@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: ARULSINGAM Token
Website: arulsingam-arsi.com
Platform: Binance Smart Chain
Language: Solidity

Date: March 21st, 2023

https://arulsingam-arsi.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 12
AUt FINAINGS oo e 13
@70 o T3 1017 T o 22
(@ 0] 1Y/ =1 1 T To [o] 0T) 23
DISCIAIMEIS ... e 25
Appendix
o Code FIoW Diagramououoiiii s 26
o Shther RESUIS LOGuiiiiii e 27
e Solidity staticanalysis ... 29
® SOININt LiNtEr oo 32

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the ARULSINGAM INVESTMENTS team to perform the
Security audit of the ARSI token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 21st, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The ARSI token supports a self-sufficient and self-reinforcing ecosystem that is
directly linked with their companies’ real estate assets.

e The ARSI token will facilitate all transactions within the ecosystem. Their real estate
portfolio will constantly generate rental income in FIAT currencies that will be
exchanged into ARSI by the team, therefore creating a steady demand for ARSI.

e ARSI is a BSC token that offers a multitude of various use cases for the real estate

sector and its community.

Audit scope
Name Code Review and Security Analysis Report for
ARSI Token Smart Contract
Platform BSC / Solidity
File ARULSINGAM.sol
File MD5 Hash C3C92CDE5CA5C78B24D09D4573F50A11

Revised Code MD5 Hash | A4306564FE38FA093EAG7A14A5A641D6

Smart Contract Code 0x18B07afB2e337A0F24107f8a8b253a831f3EBchE
Audit Date March 21st, 2023
Revision Date April 11th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x18B07afB2e337A0F24107f8a8b253a831f3EBcbE

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics: YES, This is valid.
e Name: ARULSINGAM
e Symbol: ARSI

e Decimals: 18

e Maximum Supply: 1 Billion

e Maximum amount for a transaction: 2% of the
maximum supply.

e Maximum tokens limit of a wallet: 4% of the

maximum supply.

Buy Fees:
e Developer Fees: 2%

e Marketing Fees: 1%
o Charity Fees: 1%

e Burn Fees: 1%

Sell Fees:
e Developer Fees: 2%
e Marketing Fees: 1%
e Charity Fees: 1%

e Burn Fees: 1%

Ownership Control: YES, This is valid.
e Trading status can be enabled by the owner.
e Automated Market Maker Pair address can
be set by the owner.
e Owner can exclude the specified account

from tax/Limits.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Authorized Owner Control:
e Authorized Owner can set the tax for buy fees
e Authorized Owner can set the tax for sales

fees.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 1 medium and 5 low and some very low level issues. And
We confirm that these issues are fixed / acknowledged in the revised smart contract

code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in ARSI Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the ARSI Token.

The ARSI Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an ARULSINGAM Token smart contract code in the form of a bscscan web

link. The hash of that code is mentioned above in the table.
As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website: https://arulsingam-arsi.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://arulsingam-arsi.com

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 checkOwner internal Passed removed
7 transferOwnership internal Passed removed
8 [name read Passed No Issue
9 | symbol read Passed No Issue
10 | decimals read Passed No Issue
11 | totalSupply read Passed No Issue
12 | balanceOf read Passed No Issue
13 | transfer write Passed No Issue
14 | allowance read Passed No Issue
15 | approve write Passed No Issue
16 | transferFrom write Passed No Issue
17 | increaseAllowance write Passed No Issue
18 | decreaseAllowance write Passed No Issue
21 | transfer internal Passed No Issue
22 | mint internal Passed No Issue
23 | burn internal Passed No Issue
24 | approve internal Passed No Issue
25 | beforeTokenTransfer internal Passed No Issue
26 | afterTokenTransfer internal Passed removed
27 | approveMax write Passed No Issue
28 | handleTax write Passed removed
29 | transfer internal Passed removed
30 [enabledTrading external access only Owner No Issue
31 | setlsTimelockExempt external Passed removed
32 | setAutomatedMarketMak | external Passed No Issue
erPair
33 | cooldownEnabled write access only Owner removed
34 | addToWhitelist write access only Owner removed
35 | removeFromWhitelist write access only Owner removed
36 | setTxLimit write Passed removed
37 | setMaxTxPercent_base1 write Passed removed
000
38 | setMaxWalletPercent_ba write Passed removed
se1000
39 [setlsTxLimitExempt write Passed removed
40 | excludeFromMaxWalletLi write Passed removed
mit

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

41 | includelnMaxWalletLimit write Passed removed
42 | swapBackSettings write access only Authorized removed
43 | setBuyFees write access only Authorized No Issue
44 | setSellFees write access only Authorized No Issue
45 | setFeeReceivers write access only Authorized removed
46 | isWhitelisted read Passed removed
47 | buyFees read Passed removed
48 | sellFees read Passed removed
49 | feeWallets read Passed removed
50 | multiTransfer external Passed No Issue
51 | multiTransfer fixed external Passed No Issue
52 | clearStuckBalance write Owner can drain token Refer to audit

balance of the contract findings
53 | clearBNB write Owner can drain all the Refer to audit

BNB balance of contract findings
54 | forwardEther internal Passed removed
55 | authorize external Passed No Issue
56 | unauthorize external Passed No Issue
57 | onlyAuthorized modifier Passed No Issue
58 | receive external Passed No Issue
59 | enableTrading external The tradingEnabled Fixed

once enabled then no
option to disable it

60 | removeLimits external A limitsinEffect once Fixed

disabled then no option

to enable it
61 | excludeFromMaxTransac | write access only Owner No Issue
tion
62 | excludeFromFees write access only Owner No Issue
63 | setAutomatedMarketMa | write Passed No Issue
kerPair

64 | isExcludedFromFees read Passed No Issue
65 | setFeeWallets external access only Owner No Issue
66 | transferFeesToWallet write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Logical vulnerability:

unauthorizel (admin) onlyOwner {
(lauthorized[admin], "it's already unauthorized");
authorized[admin] = :

The required condition is wrong in an unauthorized function. because of this | am not able

to unauthorize the address from the contract.

Resolution: We suggest correcting the condition in the required statement as below.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Medium

(1) Perform multiplication on division:

amount)

sellPath[e]
11path[1]

nt / denomin
rs[from]

+

+

4=

ay

The handleTax function performs a multiplication on the result of a division.

Resolution: we suggest performing multiplication first, and then performing division.

Status: This is a function removed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Owner can withdraw all the BNB balance of contract:

clearBNB (wallet) onlyOwner {
(wallet!= (@), "error: zero address”);
balance = () .balance;

s,) = wallet.call{value: balance}("");

5);

Owner can drain all the BNB balance of the contract. If the private key of the owner's

wallet is compromised, then it will create a problem.

Resolution: The owner can accept this risk and handle the private key very securely.

Status: This issue is acknowledged as a necessary function to run the business.

(2) Owner can withdraw token balance of the contract:

clearstuckBalance (token, wallet) onlyOwner {
(wallet I= (8), "error: zero address");
balance = IERC2@(token).balance0f(());
it (balance P @){

IERC20 (token).transfer(wallet, balance);

Owner can drain all the token balance of the contract. If the private key of the owner's

wallet is compromised, then it will create a problem.

Resolution: The owner can accept this risk and handle the private key very securely.

Status: This issue is acknowledged as a necessary function to run the business.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Function input parameters lack of check:

Some functions require validation before execution.
Functions are:

e authorize

e clearBNB

e clearStuckBalance

e multiTransfer_fixed

e multiTransfer

e setAutomatedMarketMakerPair

e approveMax

Resolution: We suggest using validation like for numerical variables that should be
greater than 0 and for address type check variables that are not address(0). For
percentage type variables, values should have some range like minimum 0 and maximum
100.

Status: This is fixed in the revised smart contract code.

(4) ERC20.so0l is not correct, missing some functions:

ERC20.sol is not correct, missing some functions.not matching with OpenZeppelin
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC
20/ERC20.sol

1. missing _afterTokenTransfer method

2. using safemath

Resolution: Suggest to use
https://qgithub.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC
20/ERC20.s0l

to eliminate the security risk.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/token/ERC20/ERC20.sol

(5) Ownable.sol is not correct:

Ownable.sol is not correct,not matching with OpenZeppelin

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ow
nable.sol

Resolution: Suggest to use

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ow
nable.sol

to eliminate the security risk.

Status: This is fixed in the revised smart contract code.

Very Low / Informational / Best practices:

(1) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.2/contracts/access/Ownable.sol

(2) Unused variables:

devTaxBuy;
marketingTaxBuy;
charityTaxBuy;
burnTaxBuy;

devTaxsell;
marketingTaxSell;

charityTaxsell;
burnTaxsSell;

devTaxkWallet;
marketingTaxwWallet;
charityTaxwallet;
burnTaxiallet;

There are variables defined but not used anywhere.
e devTaxBuy
e marketingTaxBuy
e charityTaxBuy
e burnTaxBuy
e devTaxSell
e marketingTaxSell
e charityTaxSell
e burnTaxSell
e devTaxWallet
e marketingTaxWallet
e charityTaxWallet

e burnTaxWallet

Resolution: Remove unused variables from the code.

Status: These variables are removed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Variable should be immutable:

maxkWallet;

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution: We suggest declaring those variables as immutable.

Status: Fixed: Variables are declared as immutable.

(4) The unused SwapAndLiquify event:

SwapAndLiquify(
tokensSwapped,
ethReceived,

tokensIntoLiquidity

The SwapAndLiquify event is declared but not used.

Resolution: Suggest removing unused events.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) A limitsInEffect once disabled then no option to enable it:

removelLimits() onlyOwner
limitsIneffect =

.
¥

A limitsInEffect once disabled then no option to enabile it.

Resolution: Suggest to include an option to enable if necessary.

Status: This is fixed in the revised smart contract code.

(6) The tradingEnabled once enabled then no option to disable it:

enableTrading() onlyOwner {
tradingEnabled =

The tradingEnabled once enabled then no option to disable it.

Resolution: Suggest to include an option to disable if necessary.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

ARULSINGAM.sol

e enabledTrading: Trading status can be enabledTrading by the owner.

e setAutomatedMarketMakerPair: Automated Market Maker Pair address can be set
by the owner.

e setBuyFees: Authorized Owner can set the tax for buy fees.

e setSellFees: Authorized Owner can set the tax for sell fees..

e multiTransfer: The Owner can airdrop with different amounts.

e multiTransfer_fixed: The Owner can airdrop with different amounts.

e clearStuckBalance: The Owner can claim a stuck token from the token contract.

e clearBNB: The Owner can claim stuck BNB from the token contract.

e authorize: The Owner can authorize any address.

e unauthorize:The Owner can unauthorize any existing authorized address.

e enableTrading: Enable trading status can be set by the owner.

e removelimits: Remove limits from contract by the owner.

e excludeFromMaxTransaction: An Exclude / include particular address from
maximum transaction amount by the owner.

e excludeFromFees: An exclude/include particular address from fees by the owner.

o setFeeWallets: Sets fees wallets by the owner.

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a Bscscan web link. And we have used all
possible tests based on given objects as files. We had observed 1 high severity issue, 5
low severity issues and some Informational issues in the smart contracts. We confirm that
these issues are fixed / acknowledged in the revised smart contract code. So, it’s good to

go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

7

)
(&) sarentatn

< QiryAdd()
< QtrySub()
< QtryMul()
< QryBivi)
< Qiryhod()
< Quadd()

< Qsub()

< amulf)

< Qeliv()

< Qmod()

Code Flow Diagram - ARSI Token

(€) ARULSINGAM

BEF20
Ownable

@nvSafeMath for uint256

uint256 maxSupply
UIM256 denominator
UiM256 swapThreshold
nt256 devTaxBuy
nt256 marketingTaxBuy
nt256 charity TaxBuy
uint256 burnTaxBuy
UIMt256 devTaxSell
UIM256 marketingTaxSel
UIM256 charty TaxSel
uint256 burnTaxSel
uint256 maxTxAmourt
uimt256 maxvalletAmount
address devTaxVWallet
address marketingTaxvallst
address charityTaxvallet
address burnTaxwWallet
address=>bool excludeList
string=>Lint256 buyTaxes
String=Lin256 sellTaxes
address=>uin256 cooldownTimer
string=>address taxValiets
I !

isExcludedFromMaxiiallet
isExcludedFromMaxTx
authorized
isTimelockExempt

a
a
a
a

a
bool taxStatus
bool isTradingEnabled

bool swapEnabied

bool buyCooldownEnabled

uint256 marketingTokens

UIM256 devTokens

Uint256 charity Tokens

Uint256 burnTokens

Uints cooldownTimerirterval

IUniswap' 2Router02 uniswapy 2Routernz
IUniswap' 2F actory uniswap\/2Factory
Wniswap'2Pair uniswap'/2Pair

&__constructor__()
approvehiax()

handleTax()

_transfer()

enabledTrading()
setlsTimelockExempt()
setAutomatediarkethakerPair()
cooldownEnabled()
addTolWhitelist()
removeFromivvhitelist()
setTuLimit()
setMaxTxPercent_base1000()
setMaxWalletPercent_base1000()
setlsTxLimtExempt()
excludeFromMax\WalletLimit()
includelnMasdAalietLimit)
swapBackSettings()
setBuyFees()

setSelFees()
setFeeReceivers()
Qisvhitelisted()
QbuyFees()

QselFees()

Afeewvallets()
muttiTransfer()
muttiTransfer_fixed()
clearStuckBalance()
clearBNB()

< forwardEther()

@ authorize()

© unauthorize()

0000000 OCOOCOOOCOOOOROQOOOCOOPONO®®|C000D0D0D000000CCO0O0O0000000000CO0O0D0O0O0OODO0OO

@ IUniswapV2Pair

kethakerPairs

0000000000 COCO0C0O00RCOO0CORRORRO0RO0O00

Qname()

Qsymbol()

Quecimalst)
QutotalSupply()
QualanceCf()
Quallowance()

approve()

transfer()

transferFrom()
QDOMAIN_SEPARATOR()
QPERMIT_T¥PEHASH()
Qronces()

permit(y
SUMINIMUM_LIQUIDITY ()
Qufactory()

Qutoken0()

Qutokent ()
QuetReserves()
Qprice0Cumulativelast()
Qprice Cumulativelast()
QkLast()

mint()

burn()

swap(}

skim()

sync()

inttialize()

@ IUniswapV 2Factory|

QfeeTo()
A feeToSetter()

S getPair()
QallPairs()
QallPairsLength()
createPair()
setFesTa()
setFesToSetter()

eceooooeR

@ 1Uniswapl2Router02

WiniswapV2Router01

© removeLiquidityETHSupportingFeeCn TransferTokens()
© removeLiquidityETHWithPermitSupportingF esOnTransfer Tokens()
© swapExactTokensForTokensSuppertingFeeOnTransfer Tokens()
© &swapExactETHFor TokensSupportingFeeOnTransferTokens()
© swapExactTokensForETHSUpportingFeeOnTransferTokens()

for uint256

Context

(©) sepP20
I1BEP20

IBEP2z0Metadata

O address==uint256 _balances

e
0O address==mapping address=>uint256 _allowances

O Lint256 _totalSupply

O string _name
O string _symbol

© __constructor__()
® Qname()

@ Qsymbol(y

© Qdecimals()

© QtotalSupply()

© QbalanceOf()

© transter()

® Qallowance()

@ approve()

@ transferFrom()

@ increaseAllowance()
© decreaseAllowance()
< _transfer()

< _heforeTokenTransfer()
< _afterTokenTransfer()

| | @ reer20metadata

=

© Qwnable

Context

O address _owner

© _ constructor__()
® Qowner()

< Q_checkOwner()

® renounceOwnershipg)
@ transferOwnership()
< _transferDwnership()

@ Context

| IBEP20
| ® Qname() < &_msgSender()
| ® Qsymbol() © Q_msgData()

| ® Qecimals()

E
(@) 182,20

© QiotalSupply()
© QpbalanceOf()
© transfer()
@ Qallowance()
@ approve()
® transferFrom()

@ IUniswapV2Routero]

Qfactory()

QWNETHI)

addLiquidity(y
addliquicityETH()
removeLiguidity()
removeLiquidityETH()
removeLiguidityVWithPermit()
removeLiguidity ETHAthPermit()
swapExactTokensFor Tokens()
swapTokensForExact Tokens()
& swapExactETHForTakens()
swapTokensForExactETH()
swapExactTokensForETH()
SswapETHF orExactTokens()
Quguotel)

QgetAmourtOut()
Qgetamounting)
QgetAmountsOut()
QgetAmourtsing)

2000000000000 0Q0QO0QO0O00

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Sllther Lo >> ARULSINGAM soI

should emit an event for:

ARULSINGAM. setMaxwallet | P00 (U1 IARLLCII\G- : 7) sho ami event for:

) - maxwWalle tAmount Sup) rLllcr-L|t- y 3)
Refere : https: ytic/ Jfwiki/Detec vents-arithmetic

ARULSINGAM. clearBNB(
missing-zero- ss-validation

(, 855 ,uint256) (ARULSINGAM.sol#631-746) has external calls inside a loop: sellPath[1] = uniswap
V2Route WETH() (ARULSINGAM. 7
ARULSINGAM. f dEther(,uint256) (ARULSINGAM.sol#1004-10¢ has external calls inside a loop: (os) = wallet.call{value
amount}() (ARULSINGAM.s

ARLLCII-\GA dleTax(a 2 255,01 ’56) (ARULSINGAM.sol#631-746) has externa

ns + charit) s 1Path)[1] [ARLLEIHGAF.S

(ARULSINGAM. 1#63) has externa

11 »SSIt\ls

) (ARULSINGAM.so
unt}i)
h,address(this),block.t
imestamp) IHRLLCILGM

) ‘tc/ 'HRLLCIIGAI S0 1-'.—”')

IHRLLCIIle‘ S0 1 10
ens) {ARULSINGAM
() (ARULSINGAM.
[ARULSINGAM.sol#719)

transfe |Itc/acll ts[|c|1t'
= wall:t.call
burnTokens) IHRLLCILGHV sol
= \cll t call{value: amount}() (ARULSINGAM
cTt»r the -cllls
HRLLCII GAM.sol
Le 'dRLLcII\GH\IJ sol#7
Transfer{send ecipi A NGAM. sol#234)
- tra|sT-|ltc/acll ts[IL||] burn ens) (ARULSINGAM.sol#
Reference: https://github.com/crytic/slither/wiki/De etector-Documentatic ntrancy-vulnerabilities-3

ARULSINGAM. F5|-1- ax{address,address,uint256) (ARULSINGAM.sol#631-746) uses timestamp for comparisons
ldownTimer[to] < block.timestamp,Please wait for c wn between two buys) (ARULSINGAM.sol#
ytic/slither/wiki/Detector-Documentation#block-timestamp
rations inside a lo
rations inside a 1
rations inside a lo

operations inside
] IARLLCIIGAI’ als
{ARULSTNGAM.sol#631-746) has c % inside
[harity] 'dRLLcIIGHI sol#669)
) costly operations

ess, Lllt 56) (ARULSINGAM. s0 17.*1—.4f, costly
[ARULSINGAM. 3
s ress,uint iARLLEIhGAF.scl#EEl—?JE} costly operations inside
IaRLLCIIle sol#73
g . ress,uintz (ARULSINGAM.s0l#631-746) costly erations 1inside
{ ARULSINGAM.sol#
ess ;ccrcss,Lirt { ARULSINGAM.sol#631-746) costly operations inside a Lloop:

wik i/Detector-Documentation#costly-operations-inside-a-loop

old versions
wiki/Detector-Documentation#incorrect-versions-of-solidity
vel call in ARULSINGAM.c

- {s) = wallet.call{va
2 11 in aRLLCILle’

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Lithe ki/Dete
with 84 detector

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

ARULSINGAM.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
ARULSINGAM.handleTax(address,address,uint256): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not
considered by this static analysis.

more
Pos: 631:4:

Block timestamp:

Use of "block.timestamp"”: "block.timestamp" can be influenced by miners
to a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 652:36:

Gas & Economy

Gas costs:

Gas requirement of function ARULSINGAM.multiTransfer_fixed is infinite: If
the gas requirement of a function is higher than the block gas limit, it cannot
be executed. Please avoid loops in your functions or actions that modify

large areas of storage (this includes clearing or copying arrays in storage)
Pos: 966:4:

Gas costs:

Gas requirement of function ARULSINGAM.multiTransfer is infinite: If the
gas requirement of a function is higher than the block gas Limit, it cannot
be executed. Please avoid loops in your functions or actions that modify

large areas of storage (this includes clearing or copying arrays in storage)
Pos: 952:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas Limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it
successful.

more
Pos: 968:8:

=0
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type

more
Pos: 337:4:

Miscellaneous

Constant/View/Pure functions:

IUniswapV2Router02.swapExactTokensForETHSupportingFeeOnTransferTokens(u
: Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more
Pos: 524:4:

No return:

IlUniswapV2Router02.removeliquidityETHWIithPermitSupportingFeeOnTransferTok
Defines a return type but never explicitly returns a value.
Pos: 501:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

ARULSINGAM.clearBNB(address) : Variables have very similar names
"_balances" and "balance". Note: Modifiers are currently not considered by
this static analysis.

Pos: 997:39:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 1031:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/

100 = 0 instead of 0.1 since the result is an integer again. This does not hold
for division of (only) literal values since those yield rational constants.
Pos: 821:32:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ARULSINGAM.sol

Solhint Linter

ARULSINGAM.
ARULSTINGAM.
ARULSINGAM.
ARULSINGAM.

ARULSTINGAM.
ARULSTINGAM.
ARULSTINGAM.
ARULSTINGAM.
ARULSTINGAM. s
ARULSTINGAM.

) 2O O

Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:

Error:
Error:
Error:
Error:

Parse
Parse
Parse
Parse
Parse
Parse
Parse
Parse
Parse
Parse
Parse
Parse

error: missing
error: missing
error: missing
missing
missing
missing
missing
missing
missing

missing

missing

missing

Software analysis

result:

These software reported many false positive results and some

So, those issues can be safely ignored.

are informational issues.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

