
Project: Tally-ho Protocol
Website: app.tally-ho.org
Platform: Binance Smart Chain
Language: Solidity
Date: April 15th, 2022

https://app.tally-ho.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 17

Audit Findings …………………………………………………………………………………… 18

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 33

● Solidity static analysis ….……………………………………………………………….. 41

● Solhint Linter …………………………………………………………………….……….. 50

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Tally-ho to perform the Security audit of the Tally
Exchange Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 15th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Tally-ho Contracts will provide Swap Feature(with token giveaway feature), Add Liquidity,

Staking, Farming, NFT Marketplace, Launchpad, Raffles, Expansion to other blockchains

than BSC etc.

Audit scope

Name Code Review and Security Analysis Report for
Tally-ho Protocol Smart Contracts

Platform BSC / Solidity

File 1 SwapFeeReward.sol

File 1 MD5 Hash AFE1346EE64743E6B1D1307456177CCC

Updated File 1 MD5 Hash 02BC72F895435207989B3595A58860A5

File 2 Tally.sol

File 2 MD5 Hash 3BE52C97A80419E6091A9F9B6B60AA2D

Updated File 2 MD5 Hash E970BA651DB98061496FFAAFAFCACA63

File 3 MasterChef.sol

File 3 MD5 Hash 622F7F36703DEA77BFE8271FB19A03B7

Updated File 3 MD5 Hash 585527118190E9344BEEB7B5679AC2C2

File 4 TallyswapFactory.sol

File 4 MD5 Hash EBCAE118C5783194B8C60C2D9F9850B4

Updated File 4 MD5 Hash 9E21744DF216FFB55CC8A57E2ADEAFF5

File 5 TallyswapRouter.sol

File 5 MD5 Hash 9C6926868D119CF253C43F5505568213

Updated File 5 MD5 Hash 284ECE13B08AA3E63CFFDED96492E7A4

Audit Date April 15th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 SwapFeeReward.sol
● Maximum Mining Amount: 100 Million

● Maximum Mining In Phase: 5000

● Current Phase: 1

YES, This is valid.

File 2 Tally.sol
● Name: Tally Token

● Symbol: TALLY

● Decimals: 9

● Tax Fee: 5%

● Reflections for Selling Fee : 5%

● Reflections for buying Fee: 3%

● Liquidity Pool Fee: 3%

● Burned Fee: 2%

● Marketing: 3.66%

● Charity Fee: 0.34%

● Maximum Transaction Amount: 0.2%

● BuyBack Fee: 0.5%

● Raffle Fee: 5%

● Pool Fee: 1%

● Number Tokens Sell To Add To Liquidity: 500

Billion

YES, This is valid.

Owner authorized wallet
can set some percentage
value and we suggest
handling the private key of
that wallet securely.

File 3 MasterChef.sol
● percentDec: 1000000

● stakingPercent: 40%

● Marketing Reserve: 0.15%

● Platform Maintenance & Security: 0.008%

● BUY BACK RESERVES: 0.1%

● Operation Manager: 0.142%

● TALLY Per Block: 30 Tally

YES, This is valid.

Owner authorized wallet
can set some percentage
value and we suggest
handling the private key of
that wallet securely.

● Bonus multiplier: 1

File 4 TallyswapFactory.sol
● The TallyswapFactory contract can create pairs,

set pair fees, etc.

YES, This is valid.

File 5 TallyswapRouter.sol
● The TallyswapRouter contract can add new

Liquidity, remove Liquidity, swap tokens, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Tally-ho Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Tally-ho Protocol.

The Tally-ho team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Tally-ho Protocol smart contract code in the form of a Github Web Link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://app.tally-ho.org which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://app.tally-ho.org

AS-IS overview

SwapFeeReward.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Visibility for
constructor is

ignored

Refer Audit
Findings

2 onlyRouter modifier Passed No Issue
3 sortTokens write Passed No Issue
4 pairFor read Passed No Issue
5 getSwapFee internal Passed No Issue
6 setPhase write access only Owner No Issue
7 checkPairExist read Passed No Issue
8 swap write access only Router No Issue
9 rewardBalance read Passed No Issue

10 permit write Passed No Issue
11 withdraw write Passed No Issue
12 getQuantity read Passed No Issue
13 addWhitelist write access only Owner No Issue
14 delWhitelist write access only Owner No Issue
15 getWhitelistLength read Passed No Issue
16 isWhitelist read Passed No Issue
17 getWhitelist read Passed No Issue
18 setRouter write access only Owner No Issue
19 setOracle write access only Owner No Issue
20 setFactory write access only Owner No Issue
21 setInitCodeHash write access only Owner No Issue
22 pairsListLength read Passed No Issue
23 addPair write access only Owner No Issue
24 setPair write access only Owner No Issue
25 setPairEnabled write access only Owner No Issue
26 owner read Passed No Issue
27 isOwner read Passed No Issue
28 renounceOwnership write access only Owner No Issue
29 _transferOwnership internal Passed No Issue
30 transferOwnership write access only Owner No Issue
31 onlyOwner modifier Passed No Issue

Tally.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Visibility for

constructor is ignored
Refer Audit

Findings
2 owner read Passed No Issue
3 isOwner read Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 _transferOwnership internal Passed No Issue
6 transferOwnership write access only Owner No Issue
7 onlyOwner modifier Passed No Issue
8 lockTheSwap modifier Passed No Issue
9 name read Passed No Issue

10 symbol read Passed No Issue
11 decimals read Passed No Issue
12 totalSupply read Passed No Issue
13 balanceOf read Passed No Issue
14 transfer write Passed No Issue
15 allowance read Passed No Issue
16 approve write Passed No Issue
17 transferFrom write Passed No Issue
18 increaseAllowance write Passed No Issue
19 decreaseAllowance write Passed No Issue
20 isExcludedFromReward read Passed No Issue
21 totalFees read Passed No Issue
22 deliver write Passed No Issue
23 reflectionFromToken read Passed No Issue
24 tokenFromReflection read Passed No Issue
25 excludeFromReward write access only Owner No Issue
26 includeInReward external access

only Owner
No Issue

27 _transferBothExcluded write Passed No Issue
28 excludeFromFee write access only Owner No Issue
29 includeInFee write access only Owner No Issue
30 setTaxFeePercent external access only Owner No Issue
31 getTaxFee read Passed No Issue
32 setSellTaxFeePercent external access only Owner No Issue
33 setBuyTaxFeePercent external access only Owner No Issue
34 setLiquidityFeePercent external access only Owner No Issue
35 setBurnFeePercent external access only Owner No Issue
36 setMarketingFeePercent external access only Owner No Issue
37 setCharityFeePercent external access only Owner No Issue
38 setBuyBackFeePercent external access only Owner No Issue
39 setRaffleFeePercent external access only Owner No Issue
40 setPoolFeePercent external access only Owner No Issue
41 setMarketingWallet external access only Owner No Issue
42 setCharityWallet external access only Owner No Issue

43 setBuyBackWallet external access only Owner No Issue
44 setRaffleWallet external access only Owner No Issue
45 setPoolWallet external access only Owner No Issue
46 setPoolCharityWallet external access only Owner No Issue
47 setMaxTxPercent external access only Owner No Issue
48 setSwapAndLiquifyEnabl

ed
external access only Owner No Issue

49 _reflectFee write Passed No Issue
50 receive external Passed No Issue
51 _getValues write Passed No Issue
52 _getTValues write Passed No Issue
53 _getRValues write Passed No Issue
54 _getRate read Passed No Issue
55 _getCurrentSupply read Passed No Issue
56 _takeLiquidity write Passed No Issue
57 _takeBurn write Passed No Issue
58 _takeMarketing write Passed No Issue
59 _takeCharity write Passed No Issue
60 _takeBuyBack write Passed No Issue
61 _takeRaffle write Passed No Issue
62 _takePool write Passed No Issue
63 calculateTaxFee read Passed No Issue
64 calculateLiquidityFee read Passed No Issue
65 calculateBurnFee read Passed No Issue
66 calculateMarketingFee read Passed No Issue
67 calculateCharityFee read Passed No Issue
68 calculateBuyBackFee read Passed No Issue
69 calculateRaffleFee read Passed No Issue
70 calculatePoolFee read Passed No Issue
71 removeMainFee write Passed No Issue
72 removeDirectWalletFee write Passed No Issue
73 removeRaffleFee write Passed No Issue
74 removePoolFee write Passed No Issue
75 restoreMainFee write Passed No Issue
76 restoreRaffleFee write Passed No Issue
77 restoreDirectWalletFee write Passed No Issue
78 restorePoolFee write Passed No Issue
79 isExcludedFromFee read Passed No Issue
80 _approve write Passed No Issue
81 _transfer write Passed No Issue
82 swapAndLiquify write Passed No Issue
83 swapTokensForEth write Passed No Issue
84 swapAndSendToWallet write Passed No Issue
85 addLiquidity write Passed No Issue
86 _tokenTransfer write Passed No Issue
87 _transferStandard write Passed No Issue
88 _transferToExcluded write Passed No Issue
89 _transferFromExcluded write Passed No Issue

90 mint write access only Minter No Issue
91 _mint internal Set require with error

message
Refer Audit

Findings
92 addMinter write access only Owner No Issue
93 delMinter write access only Owner No Issue
94 getMinterLength read Passed No Issue
95 isMinter read Passed No Issue
96 getMinter read access only Owner No Issue
97 onlyMinter modifier Passed No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Visibility for constructor is

ignored
Refer Audit

Findings
2 updateMultiplier write access only Owner No Issue
3 owner read Passed No Issue
4 isOwner read Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 transferOwnership write access only Owner No Issue
8 onlyOwner modifier Passed No Issue
9 poolLength external Passed No Issue

10 withdrawDevAndRefFee write Passed No Issue
11 add write The owner can add the

same lp token multiple
times

Refer Audit
Findings

12 set write access only Owner No Issue
13 setMigrator write access only Owner No Issue
14 migrate write Passed No Issue
15 getMultiplier read Passed No Issue
16 pendingTALLY external Passed No Issue
17 massUpdatePools write Passed No Issue
18 updatePool write Passed No Issue
19 deposit write Passed No Issue
20 withdraw write Passed No Issue
21 enterStaking write Passed No Issue
22 leaveStaking write Passed No Issue
23 emergencyWithdraw write Passed No Issue
24 safeTALLYTransfer internal Passed No Issue
25 setReservAddress write Passed No Issue
26 setBuyBackReservesAddre

ss
write access only Owner No Issue

27 setPlatformMaintenanceSe
curityAddress

write access only Owner No Issue

28 setOperationManagerAddr
ess

write access only Owner No Issue

29 updateTALLYPerBlock write access only Owner No Issue
30 setStakingPercent write access only Owner No Issue
31 setReservPercent write access only Owner No Issue
32 setMaintenanceSecurityPe

rcent
write access only Owner No Issue

33 setBuyBackReservesPerce
nt

write access only Owner No Issue

34 setOperationManagerPerc
ent

write access only Owner No Issue

TallyswapFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Visibility for

constructor is ignored
Refer Audit

Findings
2 allPairsLength external Passed No Issue
3 createPair external Passed No Issue
4 setFeeTo external Passed No Issue
5 setFeeToSetter external Passed No Issue
6 setDevFee external Passed No Issue
7 setSwapFee external Passed No Issue

TallyswapRouter.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Visibility for

constructor is
ignored

Refer Audit
Findings

2 owner read Passed No Issue
3 isOwner read Passed No Issue
4 renounceOwnership write access only

Owner
No Issue

5 _transferOwnership internal Passed No Issue
6 transferOwnership write access only

Owner
No Issue

7 onlyOwner modifier Passed No Issue
8 ensure modifier Passed No Issue
9 receive external Passed No Issue

10 setSwapFeeReward write access only
Owner

No Issue

11 _addLiquidity internal Passed No Issue
12 addLiquidity external Passed No Issue
13 addLiquidityETH external Passed No Issue

14 removeLiquidity write Passed No Issue
15 removeLiquidityETH write Passed No Issue
16 removeLiquidityWithPermit external Passed No Issue
17 removeLiquidityETHWithPermit external Passed No Issue
18 removeLiquidityETHSupportingF

eeOnTransferTokens
write Passed No Issue

19 removeLiquidityETHWithPermitS
upportingFeeOnTransferTokens

external Passed No Issue

20 _swap internal Passed No Issue
21 swapExactTokensForTokens external Passed No Issue
22 swapTokensForExactTokens external Passed No Issue
23 swapExactETHForTokens external Passed No Issue
24 swapTokensForExactETH external Passed No Issue
25 swapExactTokensForETH external Passed No Issue
26 swapETHForExactTokens external Passed No Issue
27 _swapSupportingFeeOnTransfer

Tokens
internal Passed No Issue

28 swapExactTokensForTokensSup
portingFeeOnTransferTokens

external Passed No Issue

29 swapExactETHForTokensSuppo
rtingFeeOnTransferTokens

external Passed No Issue

30 swapExactTokensForETHSuppo
rtingFeeOnTransferTokens

external Passed No Issue

31 quote write Passed No Issue
32 getAmountOut write Passed No Issue
33 getAmountIn write Passed No Issue
34 getAmountsOut write Passed No Issue
35 getAmountsIn write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) The owner can add the same lp token more than once: MasterChef.sol

As per comment on the add() function, the same LP token should not be added more than

once.

Resolution: There is no validation or check for adding duplicate _lpToken in add()

function, check duplication of _lpToken when the owner can add new _lpToken in add()

function.

Status: Acknowledged

Low

(1) Member "mint" not found or not visible: MasterChef.sol

TypeError: Member "mint" not found or not visible after argument-dependent lookup in

contract Tally.

Resolution: Please add the mint function in the TALLY Token contract and after that use it

in the MasterChef contract.

Status: Fixed

Very Low / Informational / Best practices:

(1) Spelling mistake: MasterChef.sol

Spelling mistake in comments:

1. develeper word should be developer.

2. muliplier word should be multiplier.

3. poitns word should be points.

Resolution: We suggest correcting the spelling.

Status: Acknowledged

(2) SafeMath Library: MasterChef.sol, TallyswapRouter.sol, SwapfeeReward.sol

SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will not be required to use, solidity automatically handles

overflow/underflow.

Resolution: We suggest removing the SafeMath library and use normal math operators, It

will improve code size, and less gas consumption.

Status: Acknowledged

(3) Make variables constant: MasterChef.sol

These variables will be unchanged. So, please make it constant. It will save some gas.

Variables are:

● percentDec

● startBlock

Resolution: We suggest declaring those variables as constant. Just put a constant

keyword.

Status: Acknowledged

(4) startBlock must be set to the proper value: MasterChef.sol
While deploying a masterChef smart contract, startBlock must be set to the proper value,

so that rewards can be handled properly.

Resolution: We suggest double confirm before deploying the masterChef smart contract.

Status: Acknowledged

(5) Visibility for constructor is ignored:

MasterChef.sol

TallyswapRouter.sol

SwapFeeReward.sol

TallyswapFactory.sol

Warning: Visibility for constructor is ignored. If you want the contract to be non-deployable,

making it "abstract" is sufficient.

Resolution: We suggest removing the public keywords.

Status: Acknowledged

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setPhase: The SWAPFeeReward Owner can set phase.

● addWhitelist: The SWAPFeeReward Owner can add an address to the whitelist.

● delWhitelist: The SWAPFeeReward Owner can delete addresses from whitelist.

● setRouter: The SWAPFeeReward Owner can set the router address.

● setOracle: The SWAPFeeReward Owner can set the oracle address.

● setFactory: The SWAPFeeReward Owner can set the factory address.

● setInitCodeHash: The SWAPFeeReward Owner can set initial hash code.

● addPair: The SWAPFeeReward Owner can add a pair address.

● setPair: The SWAPFeeReward Owner can set pair id, reward percentage,

● setPairEnabled: The SWAPFeeReward Owner can set pair status.

● excludeFromReward: The Tally token owner can check if the address is excluded or

not and set it.

● includeInReward: The Tally token owner can check if the address is excluded or not

and set it.

● excludeFromFee: The Tally token owner can set the status “true” from the excluded

account address.

● includeInFee: The Tally token owner can set the status “false” from the excluded

account address.

● setTaxFeePercent: The Tally token owner can set the tax fee percentage.

● updateMultiplier: The Masterchef owner can update the multiplier number.

● add: The Masterchef owner can add a new lp to the pool.

● set: The Masterchef owner can update the given pool's TALLY allocation point.

● setMigrator: The Masterchef owner can set the migrator contract.

● setReservAddress: The Masterchef owner can set a reserve address.

● setBuyBackReservesAddress: The Masterchef owner can set a buy back reserve

address.

● setPlatformMaintenanceSecurityAddress: The Masterchef owner can set a platform

maintenance address.

● setOperationManagerAddress: The Masterchef owner can set the operation

manager address.

● updateTALLYPerBlock: The Masterchef owner can update the tally per block

amount.

● setStakingPercent: The Masterchef owner can set the staking percentage value.

● setReservPercent:The Masterchef owner can set reserve percentage value

● setMaintenanceSecurityPercent: The Masterchef owner can set maintenance

security percentage value.

● setBuyBackReservesPercent:The Masterchef owner can set the buy back reserve

percentage value.

● setOperationManagerPercent:The Masterchef owner can set the operation

manager percentage value.

● setSwapFeeReward: The TallyswapRouter owner can set a swap fee reward

address.

● addMinter: The Tally token owner can add a new minter address.

● delMinter: The Tally token owner can remove the minter address.

● getMinter: The Tally token owner can get minter details.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved in the revised smart contract code. So, the smart contracts are ready
for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Tally-ho Protocol

SwapFeeReward Diagram

Tally Diagram

MasterChef Diagram

TallyswapFactory Diagram

TallyswapRouter Diagram

Slither Results Log

Slither log >> SwapFeeReward.sol

Slither log >> MasterChef.sol

Slither log >> TallyswapFactory.sol

Slither log >> TallyswapRouter.sol

Slither log >> Tally.sol

Solidity Static Analysis

SwapFeeReward.sol

Tally.sol

MasterChef.sol

TallyswapFactory.sol

TallyswapRouter.sol

Solhint Linter

SwapFeeReward.sol

SwapFeeReward.sol:1:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
SwapFeeReward.sol:4:5: Error: Explicitly mark visibility of state
SwapFeeReward.sol:5:5: Error: Explicitly mark visibility of state
SwapFeeReward.sol:447:5: Error: Function name must be in mixedCase
SwapFeeReward.sol:476:5: Error: Function name must be in mixedCase
SwapFeeReward.sol:477:5: Error: Function name must be in mixedCase
SwapFeeReward.sol:494:5: Error: Function name must be in mixedCase
SwapFeeReward.sol:523:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
SwapFeeReward.sol:567:20: Error: Variable name must be in mixedCase
SwapFeeReward.sol:598:9: Error: Variable name must be in mixedCase
SwapFeeReward.sol:600:9: Error: Variable name must be in mixedCase
SwapFeeReward.sol:612:35: Error: Use double quotes for string
literals
SwapFeeReward.sol:614:39: Error: Use double quotes for string
literals
SwapFeeReward.sol:676:80: Error: Use double quotes for string
literals
SwapFeeReward.sol:680:47: Error: Use double quotes for string
literals
SwapFeeReward.sol:682:80: Error: Use double quotes for string
literals
SwapFeeReward.sol:752:30: Error: Variable name must be in mixedCase

Tally.sol

Tally.sol:4:1: Error: Compiler version ^0.6.12 does not satisfy the r
semver requirement
Tally.sol:425:21: Error: Avoid making time-based decisions in your
business logic
Tally.sol:432:17: Error: Avoid making time-based decisions in your
business logic
Tally.sol:470:5: Error: Function name must be in mixedCase
Tally.sol:471:5: Error: Function name must be in mixedCase
Tally.sol:488:5: Error: Function name must be in mixedCase
Tally.sol:508:5: Error: Function name must be in mixedCase
Tally.sol:642:1: Error: Contract has 44 states declarations but
allowed no more than 15
Tally.sol:711:5: Error: Explicitly mark visibility of state
Tally.sol:1014:32: Error: Code contains empty blocks
Tally.sol:1337:13: Error: Avoid making time-based decisions in your
business logic
Tally.sol:1347:27: Error: Avoid using low level calls.
Tally.sol:1365:13: Error: Avoid making time-based decisions in your
business logic

MasterChef.sol

MasterChef.sol:2:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
MasterChef.sol:442:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
MasterChef.sol:496:21: Error: Avoid making time-based decisions in
your business logic
MasterChef.sol:506:17: Error: Avoid making time-based decisions in
your business logic
MasterChef.sol:576:5: Error: Function name must be in mixedCase
MasterChef.sol:578:5: Error: Function name must be in mixedCase
MasterChef.sol:609:5: Error: Function name must be in mixedCase
MasterChef.sol:655:5: Error: Function name must be in mixedCase
MasterChef.sol:1109:1: Error: Contract has 45 states declarations but
allowed no more than 15
MasterChef.sol:1181:5: Error: Explicitly mark visibility of state
MasterChef.sol:1611:32: Error: Code contains empty blocks
MasterChef.sol:2014:13: Error: Avoid making time-based decisions in
your business logic
MasterChef.sol:2024:28: Error: Avoid using low level calls.
MasterChef.sol:2042:13: Error: Avoid making time-based decisions in
your business logic
MasterChef.sol:2308:1: Error: Contract has 20 states declarations but
allowed no more than 15
MasterChef.sol:2335:23: Error: Variable name must be in mixedCase
MasterChef.sol:2364:20: Error: Variable name must be in mixedCase
MasterChef.sol:2366:20: Error: Variable name must be in mixedCase
MasterChef.sol:2388:17: Error: Variable name must be in mixedCase
MasterChef.sol:2415:9: Error: Variable name must be in mixedCase
MasterChef.sol:2515:13: Error: Variable name must be in mixedCase
MasterChef.sol:2551:9: Error: Variable name must be in mixedCase
MasterChef.sol:2668:9: Error: Variable name must be in mixedCase

TallyswapFactory.sol

TallyswapFactory.sol:2:1: Error: Compiler version 0.8.4 does not
satisfy the r semver requirement
TallyswapFactory.sol:20:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:21:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:38:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:82:5: Error: Explicitly mark visibility of state
TallyswapFactory.sol:111:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:128:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:129:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:159:5: Error: Function name must be in mixedCase
TallyswapFactory.sol:176:37: Error: Constant name must be in
capitalized SNAKE_CASE
TallyswapFactory.sol:176:44: Error: Use double quotes for string
literals
TallyswapFactory.sol:177:37: Error: Constant name must be in
capitalized SNAKE_CASE
TallyswapFactory.sol:177:46: Error: Use double quotes for string
literals

TallyswapFactory.sol:178:36: Error: Constant name must be in
capitalized SNAKE_CASE
TallyswapFactory.sol:183:29: Error: Variable name must be in
mixedCase
TallyswapFactory.sol:235:29: Error: Avoid making time-based decisions
in your business logic
TallyswapFactory.sol:235:46: Error: Use double quotes for string
literals
TallyswapFactory.sol:238:17: Error: Use double quotes for string
literals
TallyswapFactory.sol:244:78: Error: Use double quotes for string
literals
TallyswapFactory.sol:250:1: Error: Contract has 22 states
declarations but allowed no more than 15
TallyswapFactory.sol:315:45: Error: Avoid using low level calls.
TallyswapFactory.sol:375:40: Error: Avoid making time-based decisions
in your business logic
TallyswapFactory.sol:589:29: Error: Variable name must be in
mixedCase
TallyswapFactory.sol:605:35: Error: Use double quotes for string
literals
TallyswapFactory.sol:607:39: Error: Use double quotes for string
literals
TallyswapFactory.sol:608:56: Error: Use double quotes for string
literals
TallyswapFactory.sol:611:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
TallyswapFactory.sol:622:44: Error: Use double quotes for string
literals
TallyswapFactory.sol:627:44: Error: Use double quotes for string
literals
TallyswapFactory.sol:632:44: Error: Use double quotes for string
literals
TallyswapFactory.sol:633:30: Error: Use double quotes for string
literals
TallyswapFactory.sol:638:44: Error: Use double quotes for string
literals

TallyswapRouter.sol

TallyswapRouter.sol:2:1: Error: Compiler version 0.8.4 does not
satisfy the r semver requirement
TallyswapRouter.sol:13:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
TallyswapRouter.sol:62:45: Error: Avoid using low level calls.
TallyswapRouter.sol:65:13: Error: Use double quotes for string
literals
TallyswapRouter.sol:75:45: Error: Avoid using low level calls.
TallyswapRouter.sol:78:13: Error: Use double quotes for string
literals
TallyswapRouter.sol:89:45: Error: Avoid using low level calls.
TallyswapRouter.sol:92:13: Error: Use double quotes for string
literals
TallyswapRouter.sol:97:28: Error: Avoid using low level calls.
TallyswapRouter.sol:98:26: Error: Use double quotes for string

literals
TallyswapRouter.sol:104:5: Error: Function name must be in mixedCase
TallyswapRouter.sol:242:35: Error: Use double quotes for string
literals
TallyswapRouter.sol:244:39: Error: Use double quotes for string
literals
TallyswapRouter.sol:271:30: Error: Use double quotes for string
literals
TallyswapRouter.sol:272:47: Error: Use double quotes for string
literals
TallyswapRouter.sol:278:31: Error: Use double quotes for string
literals
TallyswapRouter.sol:279:50: Error: Use double quotes for string
literals
TallyswapRouter.sol:288:32: Error: Use double quotes for string
literals
TallyswapRouter.sol:289:50: Error: Use double quotes for string
literals
TallyswapRouter.sol:297:35: Error: Use double quotes for string
literals
TallyswapRouter.sol:308:35: Error: Use double quotes for string
literals
TallyswapRouter.sol:320:35: Error: Use double quotes for string
literals
TallyswapRouter.sol:324:35: Error: Use double quotes for string
literals
TallyswapRouter.sol:328:49: Error: Use double quotes for string
literals
TallyswapRouter.sol:402:67: Error: Avoid to use letters 'I', 'l', 'O'
as identifiers
TallyswapRouter.sol:410:9: Error: Avoid to use letters 'I', 'l', 'O'
as identifiers
TallyswapRouter.sol:435:10: Error: Avoid to use letters 'I', 'l', 'O'
as identifiers
TallyswapRouter.sol:443:24: Error: Use double quotes for string
literals
TallyswapRouter.sol:463:5: Error: Function name must be in mixedCase
TallyswapRouter.sol:464:5: Error: Function name must be in mixedCase
TallyswapRouter.sol:481:5: Error: Function name must be in mixedCase
TallyswapRouter.sol:508:39: Error: Variable name must be in mixedCase
TallyswapRouter.sol:512:29: Error: Avoid making time-based decisions
in your business logic
TallyswapRouter.sol:512:46: Error: Use double quotes for string
literals
TallyswapRouter.sol:516:35: Error: Variable name must be in mixedCase
TallyswapRouter.sol:548:55: Error: Use double quotes for string
literals
TallyswapRouter.sol:553:55: Error: Use double quotes for string
literals
TallyswapRouter.sol:614:40: Error: Use double quotes for string
literals
TallyswapRouter.sol:615:40: Error: Use double quotes for string
literals
TallyswapRouter.sol:732:62: Error: Use double quotes for string
literals
TallyswapRouter.sol:746:44: Error: Use double quotes for string
literals
TallyswapRouter.sol:760:34: Error: Use double quotes for string
literals

TallyswapRouter.sol:762:62: Error: Use double quotes for string
literals
TallyswapRouter.sol:774:48: Error: Use double quotes for string
literals
TallyswapRouter.sol:776:44: Error: Use double quotes for string
literals
TallyswapRouter.sol:791:48: Error: Use double quotes for string
literals
TallyswapRouter.sol:793:62: Error: Use double quotes for string
literals
TallyswapRouter.sol:809:34: Error: Use double quotes for string
literals
TallyswapRouter.sol:811:42: Error: Use double quotes for string
literals
TallyswapRouter.sol:856:13: Error: Use double quotes for string
literals
TallyswapRouter.sol:871:34: Error: Use double quotes for string
literals
TallyswapRouter.sol:879:13: Error: Use double quotes for string
literals
TallyswapRouter.sol:894:48: Error: Use double quotes for string
literals
TallyswapRouter.sol:900:44: Error: Use double quotes for string
literals

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

