
Project: Starbank Protocol
Platform: Astar Network
Language: Solidity
Date: April 5th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 19

Audit Findings …………………………………………………………………………………… 20

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 41

● Solidity Static Analysis…………………………………………………………………... 48

● Solhint Linter…….. ………………………………………………………………………. 61

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Starbank team to perform the Security audit of the
Starbank Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 5th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Starbank Contracts have functions like adding a new pool and updating LP,

batchSwap, swap, flashLoan, deposit, withdraw, mint, burn, etc. The Starbank contracts

also inherits ERC20Burnable, Math, IERC20, SafeERC20, ReentrancyGuard, SafeMath

standard smart contracts from the openzepelin library.

Audit scope

Name Code Review and Security Analysis Report for Starbank
Protocol Smart Contracts

Platform Astar Network / Solidity

File 1 Authorizer.sol

File 1 MD5 Hash 89FBC1ACC09B9EE2AA0337A7CB94D469

File 2 InvestmentPoolFactory.sol

File 2 MD5 Hash 5735312F2BC1FDD5C0B57695C92853E9

File 3 MetaStablePoolFactory.sol

File 3 MD5 Hash 2E3C6BDF059C3D6A8A86F2E6BE580ABF

File 4 Multicall2.sol

File 4 MD5 Hash A5539355CC6AB06E648A358E6A3CF27F

https://blockscout.com/astar/address/0xFF56817C2109c31F87466f638a6DEa5725952e5C/contracts
https://blockscout.com/astar/address/0xB73EdaFD89835E3692341d718A4B33483147F9A2/contracts
https://blockscout.com/astar/address/0x8a739031555409e9E5f20da0B62d1DEC6cFf9212/contracts
https://github.com/starbank-finance/starbank-contract/blob/main/balancer_flat/Multicall2_flat.sol

File 5 NoProtocolFeeLiquidityBootstrappingPoolFactory.sol

File 5 MD5 Hash 177A8B4CCA7EEFDB9CC5ED5A52537A01

File 6 ProtocolFeesCollector.sol

File 6 MD5 Hash EC904D61244952C1A004444B0E48AD66

File 7 StablePhantomPoolFactory.sol

File 7 MD5 Hash F9D53F12E31CCDF316C63F128EB06478

File 8 StablePoolFactory.sol

File 8 MD5 Hash FD84480294719501B87B5AD179E3A69D

File 9 Vault.sol

File 9 MD5 Hash 668D62234B36AFCB7B3811D76068E137

Updated File 9 MD5 Hash 1CCE76B19C4A0C5BEB8B3FF5899C0EF3

File 10 WeightedPool.sol

File 10 MD5 Hash 65F45CC467D4C918C7C09432B214330C

File 11 WeightedPool2TokensFactory.sol

File 11 MD5 Hash 096ADD93DD8EF6366B4A9474BC09731A

File 12 MasterChef.sol

File 12 MD5 Hash EC393C79AC1B07DD836B04ABDF67D728

File 13 SBXToken.sol

File 13 MD5 Hash 465E7DC40093C1900142DFEEF27E6724

Audit Date April 5th,2022

Revise Audit Date April 25th,2022

https://blockscout.com/astar/address/0xcB190A3A8F24049879765999204FDCA3D4210E1a/contracts
https://blockscout.com/astar/address/0xd921d8501539A35eCb0386A13F768565c54851d8/contracts
https://blockscout.com/astar/address/0x15773DB1C0E668ca6bbf7Ba1b5CeF649F5542d23/contracts
https://blockscout.com/astar/address/0xbdA17f9B7ca91A1E58eeF9c7fA77B08E5D9D6fCB/contracts
https://blockscout.com/astar/address/0x18df7884DEa0B24334800C8b05763112Eb592ce0/contracts
https://blockscout.com/astar/address/0xF7B7ab59A6B1995Ef3C814ef771805B4CBea7D15/contracts
https://blockscout.com/astar/address/0x9e238c8b507989f5182fa9da2db41590066C32D9/contracts
https://blockscout.com/astar/address/0xAA26A81172A3BDaAfF5B5EFe4F2a4575AB902Bae/contracts
https://blockscout.com/astar/address/0x9287319Ae3479429529254412f6a0A90fBFea434/read-contract

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Authorizer.sol
● The Authorizer can access functions like:

renouncePermissions, revokePermissions,

grantPermissions, cancel, execute, schedule, etc.

YES, This is valid.

File 2 InvestmentPoolFactory.sol
● The InvestmentPoolFactory can create a new pool.

YES, This is valid.

File 3 MetaStablePoolFactory.sol
● The MetaStablePoolFactory can create a new pool.

YES, This is valid.

File 4 Multicall2.sol
● The Multicall can access functions like: aggregate,

blockAndAggregate, tryAggregate, etc.

YES, This is valid.

File 5
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol

● The NoProtocolFeeLiquidityBootstrappingPoolFactory

access functions like: disable, create, _canPerform, etc.

YES, This is valid.

File 6 ProtocolFeesCollector.sol
● Maximum Protocol Swap Fee: 50%

● Maximum Protocol Flash Loan Fee: 1%

YES, This is valid.
Owner authorized
wallet can set some
percentage value and
we suggest handling
the private key of
that wallet securely.

File 7 StablePhantomPoolFactory.sol
● The StablePhantomPoolFactory can access functions

like: create a Stable Phantom Pool.

YES, This is valid.

File 8 StablePoolFactory.sol
● The StablePoolFactory can access functions like: create

a Stable Pool.

YES, This is valid.

File 9 Vault.sol
● The Vault contract can access functions like: setPaused,

WETH.

YES, This is valid.

File 10 WeightedPool.sol
● The WeightedPool can access functions like:

getInvariant, _onSwapGivenIn, _onJoinPool,etc.

YES, This is valid.

File 11 WeightedPool2TokensFactory.sol
● The WeightedPool2TokensFactory can access functions

like:create, etc.

YES, This is valid.

File 12 MasterChef.sol
● LP Mining Reward: 6%

● Community Growth: 4%

● Dev: 18%

● Treasury: 6%

● Reserve for Potential Investors: 11.40%

● Distribution percentages: 100%

● Bonus Multiplier: 1

● Maximum Allocate Point: 4000

YES, This is valid.

Owner authorized
wallet can set some
percentage value and
we suggest handling
the private key of
that wallet securely.

File 13 SBXToken.sol
● Name: SBXToken

● Symbol: SBX

● Maximum Supply: 250 million SBX

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 4 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 13 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Starbank Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Starbank Protocol.

The Starbank Protocol team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Starbank Protocol smart contract code in the form of a blockscout astar

Web Link and Github weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Authorizer.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 permissionId write Passed No Issue
3 hasPermission read Passed No Issue
4 canPerform read Passed No Issue
5 setDelay external Passed No Issue
6 scheduleDelayChange external Passed No Issue
7 schedule external Passed No Issue
8 execute external Passed No Issue
9 cancel external Passed No Issue

10 grantPermissions external Passed No Issue
11 revokePermissions external Passed No Issue
12 renouncePermissions external Passed No Issue
13 _grantPermission external Passed No Issue
14 _revokePermission external Passed No Issue
15 _schedule write Passed No Issue
16 _authenticate internal Passed No Issue
17 _executeActionId internal Passed No Issue
18 _decodeSelector internal Passed No Issue

InvestmentPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 create external Passed No Issue
3 getCreationCodeContracts read Passed No Issue
4 getCreationCode read Passed No Issue
5 _getCreationCodeWithArgs read Passed No Issue
6 _create internal Passed No Issue
7 _memcpy write Passed No Issue
8 getVault read Passed No Issue
9 isPoolFromFactory external Passed No Issue

10 _create internal Passed No Issue
11 getPauseConfiguration read Passed No Issue

MetaStablePoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 create external Passed No Issue
3 getCreationCodeContracts read Passed No Issue
4 getCreationCode read Passed No Issue
5 _getCreationCodeWithArgs read Passed No Issue
6 _create internal Passed No Issue
7 _memcpy write Passed No Issue
8 getVault read Passed No Issue
9 isPoolFromFactory external Passed No Issue

10 _create internal Passed No Issue
11 getPauseConfiguration read Passed No Issue

Multicall2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 aggregate read Passed No Issue
3 blockAndAggregate write Passed No Issue
4 getBlockHash read Passed No Issue
5 getBlockNumber read Passed No Issue
6 getCurrentBlockCoinbase read Passed No Issue
7 getCurrentBlockDifficulty read Passed No Issue
8 getCurrentBlockGasLimit read Passed No Issue
9 getCurrentBlockTimestamp read Passed No Issue

10 getEthBalance read Passed No Issue
11 getLastBlockHash read Passed No Issue
12 tryAggregate write Passed No Issue
13 tryBlockAndAggregate write Passed No Issue

NoProtocolFeeLiquidityBootstrappingPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getCreationCodeContracts read Passed No Issue
3 getCreationCode read Passed No Issue
4 _getCreationCodeWithArgs read Passed No Issue
5 _create internal Passed No Issue
6 _memcpy write Passed No Issue
7 getVault read Passed No Issue
8 isPoolFromFactory external Passed No Issue

9 _create internal Passed No Issue
10 getPauseConfiguration read Passed No Issue
11 isDisabled read Passed No Issue
12 disable external access by

authenticate
No Issue

13 create external Passed No Issue
14 _canPerform internal Passed No Issue
15 authenticate modifier Passed No Issue
16 _authenticateCaller internal Passed No Issue
17 getActionId read Passed No Issue
18 _canPerform internal Passed No Issue

ProtocolFeesCollector.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 authenticate modifier Passed No Issue
3 _authenticateCaller internal Passed No Issue
4 getActionId read Passed No Issue
5 _canPerform internal Passed No Issue
6 nonReentrant modifier Passed No Issue
7 _enterNonReentrant write Passed No Issue
8 _exitNonReentrant write Passed No Issue
9 withdrawCollectedFees external Function input

parameters lack of
check

Refer Audit
Findings

10 setSwapFeePercentage external access by
authenticate

No Issue

11 setFlashLoanFeePercent
age

external access by
authenticate

No Issue

12 getSwapFeePercentage external Passed No Issue
13 getFlashLoanFeePercent

age
external Passed No Issue

14 getCollectedFeeAmounts external Passed No Issue
15 getAuthorizer external Passed No Issue
16 _canPerform internal Passed No Issue
17 _getAuthorizer internal Passed No Issue

StablePhantomPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getCreationCodeContracts read Passed No Issue
3 getCreationCode read Passed No Issue

4 _getCreationCodeWithArgs read Passed No Issue
5 _create internal Passed No Issue
6 _memcpy write Passed No Issue
7 getVault read Passed No Issue
8 isPoolFromFactory external Passed No Issue
9 _create internal Passed No Issue

10 getPauseConfiguration read Passed No Issue
11 create external Passed No Issue

StablePoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getCreationCodeContracts read Passed No Issue
3 getCreationCode read Passed No Issue
4 _getCreationCodeWithArgs read Passed No Issue
5 _create internal Passed No Issue
6 _memcpy write Passed No Issue
7 getVault read Passed No Issue
8 isPoolFromFactory external Passed No Issue
9 _create internal Passed No Issue

10 getPauseConfiguration read Passed No Issue
11 create external Passed No Issue

Vault.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setPaused external access by

authenticate
No Issue

3 WETH external Passed No Issue
4 swap external access by

authenticate for
No Issue

5 batchSwap external access by
authenticate for

No Issue

6 _tokenGiven write Passed No Issue
7 _tokenCalculated write Passed No Issue
8 _getAmounts write Passed No Issue
9 _swapWithPools write Passed No Issue

10 _swapWithPool write Passed No Issue
11 _processTwoTokenPoolS

wapRequest
write Passed No Issue

12 _processMinimalSwapInf
oPoolSwapRequest

write Passed No Issue

13 _callMinimalSwapInfoPoo
lOnSwapHook

internal Passed No Issue

14 _processGeneralPoolSwa
pRequest

write Passed No Issue

15 queryBatchSwap external Passed No Issue
16 flashLoan external Passed No Issue
17 setAuthorizer external access by

authenticate for
No Issue

18 _setAuthorizer write Passed No Issue
19 getAuthorizer external Passed No Issue
20 setRelayerApproval external access by

authenticate for
No Issue

21 hasApprovedRelayer external Passed No Issue
22 _authenticateFor internal Passed No Issue
23 _hasApprovedRelayer internal Passed No Issue
24 _canPerform internal Passed No Issue
25 _typeHash internal Passed No Issue

WeightedPool.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _normalizedWeight internal Passed No Issue
3 _normalizedWeights internal Passed No Issue
4 getLastInvariant external Passed No Issue
5 getInvariant read Passed No Issue
6 getNormalizedWeights external Passed No Issue
7 _onSwapGivenIn internal Passed No Issue
8 _onSwapGivenOut internal Passed No Issue
9 _onInitializePool internal Passed No Issue

10 _onJoinPool internal Passed No Issue
11 _doJoin read Passed No Issue
12 _joinExactTokensInForBP

TOut
read Passed No Issue

13 _joinTokenInForExactBPT
Out

read Passed No Issue

14 _onExitPool internal Passed No Issue
15 _doExit read Passed No Issue
16 _exitExactBPTInForToken

Out
read Passed No Issue

17 _exitExactBPTInForToken
sOut

write Passed No Issue

18 _exitBPTInForExactToken
sOut

read Passed No Issue

19 _getDueProtocolFeeAmo
unts

read Passed No Issue

20 _invariantAfterJoin read Passed No Issue
21 _invariantAfterExit read Passed No Issue
22 _mutateAmounts read Passed No Issue
23 getRate read Passed No Issue
24 onSwap external Passed No Issue
25 _onSwapGivenIn internal Passed No Issue
26 _register internal Passed No Issue
27 _calculateInvariant internal Passed No Issue
28 _calcOutGivenIn internal Passed No Issue
29 _calcInGivenOut internal Passed No Issue
30 _calcBptOutGivenExactTo

kensIn
internal Passed No Issue

31 _calcTokenInGivenExactB
ptOut

internal Passed No Issue

32 _calcBptInGivenExactTok
ensOut

internal Passed No Issue

33 _calcTokenOutGivenExac
tBptIn

internal Passed No Issue

34 _calcTokensOutGivenExa
ctBptIn

internal Passed No Issue

35 _calcDueTokenProtocolS
wapFeeAmount

internal Passed No Issue

WeightedPool2TokensFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 create external Passed No Issue
3 getVault read Passed No Issue
4 isPoolFromFactory external Passed No Issue
5 _register internal Passed No Issue
6 getPauseConfiguration read Passed No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 init external access only Owner No Issue

9 poolLength external Passed No Issue
10 addPool write LP Token and reward

token
Refer Audit

Findings
11 setPool write access only Owner No Issue
12 pendingReward external Passed No Issue
13 getMultiplier read Passed No Issue
14 massUpdatePools write Passed No Issue
15 updatePools external Passed No Issue
16 updatePool write Passed No Issue
17 deposit write Passed No Issue
18 withdraw write Passed No Issue
19 emergencyWithdraw write Emergency

Withdrawal
Refer Audit

Findings
20 harvest write Passed No Issue
21 harvestAll external Passed No Issue
22 harvestSome external Passed No Issue
23 safeRewardTransfer internal Passed No Issue
24 setRewardPerSecond external access only Owner No Issue
25 dev write access only Owner No Issue
26 treasury write access only Owner No Issue
27 reserve1 write access only Owner No Issue
28 reserve2 write access only Owner No Issue
29 reserve3 write access only Owner No Issue
30 communtyGrowth write access only Owner No Issue
31 setStartTime external access only Owner No Issue

SBXToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner write Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 name read Passed No Issue
8 symbol read Passed No Issue
9 decimals read Passed No Issue

10 totalSupply read Passed No Issue
11 balanceOf read Passed No Issue
12 transfer write Passed No Issue
13 allowance read Passed No Issue
14 approve write Passed No Issue
15 transferFrom write Passed No Issue
16 increaseAllowance write Passed No Issue
17 decreaseAllowance write Passed No Issue
18 _transfer internal Passed No Issue
19 _mint internal Passed No Issue
20 _burn internal Passed No Issue
21 _approve internal Passed No Issue
22 _spendAllowance internal Passed No Issue
23 _beforeTokenTransfer internal Passed No Issue
24 _afterTokenTransfer internal Passed No Issue
25 burnFrom write Passed No Issue
26 burn write Passed No Issue
27 mint write access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in the functions below:

ProtocolFeesCollector.sol
● withdrawCollectedFees = recipient

.

Resolution: We advise using validation like address type variables should not be

address(0).

(2) Emergency Withdrawal: MasterChef.sol
There is no validation for the user for emergency withdrawal. Users who have not

deposited can also execute the emergencyWithdraw function.

Resolution: We suggest checking whether the pool id belongs to the caller before

executing the transfer.

(3) Using experimental ABIEncoderV2: InvestmentPoolFactory.sol, MultiCall.sol
Because the ABIEncoderV2 is experimental, it would be risky to release the project using

it. Moreover, the recent findings show that it is likely that other important bugs are yet to be

found.

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/

Resolution: We suggest avoiding using this if logically possible.

(4) LP Token and reward token: MasterChef.sol
In the addPool function , there is a condition that rewardToken is not equal to IpToken. But

if we execute the addPool function without initializing, the above condition will always be

true and so the LP token can be the same as the reward token.

Resolution: We suggest checking whether the Initialize function has been executed or not

for all other functions.

Very Low / Informational / Best practices:

(1) rewardToken should be made immutable: MasterChef.sol
Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: Consider marking this variable as immutable.

(2) SPDX license identifier is Missing: Multicall2.sol, InvestmentPoolFactory.sol
The SPDX license identifier is missing for the mentioned files.

Resolution: We suggest adding SPDX license identifier.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● init: The MasterChef owner can initialize the reward address.

● addPool: The MasterChef owner can add a new lp to the pool.

● setPool: The MasterChef owner can update the given pool's reward allocation point.

● setRewardPerSecond: The MasterChef owner can set rewards per second.

● dev: The MasterChef owner can update the dev address by the previous dev.

● treasury: The MasterChef owner can update the treasury address by the owner.

● reserve1: The MasterChef owner can update the reserve1 address by the owner.

● reserve2:The MasterChef owner can update the reserve2 address by the owner.

● reserve3: The MasterChef owner can update the reserve3 address by the owner.

● communtyGrowth: The MasterChef owner can update communtyGrowth address by

the owner.

● setStartTime: The MasterChef owner can set start time.

● mint: The SBXToken owner can mint an amount from the address.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Starbank Protocol

Authorizer Diagram

MetaStablePoolFactory Diagram

Multicall2 Diagram

NoProtocolFeeLiquidityBootstrappingPoolFactory Diagram

ProtocolFeesCollector Diagram

StablePhantomPoolFactory Diagram

StablePoolFactory Diagram

Vault Diagram

WeightedPool Diagram

WeightedPool2TokensFactory Diagram

MasterChef Diagram

SBXToken Diagram

InvestmentPoolFactory Diagram

Slither Results Log

Slither log >> Authorizer.sol

Slither log >> Multicall2.sol

Slither log >> ProtocolFeesCollector.sol

Slither log >> MasterChef.sol

Slither log >> SBXToken.sol

Slither log >> InvestmentPoolFactory.sol

Slither log >> MetaStablePoolFactory.sol

Slither log >> NoProtocolFeeLiquidityBootstrappingPoolFactory.sol

Slither log >> StablePhantomPoolFactory.sol

Slither log >> StablePoolFactory.sol

Slither log >> Vault.sol

Slither log >> WeightedPool.sol

Slither log >> WeightedPool2TokensFactory.sol

Solidity Static Analysis
Authorizer.sol

InvestmentPoolFactory.sol

MetaStablePoolFactory.sol

Multicall2.sol

NoProtocolFeeLiquidityBootstrappingPoolFactory.sol

ProtocolFeesCollector.sol

StablePhantomPoolFactory.sol

StablePoolFactory.sol

Vault.sol

WeightedPool.sol

WeightedPool2TokensFactory.sol

MasterChef.sol

SBXToken.sol

Solhint Linter

Authorizer.sol

Authorizer.sol:3:1: Error: Compiler version ^0.6.12 does not satisfy
the r semver requirement
Authorizer.sol:198:10: Error: Variable "success" is unused
Authorizer.sol:223:51: Error: Avoid using low level calls.
Authorizer.sol:245:20: Error: Code contains empty blocks
Authorizer.sol:328:73: Error: Code contains empty blocks
Authorizer.sol:336:21: Error: Code contains empty blocks
Authorizer.sol:547:9: Error: Variable "action" is unused
Authorizer.sol:639:73: Error: Code contains empty blocks

InvestmentPoolFactory.sol

InvestmentPoolFactory.sol:3:1: Error: Compiler version ^0.6.12 does
not satisfy the r semver requirement
InvestmentPoolFactory.sol:139:5: Error: Explicitly mark visibility of
state
InvestmentPoolFactory.sol:140:5: Error: Explicitly mark visibility of
state

MetaStablePoolFactory.sol

MetaStablePoolFactory.sol:3820:11: Error: Visibility modifier must be
first in list of modifiers
MetaStablePoolFactory.sol:4068:70: Error: Avoid to make time-based
decisions in your business logic
MetaStablePoolFactory.sol:4126:16: Error: Code contains empty blocks
MetaStablePoolFactory.sol:4136:16: Error: Code contains empty blocks
MetaStablePoolFactory.sol:4136:16: Error: Code contains empty blocks
MetaStablePoolFactory.sol:4159:17: Error: Avoid to make time-based
decisions in your business logic39:41: Error: Avoid to make
time-based decisions in your business logic

Multicall2.sol

Multicall2.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall2.sol:21:48: Error: Avoid using low level calls.
Multicall2.sol:45:21: Error: Avoid to make time-based decisions in
your business logic
Multicall2.sol:56:48: Error: Avoid using low level calls.

NoProtocolFeeLiquidityBootstrappingPoolFactory.sol

NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:4:1: Error:
Compiler version ^0.6.12 does not satisfy the r semver requirement
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:140:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:142:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:143:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:145:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:146:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:148:5: Error:
Explicitly mark visibility of state
NoProtocolFeeLiquidityBootstrappingPoolFactory.sol:153:21: Error:
Constant name must be in capitalized SNAKE_CASE

ProtocolFeesCollector.sol

ProtocolFeesCollector.sol:3:1: Error: Compiler version ^0.6.12 does
not satisfy the r semver requirement
ProtocolFeesCollector.sol:171:73: Error: Code contains empty blocks
ProtocolFeesCollector.sol:179:21: Error: Code contains empty blocks
ProtocolFeesCollector.sol:185:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
ProtocolFeesCollector.sol:223:9: Error: Variable "actionId" is unused
ProtocolFeesCollector.sol:281:51: Error: Avoid using low level calls.
ProtocolFeesCollector.sol:283:9: Error: Avoid using inline assembly.
It is acceptable only in rare cases
ProtocolFeesCollector.sol:281:24: Error: Variable "returndata" is
unused
ProtocolFeesCollector.sol:319:1: Error: Code contains empty blocks
ProtocolFeesCollector.sol:542:5: Error: Function name must be in
mixedCase

StablePhantomPoolFactory.sol

StablePhantomPoolFactory.sol:3:1: Error: Compiler version ^0.6.12
does not satisfy the r semver requirement
StablePhantomPoolFactory.sol:21:73: Error: Code contains empty blocks
StablePhantomPoolFactory.sol:28:21: Error: Code contains empty blocks
StablePhantomPoolFactory.sol:33:9: Error: Avoid using inline
assembly. It is acceptable only in rare cases
StablePhantomPoolFactory.sol:217:38: Error: Avoid to make time-based
decisions in your business logic
StablePhantomPoolFactory.sol:240:21: Error: Code contains empty
blocks
StablePhantomPoolFactory.sol:242:16: Error: Code contains empty

blocks
StablePhantomPoolFactory.sol:248:47: Error: Code contains empty
blocks
StablePhantomPoolFactory.sol:251:44: Error: Code contains empty
blocks
StablePhantomPoolFactory.sol:256:16: Error: Avoid to make time-based
decisions in your business logic
StablePhantomPoolFactory.sol:275:40: Error: Variable "errorCode" is
unused

StablePoolFactory.sol

StablePoolFactory.sol:3:1: Error: Compiler version ^0.6.12 does not
satisfy the r semver requirement
StablePoolFactory.sol:174:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:175:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:176:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:177:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:178:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:179:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:180:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:181:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:182:5: Error: Explicitly mark visibility of
state
StablePoolFactory.sol:182:21: Error: Constant name must be in
capitalized SNAKE_CASE
StablePoolFactory.sol:183:5: Error: Explicitly mark visibility of
state

Vault.sol

Vault.sol:454:31: Error: Variable name must be in mixedCase
Vault.sol:455:31: Error: Variable name must be in mixedCase
Vault.sol:469:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Vault.sol:477:55: Error: Visibility modifier must be first in list of
modifiers
Vault.sol:477:62: Error: Code contains empty blocks
Vault.sol:485:47: Error: Variable "errorCode" is unused

WeightedPoolsol

WeightedPool.sol:2:1: Error: Compiler version ^0.6.12 does not
satisfy the r semver requirement
WeightedPool.sol:28:40: Error: Variable "errorCode" is unused
WeightedPool.sol:142:24: Error: Code contains empty blocks
WeightedPool.sol:150:1: Error: Code contains empty blocks
WeightedPool.sol:172:5: Error: Function name must be in mixedCase
WeightedPool.sol:296:9: Error: Variable "actionId" is unused
WeightedPool.sol:343:51: Error: Avoid using low level calls.
WeightedPool.sol:344:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
WeightedPool.sol:343:24: Error: Variable "returndata" is unused
WeightedPool.sol:587:5: Error: Function name must be in mixedCase
WeightedPool.sol:649:36: Error: Avoid to make time-based decisions in
your business logic

WeightedPool2TokensFactory.sol

WeightedPool2TokensFactory.sol:3:1: Error: Compiler version 0.6.12
does not satisfy the r semver requirement
WeightedPool2TokensFactory.sol:23:1: Error: Code contains empty
blocks
WeightedPool2TokensFactory.sol:144:73: Error: Code contains empty
blocks
WeightedPool2TokensFactory.sol:151:21: Error: Code contains empty
blocks
WeightedPool2TokensFactory.sol:156:9: Error: Avoid using inline
assembly. It is acceptable only in rare cases
WeightedPool2TokensFactory.sol:163:9: Error: Avoid using inline
assembly. It is acceptable only in rare cases

MasterChef.sol

MasterChef.sol:11:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:24:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:36:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:53:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:65:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:161:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:184:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:210:18: Error: Parse error: missing ';' at '{'
MasterChef.sol:561:18: Error: Parse error: missing ';' at '{'

SBXToken.sol

SBXToken.sol:335:18: Error: Parse error: missing ';' at '{'
SBXToken.sol:368:18: Error: Parse error: missing ';' at '{'
SBXToken.sol:417:18: Error: Parse error: missing ';' at '{'
SBXToken.sol:468:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

