
Project: AKIMME VIRTUAL LAND
SMART CONTRACT

Website: https://www.akimme.io
Platform: Ethereum
Language: Solidity
Date: March 3rd, 2023

https://www.akimme.io

Table of contents

Introduction ……………………………………………………………………………………… 3

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 10

Audit Findings …………………………………………………………………………………… 11

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

Introduction
EtherAuthority was contracted by the AKIMME Metaverse Team to perform the Security
audit of the AKIMME Virtual Land NFT smart contract code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on March 3rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● AKIMME is a metaverse on the Ethereum blockchain that aims to create a new and

exciting business frontier for progressive thinkers. The metaverse has matured into

a prolific technological breakthrough that may power several commercial prospects

with a strategic focus.

● AKIMME will provide lucrative investment opportunities in the form of virtual land.

Both companies and individual investors will have the chance to purchase this

virtual land and profit from it by either reselling, auctioning it, or developing a virtual

office space for their own use.

● The smart contract is for a Metaverse Virtual Land (NFT) ERC721 on the Ethereum

Blockchain.

Audit scope

Name Code Review and Security Analysis Report for
AKIMME VIRTUAL LAND Smart Contract

Platform Ethereum / Solidity

File AKIMME_Virtual_Land_NFT.sol

File MD5 Hash 1B3ECE6BA9DF61CB2AFC2FE8907718F3

Updated File MD5 Hash b8982b153f1d820572abc1cc932e03a6

Audit Date March 3rd, 2023

Revised Audit Date March 9th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Owner Specifications:
● Pause/unpause sale status can be set by the Owner.

● NFTs can be pre-minted by the owner.

● NFT Locking Period Control can be updated by the

owner.

● The presale start time, end time can be set by the

owner.

● In the admin panel, the developer has provided a lock

up period with owner access.

● All funds should be transferred to the COLD WALLET

ledger in the Admin ledger.

● Admin can change the price of the plot and input the

number of NFTs each wallet is allowed to mint .

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This Virtual Land NFT smart contract does contain owner control, which
does not make it fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 0 low and some very low level issues.
All the issues have been resolved / acknowledged in the revised contract code.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the AKIMME VIRTUAL LAND NFT are part of its logical algorithm. A library

is a different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the AKIMME Virtual Land NFT smart contract.

The AKIMME Metaverse team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way. However, all the

tests have been performed in a manual way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a AKIMME Virtual Land Smart Contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are well commented and the logic is straightforward. So

it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.akimme.io which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://www.akimme.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 tokenURI read Passed No Issue
3 _setTokenURI internal Passed No Issue
4 _burn internal Passed No Issue
5 onlyOwner modifier Passed No Issue
6 ispausecheck modifier Passed No Issue
7 Checklocking modifier Passed No Issue
8 CheckPreSale modifier Passed No Issue
9 isUserOneByOne read Passed No Issue
10 isUserTwoByTwo read Passed No Issue
11 isUserThreeByThree read Passed No Issue
12 PauseSale write access only Owner No Issue
13 UnPauseSale write access only Owner No Issue
14 Premint write access only Owner No Issue
15 setApprovalForAll write Passed No Issue
16 approve write Passed No Issue
17 UpdatePrice write access only Owner No Issue
18 UpdatePlotQtyMax write access only Owner No Issue
19 updateLockinPeriod write access only Owner No Issue
20 setPreSaleStartTime write access only Owner No Issue
21 isWhitelisted read Passed No Issue
22 updateRoot write Passed No Issue
23 transferFrom write Passed No Issue
24 Buy external Passed No Issue
25 BuyPublically external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Logical vulnerability:

In the buy function, msg.value does not get validated with the price of a given plot type.

The user can buy it for a very small amount and the contract transfers the actual plot type

price to the deposit address.

Resolution: The msg.value needs to be validated for the respective plot type, as well as

the minimum price for buy.

Status: This issue is fixed in revised contract code.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Compilation error:

Resolution: We suggest correcting the code.

Status: This issue is acknowledged in revised contract code.

Low

No low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Compile warning:

library Math:

Warning: Variable is shadowed in inline assembly by an instruction of the same name.

Warning: Unnamed return variable can remain unassigned. Add an explicit return with

value to all non-reverting code paths or name the variable.

Resolution: Pass return data variable name to avoid this warning.

Status: This issue is acknowledged in revised contract code.

(2) Spelling mistake:

Spelling mistake in function comments.

1 - “tranfer” word should be “transfer”

2 - “Validiation” word should be “Validation”

3,4 - “Fucntion” word should be “Function”.

Resolution: Correct the spelling.

Status: This issue is fixed in revised contract code.

(3) Unused event:

There are some events that are defined but not used in code.

Events are:
● UpdateMerkel

● Validplot

Resolution: We suggest removing unused events.

Status: This issue is fixed in revised contract code.

(4) Missing require error messages:

There is one place in the Math library where require has been used for validation, but the

error message has not been mentioned.

Resolution: We suggest adding an error message.It is helpful to get failure of the

transaction.

Status: This issue is fixed in revised contract code.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● PauseSale: Owner can set a pause sale status true.

● UnPauseSale: Owner can set a pause sale status false.

● Premint: Owner can pre mint tokens.

● UpdatePrice: Owner can update the price of the land.

● UpdatePlotQtyMax: Owner can update the qty of lands.

● updateLockinPeriod: Owner can update lockin period control for transfer NFT.

● setPreSaleStartTime: Owner can set the presale start time period.

The purpose of having these functions is firstly, this is a NFT contract. The Locking Period

is there to prevent the floor price from dropping and protecting investors and the project as

a whole. The functions such as the price and number of NFTs a wallet is able to mint

should be decided by the owner.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed 1 critical issue and some informational

severity issues in the Virtual Land NFT smart contract. These issues have been resolved

in the revised code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - AKIMME METAVERSE VIRTUAL LAND

SMART CONTRACT

Slither Results Log
Slither Log >> AKIMME_Virtual_Land_NFT.sol

Solidity Static Analysis
AKIMME_Virtual_Land_NFT.sol

Solhint Linter

AKIMME_Virtual_Land_NFT.sol

AKIMME_Virtual_Land_NFT.sol:28:18: Error: Parse error: missing ';' at
'{'
AKIMME_Virtual_Land_NFT.sol:36:18: Error: Parse error: missing ';' at
'{'
AKIMME_Virtual_Land_NFT.sol:106:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:225:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:245:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:259:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:304:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:318:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:359:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:375:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:408:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:434:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:459:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:1427:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:1464:18: Error: Parse error: missing ';'
at '{'
AKIMME_Virtual_Land_NFT.sol:1509:18: Error: Parse error: missing ';'
at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

