
Project: USDBK777 Token
Platform: Polygon
Website: https://backters.com
Language: Solidity
Date: April 8th, 2022

https://backters.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 10

Audit Findings …………………………………………………………………………………… 11

Conclusion ………………………………………………………………………………………. 14

Our Methodology ………………………………………………………………………………... 15

Disclaimers ………………………………………………………………………………………. 17

Appendix

● Code Flow Diagram ……………………………………………………………………... 18

● Slither Results Log ………………………………………………………………………. 19

● Solidity static analysis ….……………………………………………………………….. 21

● Solhint Linter …………………………………………………………………….……….. 24

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the backters team to perform the Security audit of the
USDBK777 Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 8th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
USDBK777 Contract is a smart contract, having functions like operatorBatchTransfer,

operatorBatchMint, isOperatorFor, operatorBatchBurn, mint, send, transfer, burn, destroy,

addDefaultOperator, etc. The USDBK777 contract inherits the IERC20, ERC777,

SafeMath standard smart contracts from the OpenZeppelin library. These OpenZeppelin

contracts are considered community-audited and time-tested, and hence are not part of

the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
USDBK777 Token Smart Contract

Platform Polygon / Solidity

File USDBK777Token.sol

File MD5 Hash EADAFF7DA4DCB2C1E6F7CEEBAC46CF3A

Revised Code MD5 Hash A7EF57C65C556A43D70FFD7083917308

Audit Date April 8th, 2022

Revision Date May 27th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Token Name: USDBK

● Token Symbol: USDBK

● Decimals: 18

● Max Minting Limit: No limits

● ERC777 compliance

● ERC20 backward compatible

YES, This is valid.

Ownership Control:
● Owner can mint unlimited tokens

● Owner/Authorized person can add a default

operator

● Owner can destroy the smart contract

● Owner can burn someone else’s tokens

● Owner can freeze/unfreeze the token transfer

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does not contain owner control, which does make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 0 medium and 1 low and some very low level issues.
These issues are acknowledged by the dev team.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Not Set

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in USDBK777 Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the USDBK777 Token.

The USDBK777 Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used which is a good thing.

Documentation

We were given a USDBK777 Token smart contract code in the form of a file.The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. And the contract is straightforward

so it’s easy to understand its programming logic.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 destroy write Owner can

destroy entire
smart contract

No Issue

3 addDefaultOperator write Passed No Issue
4 isOperatorFor read Passed No Issue
5 getTransferEnabled read Passed No Issue
6 setTransferEnabled write Passed No Issue
7 send write Passed No Issue
8 transfer write Passed No Issue
9 burn write Passed No Issue

10 transferFrom write Passed No Issue
11 batchBalanceOf read Passed No Issue
12 operatorBatchTransfer write Passed No Issue
13 operatorBatchMint write No max minting

limits
Acknowledged
by dev team

14 operatorBatchBurn write Owner can burn
anyone’s tokens

Acknowledged
by dev team

15 operatorMint write No max minting
limits

Acknowledged
by dev team

16 operatorBurn write Owner can burn
anyone’s tokens

Acknowledged
by dev team

17 operatorTransferAnyERC20Token write Passed No Issue
18 name read Passed No Issue
19 symbol read Passed No Issue
20 decimals write Passed No Issue
21 granularity read Passed No Issue
22 totalSupply read Passed No Issue
23 balanceOf read Passed No Issue
24 send write Passed No Issue
25 transfer write Passed No Issue
26 burn write Passed No Issue
27 isOperatorFor read Passed No Issue
28 authorizeOperator write Passed No Issue
29 revokeOperator write Passed No Issue
30 defaultOperators read Passed No Issue
31 operatorSend write Passed No Issue
32 operatorBurn write Passed No Issue
33 allowance read Passed No Issue
34 approve write Passed No Issue
35 transferFrom write Passed No Issue
36 _mint internal Passed No Issue
37 _send internal Passed No Issue

38 _burn internal Passed No Issue
39 _move write Passed No Issue
40 _approve internal Passed No Issue
41 _callTokensToSend write Passed No Issue
42 _callTokensReceived write Passed No Issue
43 _spendAllowance internal Passed No Issue
44 _beforeTokenTransfer internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Owner (or an authorized operator) can mint unlimited tokens.

Minting unlimited tokens creates unhealthy tokenomics. It gives the owner an option to

generate more and more tokens, which may inflate the token value.

Resolution: We suggest setting a maximum limit for the token mint.

Status: This issue is acknowledged by the dev team.

(2) Owner (or an authorized operator) can burn anyone’s tokens

If the owner can burn anyone’s tokens, then it removes the decentralization. Token holders

can FUD that someone (owner) can burn their tokens.

Resolution: We suggest removing this or making token holders burn their own tokens.

Status: This issue is acknowledged by the dev team.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Infinite loop possibility

There are 3 functions where owners can input unlimited wallets, such as: batchBalanceOf,

operatorBatchTransfer, operatorBatchMint, operatorBatchBurn.

If there are lots of wallets used to execute those functions, then it might hit the block's gas

limit and may fail.

Resolution: We suggest setting a limit for the number of wallets can be used, or the

owner can acknowledge to use limited wallets only.

Status: This issue is acknowledged by the dev team.

Very Low / Informational / Best practices:

(1) No need for empty/default value assignment

All the boolean variables have default as “false”. So, no need to explicitly assign the value.

Although this does not raise any security or logical vulnerability, it is a good practice to

avoid setting empty/default values explicitly.

Status: This issue is acknowledged by the dev team.

(2) No need to use SafeMath library for solidity version over 0.8.0

The solidity version over 0.8.0 has an in-built overflow/underflow prevention mechanism.

And thus, the explicit use of SathMath library is not necessary. It saves some gas as well.

Status: This issue is acknowledged by the dev team.

Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We have observed some issues, and they are fixed / acknowledged by the

dev team. So, the smart contract can go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - USDBK777 Token

Slither Results Log

Slither log >> USDBK777Token.sol

Solidity Static Analysis
USDBK777Token.sol

Solhint Linter

USDBK777Token.sol

USDBK777Token.sol:227:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:240:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:252:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:269:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:281:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:377:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:400:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:426:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:1270:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:1291:18: Error: Parse error: missing ';' at '{'
USDBK777Token.sol:1384:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

