
Project: Tosha Protocol
Website: https://tosha.io
Language: Solidity
Date: April 6th, 2022

https://tosha.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 21

Audit Findings …………………………………………………………………………………… 22

Conclusion ………………………………………………………………………………………. 26

Our Methodology ………………………………………………………………………………... 27

Disclaimers ………………………………………………………………………………………. 29

Appendix

● Code Flow Diagram ……………………………………………………………………... 30

● Slither Results Log ………………………………………………………………………. 42

● Solidity Static Analysis…………………………………………………………………... 52

● Solhint Linter…….. ………………………………………………………………………. 64

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Tosha team to perform the Security audit of the
Tosha Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 6th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Tosha.io is a decentralized multi-chain smart yield optimizer platform where users

earn auto-compounded interest on their crypto investments.

● It aggregates farming pools from various DeFi projects that offer rewards when

tokens are staked.

● Tosha IO automatically collects rewards and reinvests them periodically. This is

accomplished by employing various strategies that aim to optimize and maximize

the yield on the return.

● The Tosha Contracts have functions like setKeeper, setCallFee, setUnirouter,

setVault, setStrategist, harvest, panic, etc.

Audit scope

Name Code Review and Security Analysis Report for
Tosha Protocol Smart Contracts

File 1 FeeManager.sol

File 1 MD5 Hash 8908949D80545F09A27DC569F93D2AA4

File 2 FeeManagerLP.sol

File 2 MD5 Hash 67AD8555D93261FA580927219F0254ED

File 3 LPTokenWrapper.sol

https://github.com/0xTosha/core-contracts/blob/main/strategies/FeeManager.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/FeeManagerLP.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/LPTokenWrapper.sol

File 3 MD5 Hash 8E0E37FFBE9FF03E0AA074DA593367C0

File 4 StratManager.sol

File 4 MD5 Hash 0CA7C357109AE172232FE52297D78B9E

File 5 StratManagerLP.sol

File 5 MD5 Hash D23CDA5B8238A73778BF7CECC6DCF0D2

File 6 StrategyCommonLP.sol

File 6 MD5 Hash 903D21AE10D725B04A9F89454D786C8F

File 7 StrategyDualLP.sol

File 7 MD5 Hash 9708E2F78341B3E0A7AD3F5E45294879

Updated File 7 MD5 Hash 0A0711465B404B230B689EFC553E7DA5

File 8 StrategyTosha.sol

File 8 MD5 Hash 7A67613E022416F5DC3D293D151CF385

File 9 ToshaVault.sol

File 9 MD5 Hash 88E1190FEE4048D2D945F88B48C21A4A

File 10 ToshaLPVault.sol

File 10 MD5 Hash AF81B1378E86F5BCE64B582DE5F8B65F

File 11 Materchef.sol

File 11 MD5 Hash 727C3696ACF2C6CE8AD1CA6FC4F8A51A

Updated File 11 MD5 Hash FF0933DF80E7D372C7ABE3051A58180A

File 12 Tosha.sol

File 12 MD5 Hash AF81B1378E86F5BCE64B582DE5F8B65F

Updated File 12 MD5
Hash 529AD794392BD4B256D88149A9D3A788

Audit Date April 6th,2022

Revise Audit Date April 11th,2022

https://github.com/0xTosha/core-contracts/blob/main/strategies/StratManager.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/StratManagerLP.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/StrategyCommonLP.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/StrategyDualLP.sol
https://github.com/0xTosha/core-contracts/blob/main/strategies/StrategyTosha.sol
https://github.com/0xTosha/core-contracts/blob/main/vaults/ToshaVault.sol
https://github.com/0xTosha/core-contracts/blob/main/vaults/ToshaLPVault.sol
https://github.com/0xTosha/core-contracts/blob/main/core/MasterChef.sol
https://github.com/0xTosha/core-contracts/blob/main/core/Tosha.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 FeeManager.sol
● Maximum Fee Cap: 0.005%

● Withdrawal Fee Cap: 0.005%

● Withdrawal Fee: 0.0005%

● Call Fee: 0.0005%

YES, This is valid.

File 2 FeeManagerLP.sol
● Strategist Fee: 0.112%

● Maximum Call Fee: 0.111%

● Withdrawal Fee Cap: 0.005%

● Withdrawal Fee: 0.001%

● Call Fee: 0.111%

YES, This is valid.

File 3 LPTokenWrapper.sol
● The LPTokenWeapper can access stake and

withdraw a token.

YES, This is valid.

File 4 StratManager.sol
● The StratManager can access functions like:

setKeeper, setUnirouter, etc.

YES, This is valid.

File 5 StratManagerLP.sol
● The StratManagerLP can access functions like:

setStrategist, beforeDeposit, etc.

YES, This is valid.

File 6 StrategyCommonLP.sol
● The StrategyCommonLP can access functions

like: deposit, withdraw, harvest, etc.

YES, This is valid.

File 7 StrategyDualLP.sol
● The StrategyDualLP can access functions

like:harvest, managerHarvest, etc.

YES, This is valid.

File 8 StrategyTosha.sol
● The StrategyTosha can access functions like:

deposit, beforeDeposit, etc.

YES, This is valid.

File 9 ToshaVault.sol
● Decimals: 18

YES, This is valid.

File 10 ToshaLPVault.sol
● Decimals: 18.

YES, This is valid.

File 11 Materchef.sol
● reserve funds: 10%

● farming rewards: 90%

YES, This is valid.
Owner authorized wallet can
set some percentage value
and we suggest handling
the private key of that wallet
securely.

File 12 Tosha.sol
● Name: Tosha.IO

● Symbol: TOSHA

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
All the issues have been fixed / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 12 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Tosha Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Tosha Protocol.

The Tosha Protocol team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Tosha Protocol smart contract code in the form of a Github Web Link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

FeeManager.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setCallFee write access only Manager No Issue
3 setWithdrawalFee write access only Manager No Issue
4 onlyManager modifier Passed No Issue
5 setKeeper external access only Manager No Issue
6 setUnirouter external access only Owner No Issue
7 setVault external access only Owner No Issue
8 beforeDeposit external Passed No Issue
9 owner read Passed No Issue

10 onlyOwner modifier Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 paused read Passed No Issue
14 whenNotPaused modifier Passed No Issue
15 whenPaused modifier Passed No Issue
16 _pause internal Passed No Issue
17 _unpause internal Passed No Issue

FeeManagerLP.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyManager modifier Passed No Issue
3 setKeeper external access only

Manager
No Issue

4 setUnirouter external access only Owner No Issue
5 setVault external access only Owner No Issue
6 beforeDeposit external Passed No Issue
7 owner read Passed No Issue
8 onlyOwner modifier Passed No Issue
9 renounceOwnership write access only Owner No Issue

10 transferOwnership write access only Owner No Issue
11 paused read Passed No Issue
12 whenNotPaused modifier Passed No Issue
13 whenPaused modifier Passed No Issue
14 _pause internal Passed No Issue
15 _unpause internal Passed No Issue
16 setCallFee write access only

Manager
No Issue

17 setWithdrawalFee write access only
Manager

No Issue

LPTokenWrapper.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 totalSupply read Passed No Issue
3 balanceOf read Passed No Issue
4 stakeToken write Passed No Issue
5 withdrawToken write Passed No Issue

StratManager.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 paused read Passed No Issue
7 whenNotPaused modifier Passed No Issue
8 whenPaused modifier Passed No Issue
9 _pause internal Passed No Issue

10 _unpause internal Passed No Issue
11 onlyManager modifier Passed No Issue
12 setKeeper external access only Manager No Issue
13 setUnirouter external access only Owner No Issue
14 setVault external access only Owner No Issue
15 beforeDeposit external Passed No Issue

StratManagerLP.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only

Owner
No Issue

5 transferOwnership write access only
Owner

No Issue

6 paused read Passed No Issue
7 whenNotPaused modifier Passed No Issue

8 whenPaused modifier Passed No Issue
9 _pause internal Passed No Issue

10 _unpause internal Passed No Issue
11 onlyManager modifier Passed No Issue
12 setKeeper external access only

Manager
No Issue

13 setStrategist external Passed No Issue
14 setUnirouter external access only

Owner
No Issue

15 setVault external access only
Owner

No Issue

16 setToshaFeeRecipient external access only
Owner

No Issue

17 beforeDeposit external Passed No Issue

StrategyCommonLP.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 gasThrottle modifier Passed No Issue
3 owner read Passed No Issue
4 onlyOwner modifier Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 paused read Passed No Issue
8 whenNotPaused modifier Passed No Issue
9 whenPaused modifier Passed No Issue

10 _unpause internal Passed No Issue
11 _pause internal Passed No Issue
12 _unpause internal Passed No Issue
13 onlyManager modifier Passed No Issue
14 setKeeper external access only Manager No Issue
15 setUnirouter external access only Owner No Issue
16 setStrategist external Passed No Issue
17 setVault external access only Owner No Issue
18 setToshaFeeRecipient external access only Owner No Issue
19 beforeDeposit external Passed No Issue
20 setCallFee write access only Manager No Issue
21 setWithdrawalFee write access only Manager No Issue
22 deposit write Passed No Issue
23 withdraw external Passed No Issue
24 beforeDeposit external Passed No Issue
25 harvest external Passed No Issue
26 harvestWithCallFeeRecipi

ent
external Passed No Issue

27 managerHarvest external access only Manager No Issue

28 _harvest internal Passed No Issue
29 chargeFees internal Passed No Issue
30 _deposit internal Passed No Issue
31 totalStake read Passed No Issue
32 balanceOf read Passed No Issue
33 balanceOfWant read Passed No Issue
34 balanceOfPool read Passed No Issue
35 retireStrat external Passed No Issue
36 setPendingRewardsFunct

ionName
external access only Manager No Issue

37 rewardsAvailable read Passed No Issue
38 callReward read Passed No Issue
39 setHarvestOnDeposit external access only Manager No Issue
40 setShouldGasThrottle external access only Manager No Issue
41 panic write access only Manager No Issue
42 pause write access only Manager No Issue
43 unpause external access only Manager No Issue
44 _giveAllowances internal Passed No Issue
45 _removeAllowances internal Passed No Issue

StrategyDualLP.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 gasThrottle modifier Passed No Issue
3 owner read Passed No Issue
4 onlyOwner modifier Passed No Issue
5 renounceOwnership write access only

Owner
No Issue

6 transferOwnership write access only
Owner

No Issue

7 paused read Passed No Issue
8 whenNotPaused modifier Passed No Issue
9 whenPaused modifier Passed No Issue

10 _unpause internal Passed No Issue
11 _pause internal Passed No Issue
12 _unpause internal Passed No Issue
13 onlyManager modifier Passed No Issue
14 setKeeper external access only

Manager
No Issue

15 setUnirouter external access only
Owner

No Issue

16 setStrategist external Passed No Issue
17 setVault external access only

Owner
No Issue

18 setToshaFeeRecipient external access only
Owner

No Issue

19 beforeDeposit external Passed No Issue
20 setCallFee write access only

Manager
No Issue

21 setWithdrawalFee write access only
Manager

No Issue

22 deposit write Passed No Issue
23 withdraw external Passed No Issue
24 beforeDeposit external Passed No Issue
25 harvest external Passed No Issue
26 harvestWithCallFeeRecipient external Passed No Issue
27 managerHarvest external access only

Manager
No Issue

28 _harvest internal Passed No Issue
29 chargeFees internal Passed No Issue
30 _deposit internal Passed No Issue
31 totalStake read Passed No Issue
32 balanceOf read Passed No Issue
33 balanceOfWant read Passed No Issue
34 balanceOfPool read Passed No Issue
35 retireStrat external Passed No Issue
36 setPendingRewardsFunction

Name
external access only

Manager
No Issue

37 rewardsAvailable read Passed No Issue
38 callReward read Passed No Issue
39 setHarvestOnDeposit external access only

Manager
No Issue

40 setShouldGasThrottle external access only
Manager

No Issue

41 panic external access only
Manager

No Issue

42 pause external access only
Manager

No Issue

43 unpause external access only
Manager

No Issue

44 _giveAllowances internal Passed No Issue
45 _removeAllowances internal Passed No Issue

StrategyTosha.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setCallFee write access only

Manager
No Issue

3 setWithdrawalFee write access only
Manager

No Issue

4 onlyManager modifier Passed No Issue
5 setKeeper external access only

Manager
No Issue

6 setUnirouter external access only
Owner

No Issue

7 setVault external access only
Owner

No Issue

8 beforeDeposit external Passed No Issue
9 owner read Passed No Issue

10 onlyOwner modifier Passed No Issue
11 renounceOwnership write access only

Owner
No Issue

12 transferOwnership write access only
Owner

No Issue

13 paused read Passed No Issue
14 whenNotPaused modifier Passed No Issue
15 whenPaused modifier Passed No Issue
16 _pause internal Passed No Issue
17 _unpause internal Passed No Issue
18 deposit write Passed No Issue
19 withdraw external Passed No Issue
20 beforeDeposit external Passed No Issue
21 harvest external Passed No Issue
22 harvest external Passed No Issue
23 _harvest internal Passed No Issue
24 chargeFees internal Passed No Issue
25 swapRewards internal Passed No Issue
26 balanceOf read Passed No Issue
27 balanceOfWant read Passed No Issue
28 balanceOfPool read Passed No Issue
29 rewardsAvailable read Passed No Issue
30 callReward read Passed No Issue
31 setHarvestOnDeposit external access only

Manager
No Issue

32 retireStrat external Passed No Issue
33 panic write access only

Manager
No Issue

34 pause write access only
Manager

No Issue

35 unpause external access only
Manager

No Issue

36 _giveAllowances internal Passed No Issue
37 _removeAllowances internal Passed No Issue
38 outputToWant external Passed No Issue

ToshaVault.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 name read Passed No Issue
7 symbol read Passed No Issue
8 decimals read Passed No Issue
9 totalSupply read Passed No Issue

10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _setupDecimals internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 want read Passed No Issue
24 balance read Passed No Issue
25 available read Passed No Issue
26 getPricePerFullShare read Passed No Issue
27 depositAll external Passed No Issue
28 deposit write Passed No Issue
29 earn write Passed No Issue
30 withdrawAll external Passed No Issue
31 withdraw write Passed No Issue
32 proposeStrat write access only Owner No Issue
33 upgradeStrat write access only Owner No Issue
34 inCaseTokensGetStuck external access only Owner No Issue

ToshaLPVault.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue

5 transferOwnership write access only Owner No Issue
6 name read Passed No Issue
7 symbol read Passed No Issue
8 decimals read Passed No Issue
9 totalSupply read Passed No Issue

10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _setupDecimals internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 want read Passed No Issue
24 balance read Passed No Issue
25 available read Passed No Issue
26 getPricePerFullShare read Passed No Issue
27 depositAll external Passed No Issue
28 deposit write Passed No Issue
29 earn write Passed No Issue
30 withdrawAll external Passed No Issue
31 withdraw write Passed No Issue
32 _getPercent write Passed No Issue
33 _claimRewards write Passed No Issue
34 _safeCoreTransfer write Passed No Issue
35 notifyRewards external Passed No Issue
36 totalAutoCoreShares read Passed No Issue
37 _coreBalance read Passed No Issue
38 proposeStrat write access only Owner No Issue
39 upgradeStrat write access only Owner No Issue
40 inCaseTokensGetStuck external access only Owner No Issue

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 name read Passed No Issue

7 symbol read Passed No Issue
8 decimals read Passed No Issue
9 totalSupply read Passed No Issue

10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _setupDecimals internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 mint write Passed No Issue
24 setGovernance write Passed No Issue
25 addMinter write Passed No Issue
26 removeMinter write Passed No Issue
27 harvest write Passed No Issue
28 updateReserveFundsAdd

ress
write access only Owner No Issue

29 updateFarmingRewarder
Address

write access only Owner No Issue

30 updateEmissionRate write access only Owner No Issue
31 updateRewardsRate write access only Owner No Issue

Tosha.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write access only Owner No Issue
3 setGovernance write Passed No Issue
4 addMinter write Passed No Issue
5 removeMinter write Passed No Issue
6 name read Passed No Issue
7 symbol read Passed No Issue
8 decimals read Passed No Issue
9 totalSupply read Passed No Issue

10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue

16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _setupDecimals internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Owner can mint unlimited tokens: Tosha.sol
There is no limit for minting TOSHA tokens. Thus the owner can mint unlimited tokens to

any account.

Resolution: There should be a limit for minting or need to confirm, if it is a part of the plan

then disregard this issue.

Status: Fixed

Very Low / Informational / Best practices:

(1) Use latest solidity version: ToshaVault.sol, MasterChef.sol, FeeManager.sol,
FeeManagerLP.sol, StratManager.sol, StratManagerLP.sol, LPTokenWrapper.sol,
StrategyCommonLP.sol, StrategyDualLP.sol, StrategyTosha.sol, ToshaLPVault.sol,
Tosha.sol

Using the latest solidity will prevent any compiler level bugs.

Resolution: We suggest using version > 0.8.0.

Status: Acknowledged

(2) Unused event / variable:

MasterChef.sol
Event - Harvest

StratManager.sol
Variables - strategist

Resolution: We suggest removing the unused events and variables. Harvest event can be

used in the harvest function.

Status: Fixed

(3) Same contract name: StrategyDualLP.sol
StrategyDualLP and StrategyCommonLP contract files have the same contract name in

both files - “StrategyCommonLP”.

Resolution: We suggest giving the appropriate name to the contract to identify them

better and use them.

Status: Fixed

(4) If condition can be replaced by require: MasterChef.sol

In the harvest() function the execution is only working if the condition is satisfied. Though if

that condition is not satisfied, the function will run and cost gas.

Resolution: We suggest using require with proper error message instead of if condition.

Status: Fixed

(5) Irrelevant error message: MasterChef.sol

In updateRewardsRate, an error message was mentioned for the emission rate per block

instead of the reward rate per block.

Resolution: We suggest correcting the error message.

Status: Fixed

(6) rewardPoolAddress should be made immutable: MasterChef.sol
Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: Consider marking this variable as immutable.

Status: Fixed

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setUnirouter: The StratManager owner can update the router that will be used for

swaps.

● setVault: The StratManager owner can update the parent vault.

● setUnirouter: The StratManagerLP owner can update the router that will be used for

swaps.

● setVault: The StratManagerLP owner can update the parent vault.

● setToshaFeeRecipient: The StratManagerLP owner can update the tosha fee

recipient.

● proposeStrat: The ToshaVault owner can set the candidate for the new strat to use

with this vault.

● upgradeStrat: The ToshaVault owner can update switches to the active strat for the

strat candidate.

● inCaseTokensGetStuck: The ToshaVault owner can rescue random funds stuck that

the strat can't handle.

● proposeStrat: The ToshaLPVault owner can set the candidate for the new strat to

use with this vault.

● upgradeStrat: The ToshaLPVault owner can update switches to the active strat for

the strat candidate.

● inCaseTokensGetStuck: The ToshaLPVault owner can rescue random funds stuck

that the strat can't handle.

● updateReserveFundsAddress: The MasterChef owner can update reserve funds

addressed.

● updateFarmingRewarderAddress: The MasterChef owner can update farming

rewarder addresses.

● updateEmissionRate: The MasterChef owner can update the emission rate.

● updateRewardsRate: The MasterChef owner can update the rewards rate.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Tosha Protocol

FeeManager Diagram

FeeManagerLP Diagram

LPTokenWrapper Diagram

StratManager Diagram

StratManagerLP Diagram

StrategyCommonLP Diagram

StrategyDualLP Diagram

StrategyTosha Diagram

ToshaVault Diagram

ToshaLPVault Diagram

MasterChef Diagram

Tosha Diagram

Slither Results Log

Slither log >> FeeManager.sol

Slither log >> FeeManagerLP.sol

Slither log >> LPTokenWrapper.sol

Slither log >> StratManager.sol

Slither log >> StratManagerLP.sol

Slither log >> StrategyCommonLP.sol

Slither log >> StrategyDualLP.sol

Slither log >> StrategyTosha.sol

Slither log >> ToshaVault.sol

Slither log >> ToshaLPVault.sol

Slither log >> Materchef.sol

Slither log >> Tosha.sol

Solidity Static Analysis
FeeManager.sol

FeeManagerLP.sol

LPTokenWrapper.sol

StratManager.sol

StratManagerLP.sol

StrategyCommonLP.sol

StrategyDualLP.sol

StrategyTosha.sol

ToshaVault.sol

ToshaLPVault.sol

Materchef.sol

Tosha.sol

Solhint Linter

FeeManager.sol

FeeManager.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
FeeManager.sol:204:47: Error: Code contains empty blocks

FeeManagerLP.sol

FeeManagerLP.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
FeeManagerLP.sol:221:47: Error: Code contains empty blocks

LPTokenWrapper.sol

LPTokenWrapper.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement

StratManager.sol

StratManager.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
StratManager.sol:204:47: Error: Code contains empty blocks

StratManagerLP.sol

StratManagerLP.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
StratManagerLP.sol:221:47: Error: Code contains empty blocks

StrategyCommonLP.sol

StrategyCommonLP.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
StrategyCommonLP.sol:879:47: Error: Code contains empty blocks
StrategyCommonLP.sol:945:84: Error: Visibility modifier must be first
in list of modifiers

StrategyCommonLP.sol:980:13: Error: Avoid to use tx.origin
StrategyCommonLP.sol:992:22: Error: Avoid to use tx.origin
StrategyCommonLP.sol:997:18: Error: Avoid to use tx.origin
StrategyCommonLP.sol:1003:18: Error: Avoid to use tx.origin
StrategyCommonLP.sol:1013:27: Error: Avoid to make time-based
decisions in your business logic
StrategyCommonLP.sol:1020:112: Error: Avoid to make time-based
decisions in your business logic
StrategyCommonLP.sol:1033:117: Error: Avoid to make time-based
decisions in your business logic
StrategyCommonLP.sol:1094:19: Error: Code contains empty blocks

StrategyDualLP.sol

StrategyDualLP.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
StrategyDualLP.sol:879:47: Error: Code contains empty blocks
StrategyDualLP.sol:947:84: Error: Visibility modifier must be first
in list of modifiers
StrategyDualLP.sol:986:13: Error: Avoid to use tx.origin
StrategyDualLP.sol:998:22: Error: Avoid to use tx.origin
StrategyDualLP.sol:1003:18: Error: Avoid to use tx.origin
StrategyDualLP.sol:1009:18: Error: Avoid to use tx.origin
StrategyDualLP.sol:1020:27: Error: Avoid to make time-based decisions
in your business logic
StrategyDualLP.sol:1027:112: Error: Avoid to make time-based
decisions in your business logic
StrategyDualLP.sol:1031:115: Error: Avoid to make time-based
decisions in your business logic
StrategyDualLP.sol:1045:117: Error: Avoid to make time-based
decisions in your business logic
StrategyDualLP.sol:1106:19: Error: Code contains empty blocks

StrategyTosha.sol

StrategyTosha.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
StrategyTosha.sol:784:47: Error: Code contains empty blocks
StrategyTosha.sol:816:29: Error: Constant name must be in capitalized
SNAKE_CASE
StrategyTosha.sol:844:49: Error: Visibility modifier must be first in
list of modifiers
StrategyTosha.sol:879:13: Error: Avoid to use tx.origin
StrategyTosha.sol:892:22: Error: Avoid to use tx.origin
StrategyTosha.sol:897:18: Error: Avoid to use tx.origin
StrategyTosha.sol:916:27: Error: Avoid to make time-based decisions
in your business logic
StrategyTosha.sol:930:108: Error: Avoid to make time-based decisions
in your business logic

ToshaVault.sol

ToshaVault.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
ToshaVault.sol:912:94: Error: Code contains empty blocks
ToshaVault.sol:1085:27: Error: Avoid to make time-based decisions in
your business logic
ToshaVault.sol:1099:66: Error: Avoid to make time-based decisions in
your business logic

ToshaLPVault.sol

ToshaLPVault.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
ToshaLPVault.sol:921:94: Error: Code contains empty blocks
ToshaLPVault.sol:1052:34: Error: Avoid to make time-based decisions
in your business logic
ToshaLPVault.sol:1113:60: Error: Visibility modifier must be first in
list of modifiers
ToshaLPVault.sol:1170:27: Error: Avoid to make time-based decisions
in your business logic
ToshaLPVault.sol:1184:66: Error: Avoid to make time-based decisions
in your business logic

Materchef.sol

Materchef.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
Materchef.sol:1067:94: Error: Code contains empty blocks

Tosha.sol

Tosha.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Tosha.sol:800:94: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

