

14 swapToken external Function input
parameters lack of

check

Refer Audit
Findings

15 swapToNative external Function input
parameters lack of

check

Refer Audit
Findings

16 _approveTokenIfNeeded write Passed No Issue

17 _swapTokenToLP write Passed No Issue
18 _swapNativeToLP write Passed No Issue
19 _swapHalfNativeAndProv

ide
write Passed No Issue

20 _swapNativeToEqualToke
nsAndProvide

write Passed No Issue

21 _swapNativeForToken write Passed No Issue
22 _swapTokenForNative write Passed No Issue
23 _swap write Passed No Issue
24 _estimateSwap read Passed No Issue
25 setTokenBridgeForRouter external access only Owner No Issue
26 withdraw external Owner can drain all

tokens
Refer Audit

Findings
27 setUseNativeRouter external Can not update

router
Refer Audit

Findings
28 setFee external Function input

parameters lack of
check

Refer Audit
Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

Bear.sol
● governanceRecoverUnsupported = to

BearScrub.sol
● setOperator = _operator

● governanceRecoverUnsupported = to

Tiger.sol
● governanceRecoverUnsupported = to

Zap.sol
● zapIn = _to , routerAddr , _recipient

● zapAcross = _from , _toRouter , _recipient

● zapOut = _from , routerAddr , _recipient

● zapOutToken = _from , _to, routerAddr ,_recipient

● swapToken = _from , _to , routerAddr, _recipient

● swapToNative = _from , routerAddr , _recipient

● settee

○

○ In the setFee function, the required condition and error message are

conflicting. Error message says "FEE TOO HIGH; MAX FEE = 4%" and

condition rate must be >=25.

Resolution: We advise using validation like integer type variables should be > 0 and

address type variables should not be address(0). Fees must have a maximum limit.

(2) Infinite loop possibility: BearTreasury.sol
In below functions ,for loops do not have excludedFromTotalSupply length limit , which

costs more gas:

● getBearCirculatingSupply

● excludeFromTotalSupply

Resolution: Upper limit should have a certain limit in for loops.

(3) Compile error: RewardManager.sol

Operator != not compatible with types contract IUserVault and address payable.

Resolution: We suggest replacing _vaultDirectory[msg.sender] with

address(_vaultDirectory[msg.sender]).

Status: Fixed

DeclarationError: Identifier already declared. UserVault also has the same Files imported

as RewardManager.

Resolution: We suggest not to import the UserVault.sol file. Instead add UserVault

contract code to RewardManager.sol.

(4) Critical operation lacks event log: SaleBatch.sol
Missing event log for : finalize.

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Unlimited mint: Bbond.sol, Bear.sol, Tiger.sol
Operators can mint unlimited tokens.

Resolution: We suggest putting a mint limit.

(2) Unused variable: BearScrub.sol

The share variable is not declared and used anywhere in the contract.

Resolution: We suggest removing unused variables.

(3) Immutable variables:

In below variables values are set in initialize() function and will be unchanged.

BearTreasury.sol
● bearPriceOne , startTime, bear , bbond

BearScrub.sol
● bear, share, treasury

SaleBatch.sol
● startTime , endTime , offeringAmount ,offeringToken ,paymentToken ,perUserCap

Resolution: We suggest setting all these variables as immutable.

(4) Same file imported twice: LionOracle.sol

Multiple imports for the same file "fixedPoint.sol".

Resolution: We suggest making a single import for "FixedPoint.sol".

(5) Owner can drain all tokens:

Zap.sol

SaleBatch.sol

The function withdraw() will allow the owner to withdraw all the ERC20 tokens. This would

create trust issues in the users.

Resolution: If these are desired features, then please ignore this point.

(6) Can not update router: Zap.sol

The owner can update the router that generates liquidity to an address or contract of

choice (including the zero address). This contract could be a malicious contract that simply

keeps the tokens sent to it and thus drains all the fees. Additionally, this contract could be

used to revert sell transactions turning the token into a honeypot.

Resolution: Consider removing this function. If this is not possible, consider using an

Owner account that is behind a significantly long time lock so investors can reasonably

see this change coming and inspect the new router. Also consider requiring the router

address to be non-zero.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mint: The BBond Operator can mint an amount from the recipient address.

● burnFrom: The BBond Operator can burn an amount from an account.

● setOracle: The Bear Operator can update oracle addresses.

● setTaxOffice: The Bear Operator can update the tax office address.

● excludeAddress: The Bear Operator can exclude address.

● includeAddress: The Bear Operator can include address.

● OpenTrade: The Bear Operator Or TaxOffice can open trade status true.

● includeToWhitelist: The Bear Operator Or TaxOffice can include address in whitelist.

● excludeFromWhitlist: The Bear Operator Or TaxOffice can exclude address in

whitelist.

● mint: The Bear Operator can mint LION to a recipient address.

● burnFrom: The Bear Operator can burn a LION amount from the address.

● governanceRecoverUnsupported: The Bear Operator can governance recover

unsupported amounts.

● setRewardManager: BearScrub Operator can update reward manager address.

● setOperator: BearScrub Operator can update Operator address.

● setLockUp: BearScrub Operator can withdraw lockup Epochs and reward lockup

Epochs value.

● stake: BearScrub Reward Manager can create a new stake.

● withdraw: BearScrub Reward Manager can withdraw the amount.

● exit: BearScrub Reward Manager can exit from address.

● claimReward: BearScrub Reward Manager can claim reward address.

● allocateSeigniorage: BearScrub Reward Manager can allocate seigniorage

amount.

● governanceRecoverUnsupported: BearScrub Reward Manager can governance

recover unsupported amounts.

● setOperator: BearTreasury Operator can update operator address.

● setScrub: BearTreasury Operator can update scrub address.

● setBearOracle: BearTreasury Operator can update bear oracle address.

● setBearPriceCeiling: BearTreasury Operator can update bear price ceiling value.

● setMaxSupplyExpansionPercents: BearTreasury Operator can update maximum

supply expansion percentage.

● setSupplyTiersEntry: BearTreasury Operator can update supply tiers entry.

● setMaxExpansionTiersEntry: BearTreasury Operator can update maximum

expansion tiers entry.

● setBondDepletionFloorPercent: BearTreasury Operator can update bond depletion

floor percentage.

● setMaxSupplyContractionPercent: BearTreasury Operator can update maximum

supply contraction percentage.

● setMaxDebtRatioPercent: BearTreasury Operator can update maximum debt ratio

percentage.

● setBootstrap: BearTreasury Operator can update Bootstrap value.

● setExtraFunds: BearTreasury Operator can update extra funds value.

● setMaxDiscountRate: BearTreasury Operator can set maximum discount rate.

● setMaxPremiumRate: BearTreasury Operator can set maximum premium rate.

● setDiscountPercent: BearTreasury Operator can set discount percentage.

● setPremiumThreshold: BearTreasury Operator can set premium threshold value.

● setPremiumPercent: BearTreasury Operator can set premium percentage.

● setMintingFactorForPayingDebt: BearTreasury Operator can set minting factor for

paying debt value.

● excludeFromTotalSupply: BearTreasury Operator can exclude account from total

supply.

● includeToTotalSupply: BearTreasury Operator can include index from total supply.

● governanceRecoverUnsupported: BearTreasury Operator can governance recover

unsupported.

● mint: Tiger Operator mints LION to a recipient.

● burnFrom: Tiger Operator burn amount from account.

● governanceRecoverUnsupported: Tiger Operator can governance recover

unsupported.

● exit: UserVault manager can exit.

● claimReward: UserVault manager can claim reward.

● withdraw: UserVault manager can withdraw all amounts.

● stake: UserVault manager can stake amounts.

● setFee: Zap owner can set fees.

● setUseNativeRouter: Zap owner can set user native router address.

● withdraw: Zap owner can withdraw amount.

● setTokenBridgeForRouter: Zap owner can set token bridge router address.

● withdrawToken: SaleBatch owner can withdraw all tokens.

● setRaisingAmount: SaleBatch owner can set raising amount.

● configureVotingToken: SaleBatch owner can configure voting token.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved in the revised smart contract code. So, the smart contracts are
ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Scrub-Finance Protocol

BBond Diagram

Bear Diagram

BearScrub Diagram

BearTreasury Diagram

RewardManager Diagram

Tiger Diagram

UserVault Diagram

LionOracle Diagram

SaleBatch Diagram

Zap Diagram

Slither Results Log

Slither log >> BBond.sol

Slither log >> Bear.sol

Slither log >> BearScrub.sol

Slither log >> BearTreasury.sol

Slither log >> LionOracle.sol

Slither log >> RewardManager.sol

Slither log >> Tiger.sol

Slither log >> UserVault.sol

Solidity Static Analysis

BBond.sol

Bear.sol

BearScrub.sol

BearTreasury.sol

LionOracle.sol

RewardManager.sol

Tiger.sol

UserVault.sol

SaleBatch.sol

Zap.sol

Solhint Linter

BBond.sol

BBond.sol:2:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
BBond.sol:886:24: Error: Code contains empty blocks
BBond.sol:906:24: Error: Code contains empty blocks
BBond.sol:940:55: Error: Code contains empty blocks

Bear.sol

Bear.sol:2:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Bear.sol:888:24: Error: Code contains empty blocks
Bear.sol:908:24: Error: Code contains empty blocks
Bear.sol:1105:5: Error: Function name must be in mixedCase

BearScrub.sol

BearScrub.sol:2:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
BearScrub.sol:59:71: Error: Code contains empty blocks
BearScrub.sol:86:28: Error: Avoid using low level calls.
BearScrub.sol:160:51: Error: Avoid using low level calls.
BearScrub.sol:214:51: Error: Avoid using low level calls.
BearScrub.sol:236:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
BearScrub.sol:655:38: Error: Avoid to use tx.origin
BearScrub.sol:668:31: Error: Avoid to use tx.origin
BearScrub.sol:856:52: Error: Visibility modifier must be first in
list of modifiers
BearScrub.sol:860:59: Error: Visibility modifier must be first in
list of modifiers

BearTreasury.sol

BearTreasury.sol:2:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
BearTreasury.sol:124:71: Error: Code contains empty blocks
BearTreasury.sol:151:28: Error: Avoid using low level calls.
BearTreasury.sol:225:51: Error: Avoid using low level calls.
BearTreasury.sol:279:51: Error: Avoid using low level calls.
BearTreasury.sol:301:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases

BearTreasury.sol:788:38: Error: Avoid to use tx.origin
BearTreasury.sol:801:31: Error: Avoid to use tx.origin
BearTreasury.sol:806:1: Error: Contract has 33 states declarations
but allowed no more than 15
BearTreasury.sol:891:17: Error: Avoid to make time-based decisions in
your business logic
BearTreasury.sol:897:17: Error: Avoid to make time-based decisions in
your business logic
BearTreasury.sol:1171:42: Error: Code contains empty blocks
BearTreasury.sol:1171:51: Error: Code contains empty blocks
BearTreasury.sol:1246:32: Error: Avoid to make time-based decisions
in your business logic
BearTreasury.sol:1251:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
BearTreasury.sol:1253:32: Error: Avoid to make time-based decisions
in your business logic
BearTreasury.sol:1261:26: Error: Avoid to make time-based decisions
in your business logic
BearTreasury.sol:1310:41: Error: Avoid to make time-based decisions
in your business logic

LionOracle.sol

LionOracle.sol:2:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
LionOracle.sol:35:5: Error: Function name must be in mixedCase
LionOracle.sol:37:5: Error: Function name must be in mixedCase
LionOracle.sol:56:5: Error: Function name must be in mixedCase
LionOracle.sol:118:5: Error: Contract name must be in CamelCase
LionOracle.sol:124:5: Error: Contract name must be in CamelCase
LionOracle.sol:192:23: Error: Avoid to make time-based decisions in
your business logic
LionOracle.sol:566:17: Error: Avoid to make time-based decisions in
your business logic
LionOracle.sol:566:47: Error: Use double quotes for string literals
LionOracle.sol:573:13: Error: Avoid to make time-based decisions in
your business logic
LionOracle.sol:574:47: Error: Use double quotes for string literals
LionOracle.sol:583:21: Error: Avoid to make time-based decisions in
your business logic
LionOracle.sol:613:60: Error: Use double quotes for string literals

RewardManager.sol

RewardManager.sol:2:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
RewardManager.sol:102:71: Error: Code contains empty blocks
RewardManager.sol:129:28: Error: Avoid using low level calls.
RewardManager.sol:203:51: Error: Avoid using low level calls.
RewardManager.sol:257:51: Error: Avoid using low level calls.
RewardManager.sol:279:17: Error: Avoid using inline assembly. It is

acceptable only in rare cases
RewardManager.sol:664:38: Error: Avoid to use tx.origin
RewardManager.sol:677:31: Error: Avoid to use tx.origin
RewardManager.sol:766:49: Error: Code contains empty blocks
RewardManager.sol:771:13: Error: Variable name must be in mixedCase

Tiger.sol

Tiger.sol:2:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Tiger.sol:890:24: Error: Code contains empty blocks
Tiger.sol:910:24: Error: Code contains empty blocks
Tiger.sol:1108:5: Error: Function name must be in mixedCase

UserVault.sol

UserVault.sol:2:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
UserVault.sol:102:71: Error: Code contains empty blocks
UserVault.sol:129:28: Error: Avoid using low level calls.
UserVault.sol:203:51: Error: Avoid using low level calls.
UserVault.sol:257:51: Error: Avoid using low level calls.
UserVault.sol:279:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
UserVault.sol:663:38: Error: Avoid to use tx.origin
UserVault.sol:676:31: Error: Avoid to use tx.origin

SaleBatch.sol

SaleBatch.sol:2:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
SaleBatch.sol:108:71: Error: Code contains empty blocks
SaleBatch.sol:135:28: Error: Avoid using low level calls.
SaleBatch.sol:209:51: Error: Avoid using low level calls.
SaleBatch.sol:263:51: Error: Avoid using low level calls.
SaleBatch.sol:285:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SaleBatch.sol:572:30: Error: Avoid to make time-based decisions in
your business logic
SaleBatch.sol:589:15: Error: Avoid to make time-based decisions in
your business logic
SaleBatch.sol:598:42: Error: Avoid to make time-based decisions in
your business logic
SaleBatch.sol:616:17: Error: Avoid to make time-based decisions in
your business logic
SaleBatch.sol:616:49: Error: Avoid to make time-based decisions in
your business logic
SaleBatch.sol:642:57: Error: Variable "_data" is unused
SaleBatch.sol:649:17: Error: Avoid to make time-based decisions in

your business logic
SaleBatch.sol:662:17: Error: Avoid to make time-based decisions in
your business logic

Zap.sol

Zap.sol:545:18: Error: Parse error: missing ';' at '{'
Zap.sol:558:18: Error: Parse error: missing ';' at '{'
Zap.sol:570:18: Error: Parse error: missing ';' at '{'
Zap.sol:587:18: Error: Parse error: missing ';' at '{'
Zap.sol:599:18: Error: Parse error: missing ';' at '{'
Zap.sol:691:18: Error: Parse error: missing ';' at '{'
Zap.sol:714:18: Error: Parse error: missing ';' at '{'
Zap.sol:736:18: Error: Parse error: missing ';' at '{'
Zap.sol:817:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

