@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: AKIMME VIRTUAL LAND
SMART CONTRACT

Website: https://www.akimme.io

Platform: Ethereum

Language: Solidity

Date: March 3rd, 2023

https://www.akimme.io

Table of contents

IO UG ON .o e 3
Project BackgroUNd ... 4
AU S0P .o e 4
Claimed Smart Contract Featurescoiiiiiiii e 5
AUAIt SUMMIAIY o et 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTALION ... 8
USE Of DEPENAENCIESveieiiii ettt aenens 8
ASIS OVEIVIEW ..o 9
Severity DefinitionNS ... 10
AUt FINAINGS ..o et e 11
@7 o 11T o T 16
(@ TF] o \V/ =11 0 oo (o] oo | VAP 17
IS AIMETS .. e e 19
Appendix
® Code FIOW Diagramouii i e 20
o Slither RESUIS LOguiniiiii e 21
e Solidity static @analysiso 23
® SOININt LiNter .o e 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

Introduction

EtherAuthority was contracted by the AKIMME Metaverse Team to perform the Security
audit of the AKIMME Virtual Land NFT smart contract code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on March 3rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e AKIMME is a metaverse on the Ethereum blockchain that aims to create a new and
exciting business frontier for progressive thinkers. The metaverse has matured into
a prolific technological breakthrough that may power several commercial prospects
with a strategic focus.

e AKIMME will provide lucrative investment opportunities in the form of virtual land.
Both companies and individual investors will have the chance to purchase this
virtual land and profit from it by either reselling, auctioning it, or developing a virtual
office space for their own use.

e The smart contract is for a Metaverse Virtual Land (NFT) ERC721 on the Ethereum

Blockchain.
Audit scope
Name Code Review and Security Analysis Report for
AKIMME VIRTUAL LAND Smart Contract
Platform Ethereum / Solidity
File AKIMME_Virtual_Land_NFT.sol
File MD5 Hash 1B3ECE6BA9DF61CB2AFC2FE8907718F3

Updated File MD5 Hash | b8982b153f1d820572abc1cc932e03a6

Audit Date March 3rd, 2023

Revised Audit Date March 9th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Owner Specifications: YES, This is valid.

e Pause/unpause sale status can be set by the Owner.

e NFTs can be pre-minted by the owner.

e NFT Locking Period Control can be updated by the
owner.

e The presale start time, end time can be set by the
owner.

e |n the admin panel, the developer has provided a lock
up period with owner access.

e All funds should be transferred to the COLD WALLET
ledger in the Admin ledger.

e Admin can change the price of the plot and input the

number of NFTs each wallet is allowed to mint .

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity based smart contracts
are “Secured”. This Virtual Land NFT smart contract does contain owner control, which
does not make it fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 0 low and some very low level issues.

All the issues have been resolved / acknowledged in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the AKIMME VIRTUAL LAND NFT are part of its logical algorithm. A library
is a different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the AKIMME Virtual Land NFT smart contract.

The AKIMME Metaverse team has not provided scenario and unit test scripts, which would
have helped to determine the integrity of the code in an automated way. However, all the

tests have been performed in a manual way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a AKIMME Virtual Land Smart Contract code in the form of a file. The hash

of that code is mentioned above in the table.
As mentioned above, code parts are well commented and the logic is straightforward. So
it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.akimme.io which

provided rich information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://www.akimme.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [tokenURI read Passed No Issue
3 setTokenURI internal Passed No Issue
4 burn internal Passed No Issue
5 | onlyOwner modifier Passed No Issue
6 [ispausecheck modifier Passed No Issue
7 | Checklocking modifier Passed No Issue
8 | CheckPreSale modifier Passed No Issue
9 | isUserOneByOne read Passed No Issue
10 | isUserTwoByTwo read Passed No Issue
11 [isUserThreeByThree read Passed No Issue
12 | PauseSale write access only Owner No Issue
13 | UnPauseSale write access only Owner No Issue
14 | Premint write access only Owner No Issue
15 | setApprovalForAll write Passed No Issue
16 | approve write Passed No Issue
17 | UpdatePrice write access only Owner No Issue
18 | UpdatePlotQtyMax write access only Owner No Issue
19 | updateLockinPeriod write access only Owner No Issue
20 | setPreSaleStartTime write access only Owner No Issue
21 | isWhitelisted read Passed No Issue
22 | updateRoot write Passed No Issue
23 | transferFrom write Passed No Issue
24 | Buy external Passed No Issue
25 | BuyPublically external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity
(1) Logical vulnerability:

In the buy function, msg.value does not get validated with the price of a given plot type.
The user can buy it for a very small amount and the contract transfers the actual plot type

price to the deposit address.

Resolution: The msg.value needs to be validated for the respective plot type, as well as
the minimum price for buy.

Status: This issue is fixed in revised contract code.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Compilation error:

Resolution: We suggest correcting the code.

Status: This issue is acknowledged in revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

No low severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Compile warning:
library Math:

Warning: Variable is shadowed in inline assembly by an instruction of the same name.

Warning: Unnamed return variable can remain unassigned. Add an explicit return with

value to all non-reverting code paths or name the variable.

Resolution: Pass return data variable name to avoid this warning.

Status: This issue is acknowledged in revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Spelling mistake:

Spelling mistake in function comments.

1 - “tranfer” word should be “transfer”

updateLockinPeriod(_LockingPeriodForsSale)

ispausecheck
onlyOwner

LockingPeriodForSale = _LockingPeriodForSale;
LockinuUpdate(LockingPeriodForSale, "Locking Period updated");

2 - “Validiation” word should be “Validation”

transferFrom(
from,
to,
tokenId
ispausecheck Checklocking {
(
_isApprovedOrOwner(_msgSender(), tokenId),
"ERC721: cal[DEPOSITE_ADDRESS]ler is not token owner or approved"
) ;

3,4 - “Fucntion” word should be “Function”.

Buy (
to,
[] _tokenURI,

_plottype,
_root,
[] proof
ispausecheck CheckPreSale {
(to != (@), "to is the zero address");

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BuyPublically(
to,

[]1 _tokenURI,
_plottype
ispausecheck {

(to != (@), "to is the zero address");

Resolution: Correct the spelling.

Status: This issue is fixed in revised contract code.

(3) Unused event:

There are some events that are defined but not used in code.
Events are:

e UpdateMerkel

e \Validplot

Resolution: We suggest removing unused events.

Status: This issue is fixed in revised contract code.

(4) Missing require error messages:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

There is one place in the Math library where require has been used for validation, but the

error message has not been mentioned.

Resolution: We suggest adding an error message.lt is helpful to get failure of the
transaction.

Status: This issue is fixed in revised contract code.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e PauseSale: Owner can set a pause sale status true.

e UnPauseSale: Owner can set a pause sale status false.

e Premint: Owner can pre mint tokens.

e UpdatePrice: Owner can update the price of the land.

e UpdatePlotQtyMax: Owner can update the qty of lands.

e updatelLockinPeriod: Owner can update lockin period control for transfer NFT.

e setPreSaleStartTime: Owner can set the presale start time period.

The purpose of having these functions is firstly, this is a NFT contract. The Locking Period
is there to prevent the floor price from dropping and protecting investors and the project as
a whole. The functions such as the price and number of NFTs a wallet is able to mint

should be decided by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file and we have used all possible tests
based on given objects as files. We have observed 1 critical issue and some informational
severity issues in the Virtual Land NFT smart contract. These issues have been resolved

in the revised code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - AKIMME METAVERSE VIRTUAL LAND

SMART CONTRACT

(©) whitaListnFT
ERCTZ1URISTOrage

anCounters for Counters. Counter

< address Depositaddress

£l
3
2
<

0oo00Cc000000
.
2
g gg
“
<
o
2
m
3

=1

uint THREE_BY _THREE_QTY
i IFor:

256 LockingPeri Sale

@ e
© Qumax()
< aming) werl
Sl o @) i=rcT21Recoiver|
O ceilDivi)
© QmuiDIve) © onERC721Received() © address=>piothax twobytwo
© Qsart() © acdress TwoByTwolndex

© Qlog2() © address=>piotax thresbytheee
< Quegion o ThreeBy Threelndex

= SUog2S60) __constructor__()

QsUs=rOneByOne()

©® QusUserThreeSyThree)

® PauseSale()

© UnPauseSale()

® Premint()

setApprovalFor Al

approvel)

® UpdatePrice()
UpcatePiotCtyhat)

® updatel_ackinPeriod()

= updateRoot()

® transterFromi)
BBuy()

® &BuyPubkcally()

for Counters. Counter

!
MerkieFrool
@ \vi (€) ERcT21URISorage
< QuverifyO
© QvesityCaldatal) @ Counters ERC721
© QprocessProofi)
< QuprocessProofCaldata) < Qeurrer() ENSirings for pin23e
< QumutiProotVerity() “ increment() O uint2S6==string _tokenURis
© amuttiProofVerify Calldatal) < decrement() e~
< SprocessMutPrast() < resetl) uokenURI()
© QprocessMuliroofCalldatal) _setTokenURIO)
< Zpurn()

= o _hashPar()
- Q_efficientHash()
! \

/) @ ercr21

Gontext
’ ERC165
r IERGCT21
IERCTZ 1Metadata

snAddress for address
anStrings for YiniZ56

o
a
' O uint2S6==address _t als
' O adcress=-mapping address=xbool _operator Approvals
' © _constructor__(}
] & Qsupportsinterface()

| ® Qpalanceol)

! for wint256 ® Qsymbol)
) © SitokenURI0)
h @ a_baselRI)
i ® approvel)
! © QgetApproved()
| © setApprovaForAl()
| © QsApprovedForAllD
| @ transferFrom()
! < _safeTranster()
) < @ _ownerofty
s © Qexists()
< Qs ApProvedorowner)
< _safeMint()

' s gl
N , < _setApprovalFor All()
L7 © Q_requireiinted() ™
s B _checkOnERC721Received()
© _beforeTokenTransfer() ™
< aflerTokenTransfer()

!
for address \

\ .
3 s @ Address \ \ 3
\ L 4 \
@ Strings & QusContract() | \ @ IERCT 2 1Metadatal
@& context < sendValue() \
O bytesi6_svmBoLs >) iERGT21
O uints _ADDRESS_LENGTH == 5 < functionCallEhValus() Py Y——
© QuoStringD S Q_megData0) < functionDele: ecaé) | © Qaymbok)
e T Tl) el T arGE) | \ lokenURK)
< QuerifycalResul() "
= Q_revert |

© ERC165

IERC165
® Qsupportsinterface()

1 -
| t : IERCT21
| IERC165
® QalanceOf()
| ® Qownerof()
® transferFromd)
© approvel)
® setApprovalForAl()
e

a proved
© QsApprovedForAl()

© Qsupportsimerface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> AKIMME_Virtual_Land_NFT.sol

(WhiteListNFT.s
) (White L'lS‘tL

(WhiteListNFT 2 7
t.l‘tlcll-,-' used before ara n: retval == IERC721Rece

).reason (WhitelListNFT. =)" in ERC721._che kl-lERC 21
) potentially used befor eaclaration: reason.le \

reason (WhiteListNFT.)i ._checkOnERC721
tentially used be e ration: art(uint256,uint25

claration-usag

Reentrancy in WhitelL istNFT.Buy(address,string[],uint256,byte 2532[]) (WhiteListNFT.so
Externa £
ess.call{value: ONE_BY_ONE_| H) (whiteListNFT.sol#
ess.call{value: TWO_BY_TWO_PRICE}() (WhiteListNF
= I—REE Er' _FREE PRICE}() (WhitelListN
{WhiteListNFT
'.-:rERC?ElR»:-: _r’s-;E-:r-:»:rl),from,tokenId,d) (WhiteListNFT.sol#1574-1594)
External ca = =
- [sentl) ¢ i 255 . Ca value: ONE_BY_ONE_PRICE}{) (WhiteListNFT
- (sent2 z i ess.call{value: TWO_BY_TWO_PRICE}{) (Wh 1t L'LS‘tl\
- (sent3 ita ess.call{value: THREE_BY THREE_PRICE}() {
State v written aft»?r ‘tl'»r call(s):
- _setT -k»‘rLRIIﬁ tokenId 1) (WhiteListNFT.sol#2354)
- _tokenURIs[toke enURI (Whitel istNFT.sol#1
Reentrancy in 'r.ll'i‘t—:Lis‘tlF_.Pr—:r’irt'_e-:-:r—:ss_.strir;} ':'n‘f|'i‘t=‘LiS‘tl\:_.5-31.#:14'3—:155:}:
External calls:
- safeMint(user ,hewlte) (WhiteListNFT.sol#2158)
d(_msgSender(),from,tokenId,data) (WhiteListNFT.sol#1574-1594)

Event emitte cTt er tI (s)
- Pr»‘rll tC r|.l. 2 ess ,newlte ihiteL istNFT.sol#2154
Reference: b ytic/slither/wik etector-Documentation#reentrancy-vulnerabilities-2

Whitel istNFT.se tP|“Ccl»th|t ime{uint256,uint256) (WhiteListNFT.sol#2247-2268) uses timestamp for comparisons

- block.timestamp,Presale Start time should bhe greator then current time) (WhiteL

Referenc https://gi .comfcrytic/slither/wiki/Detector-Documentation#block-timestamp

Math.mulDiv(uint2 56,uint256,uint256) (whiteLi NFT.sol#101-181) uses assembly
- INLINE AS)
- INLINE AS
- INLINE ASM {(
Strings.toString(uint256) (NFT. 433-453) uses assembly
- INLINE ASM i‘t L'LS‘tl\
- INLINE ASM (White L'LS‘tl\ c
Address._reve Z es,s5tring) (. #80 ’4) uses assembly

) {WhiteListNFT.sol#1567-1598) uses assembly

I-‘»:rkl-:Pr-:-:T‘_e‘rT" entHash{byte rtes32) (W ol 1stNFT.s0l#196 74) uses assembly
- INLINE ASM (Whitel tstNFT.
https i rcry

(ispause == false
crytic/slither,

WhitelL istNFT.Buy(bytes32,by 32[]) (WhiteListNFT.sol4 2384) has costly operations inside a lo
tok |'I: . ;)
whitel istNFT.BuyPublic 511 at ,uint256) h1 istNFT.s0l#2387-2449) has costly operations inside a loop:
- (whi :

ations-inside-a-loop

(Whitel isENFT. 1#4 7-481
/slither/wiki/Detecto

version”@.8 Whi istN #5) allows old versions
.8 1s not e i
e: https b c/slither/w iki/Detector-Documentation#incorrect-versions-of-solidity

vel call in A e ess,uint2 {WhiteListNFT.
(White LiS‘tl__

) v ((Whitel istN
tionSta ‘t'L- ca UI r rtes,) _-.'| itel istNF
target.staticca a) (white NFT.s0l#718)
teCall(. ,5tri _..ll ite ListNF
ccess,returnd i 7
in wh 1t L'LS‘U__

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Struct WhiteListNF ;)i in C rds
WhiteListN '1 W = NFT.) is not in mixedCase
is‘tlF'.LrPeLs 5 (e FT 3 . is not 1.r 1
WhitelListNFT.Premint ,s5trin (W LstNFT. 43-2 i in ~mixedCase
ter WhitelListNFT.Premin . . = ite L'LS‘tl\ 43) in mixedCase
- Whitel istNFT. in 2s s, |-(en_uri (WhiteL istNF in mixedCase
Whitel istNFT. - (ui) (WhitelListNFT 211) 1 i
ar WhitelList atePrice(ui ,ui ,ui Y (itel istNF
ar WhitelL iStNFT. atePri i 6, Ui B, Ui Y 0_PRICE (White L istNF ¢
Whitel istNFT. atePri i i i (\ i : is not in mixedCas
WhiteListN =p ax{uin 6,Uin 56, in) (Whi .50 : i i ixedCase
r WhiteListN T.Update ((uint256, N Y_ONE itel i) i ot 1in
- Whitel istNFT. sPlotQ ax{uin s 256, WO_BY QT . i ot in mix
ter WhiteListNFT. atePlo yMax{uint256,uint256,uint2 ._THREE_BY_THREE_ r-—(ln.'| itel istNFT.so 7) is not in mixedCas

=2 1]

w

[T =]

T = = e = = L = s = B
w

w

er WhitelListNFT.updateLockinPeriod{uint256). ckin 1 rSale (WhiteListNFT.sol#) is not in mixedCase
er Whitelist eSaleStartT Z 1 ,uin _Pr Start (Whitel istNFT) is not in mixedCase
ar WhitelL istNFT. 2 6, U1 reSa (WhiteListNFT) is not in mixedCase
- WhiteL istNFT. :)._ro (2 NFT. 1s not in mi
itel istNF y . L, Ui hitel istNFT.s¢)1 t in mixedCase
ter WhitelListNFT. . ,uint2 1= itel i is not in mixe
ter WhitelListNFT. . 1 ,uint2 . is not in mix
- Whitel istNFT. . ,ui ,by = -". 0) is not in mixedCase
WhiteListNFT. bl ic . ,ui . 3 2449) is n in mixedCase
- Whitel istNFT. bl 1ic ,strin ,ui _.JI ite L'LS‘tl\ .) is not in mi
el iStNFT. b y 1 ,ul) = (WhiteListNFT.so) is not in mi
N ess (Wh 1‘(Llstl F i
Whitel istNF
_BY_ONE_PRICE (Wwh 1t L'LS‘tL .s0l#1986) is not in mixedCase

e = = = = R T = = T = = I

TWO_BY_TWO_PRICE (WhiteListNFT.sol# 7) is not 1in I'"'L/—-.C.:S—
2 (White L'LS‘tl\-
qry {WhiteListNF
TY (WhiteListNFT 3
(White L'LS‘tl\ .) is not in r’l/.-Ccs»
rSale I'.-.ll'l NFT. : ») is not in mixedCase
_ hitel istNFT. i in mixedCase
eSaleStart (White Listl\ . is not in mixedCase
(W lt ListNFT. is not in mixedCase
itel istN is not in mixedCase
itel istNFT. is not in mixe
¢ {(WhitelList .)19) 1is net in

-solidity-naming-c ntions

ess,string[],uint256)

WhiteListNFT.so
0_ (WhiteListNFT.so
I—REE E\(_I—REE PRICE (WhiteListNF

s[to] += 1 '_..ll 1t.L15t
es[to] += batchSize _JI 1t L'LS‘tl\
_safe Iutl _) (WhitelListNF
hi

(Whitel istNFT.so
(WhiteL istNFT
okenURI (WhiteList
(WhiteListNFT.s
(WhiteListNFT.s
g eIndex.length - 1 (WhiteListNFT.sol#24

i
I3+ Il Q-
[=]==]

m @
0o A&

sol

1 (WhiteListNFT.sol#2443)

r-Documentation#state-variables-that-could-be-declared-constant
immutable

Ref ce: p 1 ic/slith ki ctor-Documentation#state-variables-that-could-be-declared- immutable
whitel istNFT.sol analyzed (14 contracts with 84 detectors), 124 result(s) found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

AKIMME_Virtual_Land_NFT.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

WhiteListNF T.BuyPublically(address,string[],uint256): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 2387:8:

Block timestamp:

Use of "block timestamp™: "block timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 2256:32:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior If return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 2320:33:

Gas & Economy

(Gas costs:

Gas requirement of function WhiteListNFT.BuyPublically is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 2387/:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Delete dynamic array:

The "delete” operation when applied to a dynamically sized array in Solidity
generates code to delete each of the elements contained. If the array is large,
this operation can surpass the block gas limit and raise an OOG exception. Also
nested dynamically sized objects can produce the same results.

more

Pos: 1/21:16:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas Limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas Limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 2415:12:

Miscellaneous

Constant/View/Pure functions:

WhiteListNFT.isWhitelisted(bytes32[].bytes32) : Is constant but potentially
should not be. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 2271:8:

Similar variable names:

WhiteListNFT.Buy(address,string[],uint256,bytes32,bytes32[]) : Variables have
very similar names "root" and "proof”. Note: Modifiers are currently not

considered by this static analysis.
Pos: 2329:34:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 2396:16:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the
same. If you want to remove the empty position you need to shift items
manually and update the "length" property.

more

Pos: 1721:16:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = O instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 233:35:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

AKIMME_Virtual_Land_NFT.sol

Error: Parse error: missing ';
Error: Par r: missing ';

AKIMME Virtual Land NFT.sol: 6:18: Error: S : missing
at v{v

AKIMME Virtual Land NFT.so0l:225:18: Error: ¢ ~or: missing
a1 v{v

AKIMME Virtual Land NFET. :245:18: Error: Par error: missing
2 v{v

AKIMME Virtual Land NFT.s0l:259:18: Error: Parse error:

at'{'_ - -

AKIMME Virtual Land NFT. :304: : Error:

at v{v

AKIMME Virtual Land NFT. : 3:18: Error: rror: missing
at v{v

AKIMME Virtual Land NFT.so0l:359:18: Error: r's ror: missing
21 v{v

AKIMME Virtual Land NFT. : :18: Error: £Se : missing
at v{v

AKIMME Virtual Land NFT. :408:18: Error: & : missing
at v{v

AKIMME Virtual Land NFT.sol:434: : Error: - error: missing
at l{l

AKIMME Virtual Land NFT.so0l:459:18: Error: se error: missing
at v_{v

AKIMME Virtual Land NFT.so0l:1427:18: Error: Pa error: missing

:1464:18: : Parse error: missing
'{'
AKIMME Virtual Land NFT. :1509:18: or: rse error: missing
21 v{v

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

