
Project: Yumi-Swap Protocol
Website: https://yumiswap.com
Platform: Cronos Network
Language: Solidity
Date: April 12th, 2022

https://yumiswap.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 19

Audit Findings …………………………………………………………………………………… 20

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 26

● Slither Results Log ………………………………………………………………………. 36

● Solidity Static Analysis…………………………………………………………………... 43

● Solhint Linter…….. ………………………………………………………………………. 56

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Yumi-Swap team to perform the Security audit of the
Yumi-Swap Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 12th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Yumi-Swap Contracts have functions like add and set pool, withdraw, deposit,

addPair, setPair, reward, mint, burn, swap, enter, leave, getPriorVotes, getChainId, etc.

Audit scope

Name Code Review and Security Analysis Report for
Yumi-Swap Protocol Smart Contracts

Platform Cronos Network / Solidity

File 1 MasterChef.sol

File 1 MD5 Hash 3C7EF2712DB28DA3BB3D9A6D84AC62B7

Updated File 1 MD5 Hash 05EDAEE91DE06EDE5D013B625161463D

File 2 SwapMining.sol

File 2 MD5 Hash D6AC8FFDE07EB05014645D39A6EDEAD9

Updated File 2 MD5 Hash 2B2D1195B4AD5A48BDE770C38244AF53

File 3 SyrupBar.sol

File 3 MD5 Hash 08028B372959A0E82AA650B23EFF14D4

Updated File 3 MD5 Hash 2F5CF6D4112838680BAD677E859240AD

File 4 MockToken.sol

https://cronoscan.com/address/0x07EF5461353fFb939fA18E177265D57B63854b80#code
https://cronoscan.com/address/0xc726cAEfe629b66E294B73a152D26Ff68B7bB60B#code
https://cronoscan.com/address/0xa421ED18B3Da3b9833d4D71D57FEC2F69C502466

File 4 MD5 Hash 9D1DB94665C7D4C111645D20B8A0CCD6

File 5 Factory.sol

File 5 MD5 Hash A417A902F34E26F8F66B65C85A4C1CF6

Updated File 5 MD5 Hash F85C21A8D2EA2DC3B6C0DE138768507B

File 6 Pair.sol

File 6 MD5 Hash 7B1C70F7F9FADE20D2732C47AB2F18E1

File 7 xYUMI.sol

File 7 MD5 Hash 01E7908C3D8965C736E88F0D2ED65EC4

Updated File 7 MD5 Hash 05FF07C65E901C4B159BC547C88ECE4E

File 8 YumiToken.sol

File 8 MD5 Hash B301957E808A5C6BCDC3279116736685

Updated File 8 MD5 Hash F01C1B3A89799FC208FEBD0D73E32776

File 9 LakeOfYumi.sol

File 9 MD5 Hash CF0146DD5B80F075FD8D9973E5916DB4

File 10 Multicall.sol

File 10 MD5 Hash B31A5401C236F10109672BC3D903C9DA

Updated File 10 MD5 Hash CD78A297F742B45105931F70C0458053

File 11 FeeSharingPool.sol

File 11 MD5 Hash B5CDD3C64337EFA9B0A4638D1B98F9CC

File 12 Oracle.sol

File 12 MD5 Hash 3F75D4A26F5FA909AFB50C4FD1B5D080

File 13 Router.sol

File 13 MD5 Hash 8476A37A0A5B9F0CA875E7D2259C305F

Audit Date April 12th,2022

Revise Audit Date July 28th,2022

https://cronoscan.com/address/0x367428e6e38fc9fb4dF9cBf32d639fC6c61f630a
https://cronoscan.com/address/0x180031622Db6e99EbB4ef659544b978590e5E0FA
https://cronoscan.com/address/0x3c082Aab00043F34e40C68aE1676A49aCCbEd35D
https://cronoscan.com/address/0xfE208e16698A92994a2C34c157ce50589ee2d64d
https://cronoscan.com/address/0x4af3de8d93a56C9f553e6c86B71D8EaC5Ba93174

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 MasterChef.sol
● Maximum Cake per Sec: 10 Quintillion

● Yumi Maximum Supply: 100 Septillion

YES, This is valid.

File 2 SwapMining.sol
● Swap Mining contract has functions like: setPair,

setYumiswapPerSecond, addWhitelist, etc.

YES, This is valid.

File 3 SyrupBar.sol
● Name: YumiSwapBar Token

● Symbol: SYRUP

● SyrupBar used for YUMI staking.

YES, This is valid.

File 4 MockToken.sol
● Decimals: 18

YES, This is valid.

File 5 Factory.sol
● YumiswapFactory contract has functions like:

allPairsLength, expectPairFor, createPair, etc.

YES, This is valid.

File 6 Pair.sol
● Name: Yumiswap LPs

● Symbol: YUMI-LP

● Decimals: 18

● Minimum Liquidity: 1000

YES, This is valid.

File 7 xYUMI.sol
● Name: Yumi Staking Token

● Symbol: xYUMI

● Decimals: 18

YES, This is valid.

File 8 YumiToken.sol
● Name: YumiSwap Token

● Symbol: YUMI

● Decimals: 18

YES, This is valid.

File 9 LakeOfYumi.sol
● LakeOfYumi contract has functions like: convertMultiple,

setDevAddr, bridgeFor, etc.

YES, This is valid.

File 10 Multicall.sol
● Multicall contract has multiple read-only function calls.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 13 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Yumi-Swap Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Yumi-Swap Protocol.

The Yumi-Swap Protocol team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Yumi-Swap Protocol smart contract code in the form files and cronos

blockscout web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://yumiswap.com which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://yumiswap.com

AS-IS overview

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 updateMultiplier write access only Owner No Issue
7 poolLength external Passed No Issue
8 add write Critical operation

lacks event log
Refer Audit

Findings
9 set write Critical operation

lacks event log
Refer Audit

Findings
10 getMultiplier read Passed No Issue
11 pendingCake external Passed No Issue
12 massUpdatePools write Passed No Issue
13 updatePool write Critical operation

lacks event log
Refer Audit

Findings
14 deposit write Passed No Issue
15 withdraw write Passed No Issue
16 emergencyWithdraw write Passed No Issue
17 safeCakeTransfer internal Passed No Issue
18 setCakePerSecond external access only Owner No Issue
19 setEcoaddr write Passed No Issue
20 setReserveaddr write Passed No Issue

SwapMining.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 poolLength read Passed No Issue
7 addPair write Critical operation

lacks event log
Refer Audit

Findings
8 setPair write Critical operation

lacks event log
Refer Audit

Findings
9 setYumiswapPerSecond write access only Owner No Issue

10 addWhitelist write access only Owner No Issue

11 delWhitelist write access only Owner No Issue
12 getWhitelistLength read Passed No Issue
13 isWhitelist read Passed No Issue
14 getWhitelist read Passed No Issue
15 setHalvingPeriod write access only Owner No Issue
16 setRouter write access only Owner No Issue
17 setOracle write access only Owner No Issue
18 phase read Passed No Issue
19 phase read Passed No Issue
20 reward read Passed No Issue
21 reward read Passed No Issue
22 getYumiReward read Passed No Issue
23 massMintPools write Passed No Issue
24 mint write Critical operation

lacks event log
Refer Audit

Findings
25 onlyRouter modifier Passed No Issue
26 swap write access only Router No Issue
27 getQuantity read Passed No Issue
28 takerWithdraw write Critical operation

lacks event log
Refer Audit

Findings
29 getUserReward read Passed No Issue
30 getTotalUserReward read Passed No Issue
31 getPoolInfo read Passed No Issue
32 ownerWithdraw write Critical operation

lacks event log
Refer Audit

Findings
33 addBlacklist external access only Owner No Issue
34 removeBlacklist external access only Owner No Issue
35 safeYumiTransfer internal Passed No Issue

SyrupBar.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue

15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mint write access only Owner No Issue
21 burn write access only Owner No Issue
22 safeCakeTransfer write access only Owner No Issue
23 delegates external Passed No Issue
24 delegate external Passed No Issue
25 getCurrentVotes external Passed No Issue
26 delegateBySig external Passed No Issue
27 getPriorVotes external Passed No Issue
28 _delegate internal Passed No Issue
29 _moveDelegates internal Passed No Issue
30 _writeCheckpoint internal Passed No Issue
31 safe32 internal Passed No Issue
32 getChainId internal Passed No Issue

MockToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write Passed No Issue
3 owner read Passed No Issue
4 onlyOwner modifier Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 getOwner external Passed No Issue
8 name read Passed No Issue
9 decimals read Passed No Issue

10 symbol read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 allowance write Passed No Issue
15 approve write Passed No Issue
16 transferFrom write Passed No Issue
17 increaseAllowance write Passed No Issue
18 decreaseAllowance write Passed No Issue
19 mint write access only Owner No Issue
20 _transfer internal Passed No Issue
21 _mint internal Passed No Issue
22 _burn internal Passed No Issue
23 _approve internal Passed No Issue
24 _burnFrom internal Passed No Issue

Factory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 expectPairFor read Passed No Issue
4 createPair external Passed No Issue
5 setFeeTo external Passed No Issue
6 setFeeToSetter external Passed No Issue

Pair.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _mint internal Passed No Issue
3 _burn internal Passed No Issue
4 _approve write Passed No Issue
5 _transfer write Passed No Issue
6 approve external Passed No Issue
7 transfer external Passed No Issue
8 transferFrom external Passed No Issue
9 permit external Passed No Issue

10 getReserves read Passed No Issue
11 _safeTransfer write Passed No Issue
12 initialize external Passed No Issue
13 _update write Passed No Issue
14 _mintFee write Passed No Issue
15 mint external Passed No Issue
16 burn external Passed No Issue
17 swap external Passed No Issue
18 skim external Passed No Issue
19 sync external Passed No Issue

xYUMI.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue

6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 stakedTime read Passed No Issue
21 canWithdraw read Passed No Issue
22 setDelayToWithdraw external Passed No Issue
23 enter write Critical operation

lacks event log
Refer Audit

Findings
24 leave write Critical operation

lacks event log
Refer Audit

Findings
25 YUMIBalance external Passed No Issue
26 xYUMIForYUMI external Passed No Issue
27 YUMIForxYUMI external Passed No Issue
28 burn write Passed No Issue
29 mint write Passed No Issue
30 transferFrom write Passed No Issue
31 transfer write Passed No Issue
32 _initDelegates internal Passed No Issue
33 delegates external Passed No Issue
34 delegate external Passed No Issue
35 delegateBySig external Passed No Issue
36 getCurrentVotes external Passed No Issue
37 getPriorVotes external Passed No Issue
38 _delegate internal Passed No Issue
39 _moveDelegates internal Passed No Issue
40 _writeCheckpoint internal Passed No Issue
41 safe32 internal Passed No Issue
42 getChainId internal Passed No Issue
43 setAdmin write Passed No Issue

YumiToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue

3 name read Passed No Issue
4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only

Owner
No Issue

15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mintFor write access only

Owner
No Issue

21 mint write access only
Owner

No Issue

22 delegates external Passed No Issue
23 delegate external Passed No Issue
24 delegateBySig external Passed No Issue
25 getCurrentVotes external Passed No Issue
26 getPriorVotes external Passed No Issue
27 _delegate internal Passed No Issue
28 _moveDelegates internal Passed No Issue
29 _writeCheckpoint internal Passed No Issue
30 safe32 internal Passed No Issue
31 getChainId internal Passed No Issue

LakeOfYumi.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 onlyAuth modifier Passed No Issue
7 addAuth external access only Owner No Issue
8 revokeAuth external access only Owner No Issue
9 setAnyAuth external access only Owner No Issue

10 setBridge external access only Owner No Issue

11 setDevCut external access only Owner No Issue
12 setDevAddr external access only Owner No Issue
13 bridgeFor read Passed No Issue
14 onlyEOA modifier Passed No Issue
15 convert external access only Auth No Issue
16 convertMultiple external access only Auth No Issue
17 _convert internal Passed No Issue
18 _convertStep internal Passed No Issue
19 _swap internal Passed No Issue
20 _toYUMI internal Passed No Issue
21 getAmountOut internal Passed No Issue

Multicall.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 aggregate write Passed No Issue
3 getEthBalance read Passed No Issue
4 getBlockHash read Passed No Issue
5 getLastBlockHash read Passed No Issue
6 getCurrentBlockTimestamp read Passed No Issue
7 getCurrentBlockDifficulty read Passed No Issue
8 getCurrentBlockGasLimit read Passed No Issue
9 getCurrentBlockCoinbase read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for:

MasterChef.sol
● add

● set

● updatePool

xYUMI.sol
● enter.

● leave

SwapMining.sol
● addPair

● setPair

● mint

● ownerWithdraw

● takerWithdraw

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

(1) Unused variable: MasterChef.sol.
prevAllocPoint has been defined but not used anywhere.

Resolution: We suggest removing unused variables.

(2) Use the latest solidity version: - YumiToken.sol, MockToken.sol, Syrupbar.sol,
xYUMI.sol
Using the latest solidity will prevent any compiler-level bugs.

.

Resolution: We suggest using the latest solidity version.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● updateMultiplier: Masterchef owner can update multiplier number value.

● add: Masterchef owner can add a new lp to the pool.

● set: Masterchef owner can update the given pool's YUMI allocation point.

● setCakePerSecond: Masterchef owner can update cake token reward per second,

with a cap of max cake per second.

● mint: SyrupBar owner can create `_amount` token to `_to` by MasterChef owner.

● burn: SyrupBar owners can burn an amount from the address.

● safeCakeTransfer: SyrupBar owners can save cake transfer function, just in case if

rounding error causes pool to not have enough YUMIs.

● addPair: SwapMining owner can add new pair.

● setPair: SwapMining owner can update the allocPoint of the pool.

● setYumiswapPerSecond: SwapMining owner can set the number of yumi produced

by each second.

● addWhitelist: SwapMining owner can add new wallet address in whitelist.

● delWhitelist: SwapMining owner can remove wallet address from the whitelist.

● setHalvingPeriod: SwapMining owner can set halving period value.

● setRouter: SwapMining owner can set new router address.

● setOracle: SwapMining owner can set new oracle address.

● ownerWithdraw: SwapMining owner can withdraw amount from wallet address.

● addBlacklist: SwapMining owner can add wallet address in blacklist.

● removeBlacklist: SwapMining owner can remove wallet address from the blacklist.

● mintFor: YumiToken owner can create `_amount` token to `_to` by masterchef

owner.

● mint: YumiToken owner can mint value from owner wallet.

● addAuth: LakeOfYumi owner can add a new auth wallet address.

● revokeAuth: LakeOfYumi owner can remove auth wallet address.

● setAnyAuth: LakeOfYumi owner can set anyAuth to true and allows anyone to call

functions protected by onlyAuth.

● setBridge: LakeOfYumi owner can set bridge address.

● setDevCut: LakeOfYumi owner can set dev cut amount.

● setDevAddr: LakeOfYumi owner can set dev address.

● convert: LakeOfYumi auth can convert token value.

● convertMultiple: LakeOfYumi auth can convert multiple token values.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Yumi-Swap Protocol

MasterChef Diagram

SwapMining Diagram

SyrupBar Diagram

MockToken Diagram

Factory Diagram

Pair Diagram

xYUMI Diagram

YumiToken Diagram

LakeOfYumi Diagram

Multicall Diagram

Slither Results Log

Slither log >> MasterChef.sol

Slither log >> SwapMining.sol

Slither log >> SyrupBar.sol

Slither log >> MockToken.sol

Slither log >> Factory.sol

Slither log >> Pair.sol

Slither log >> xYUMI.sol

Slither log >> YumiToken.sol

Slither log >> LakeOfYumi.sol

Slither log >> Multicall.sol

Solidity Static Analysis
MasterChef.sol

SwapMining.sol

SyrupBar.sol

MockToken.sol

Factory.sol

Pair.sol

xYUMI.sol

YumiToken.sol

LakeOfYumi.sol

Multicall.sol

Solhint Linter

MasterChef.sol

MasterChef.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement
MasterChef.sol:18:25: Error: Use double quotes for string literals
MasterChef.sol:77:29: Error: Use double quotes for string
literalsMasterChef.sol:836:38: Error: Use double quotes for string
literals
MasterChef.sol:837:40: Error: Use double quotes for string
literalsMasterChef.sol:860:47: Error: Use double quotes for string
literals
MasterChef.sol:975:17: Error: Avoid to make time-based decisions in
your business logic

SwapMining.sol

SwapMining.sol:2655:40: Error: Use double quotes for string literals
SwapMining.sol:2723:29: Error: Use double quotes for string literals
SwapMining.sol:2723:47: Error: Use double quotes for string literals
SwapMining.sol:2838:17: Error: Avoid to make time-based decisions in
your business logic
SwapMining.sol:2960:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SwapMining.sol:3049:34: Error: Avoid to make time-based decisions in
your business logic

SyrupBar.sol

SyrupBar.sol:776:29: Error: Use double quotes for string literals
SyrupBar.sol:776:47: Error: Use double quotes for string literals
SyrupBar.sol:891:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1013:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SyrupBar.sol:1158:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1300:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

MockToken.sol

MockToken.sol:728:40: Error: Use double quotes for string literals
MockToken.sol:730:61: Error: Use double quotes for string literals

MockToken.sol:753:38: Error: Use double quotes for string literals
MockToken.sol:779:54: Error: Code contains empty blocks

Factory.sol

Factory.sol:358:36: Error: Constant name must be in capitalized
SNAKE_CASE
Factory.sol:363:29: Error: Variable name must be in mixedCase
Factory.sol:373:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Factory.sol:378:27: Error: Use double quotes for string literals
Factory.sol:429:29: Error: Avoid to make time-based decisions in your
business logic
Factory.sol:429:46: Error: Use double quotes for string literals

Pair.sol

Pair.sol:283:5: Error: Function name must be in mixedCase
Pair.sol:356:37: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:356:44: Error: Use double quotes for string literals
Pair.sol:357:37: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:357:46: Error: Use double quotes for string literals
Pair.sol:358:36: Error: Constant name must be in capitalized
SNAKE_CASE
Pair.sol:363:29: Error: Variable name must be in mixedCase
Pair.sol:373:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Pair.sol:378:27: Error: Use double quotes for string literals

xYUMI.sol

xYUMI.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
xYUMI.sol:536:94: Error: Code contains empty blocks
xYUMI.sol:722:57: Error: Avoid to make time-based decisions in your
business logic
xYUMI.sol:751:35: Error: Avoid to make time-based decisions in your
business logic
xYUMI.sol:783:5: Error: Function name must be in mixedCase
xYUMI.sol:796:5: Error: Function name must be in mixedCase
xYUMI.sol:945:17: Error: Avoid to make time-based decisions in your
business logic
xYUMI.sol:1067:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

YumiToken.sol

YumiToken.sol:3:1: Error: Compiler version >0.6.6 does not satisfy
the r semver requirement
YumiToken.sol:18:25: Error: Use double quotes for string literals
YumiToken.sol:776:47: Error: Use double quotes for string literals
YumiToken.sol:891:17: Error: Avoid to make time-based decisions in
your business logic
YumiToken.sol:1013:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

LakeOfYumi.sol

LakeOfYumi.sol:4:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
LakeOfYumi.sol:545:5: Error: Function name must be in
mixedCaseLakeOfYumi.sol:568:5: Error: Function name must be in
mixedCase
LakeOfYumi.sol:585:5: Error: Function name must be in mixedCase
LakeOfYumi.sol:726:31: Error: Avoid to use tx.origin
LakeOfYumi.sol:911:31: Error: Use double quotes for string literals
LakeOfYumi.sol:912:50: Error: Use double quotes for string literals

Multicall.sol

Multicall.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.
Multicall.sol:33:21: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

