@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Angry Sheep Club
Website: https://angrysheep.club

Platform: Ethereum

Language: Solidity
Date: March 22nd, 2023

https://angrysheep.club

Table of contents

IO UG ON o e 4
Project BacKgroUNG ... e 4
AUAIE S0P . et 5
Claimed Smart Contract Featureso e 6
AUAIt SUMMIAIY e et e 8
Technical QUICK SEats ..o 9
Code QUAIIRY ... e 10
DOoCUMENTAtION ... e 10
L LT o) D= o= o [T o [10
ASIS OVEIVIEW ..o e 11
Severity DefinitioNS ... 16
AUIt FINAINGS .. e 17
@7 0] o T3 1017 o 20
(@ 0] 1Y/ =1 1 T To [o] 0T) 21
DISCIAIMEIS ... 23
Appendix
® Code FIOW Diagram ... 24
o Shther RESUIS LOG .. .uuiiii e 29
e Solidity staticanalysis ..o, 33
® SOININt LiNter .o e 42

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Angry Sheep Club to perform the Security audit of the
Angry Sheep Club smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 22nd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
e Angry Sheep Club is a Private Membership Club that provides tangible benefits for

its members.

e Angry Sheep Club is allowed a maximum of 5 NFT to be minted per whitelist
member.

e There are 5 smart contracts, which were included in the audit scope. And there
were some standard library code such as OpenZepelin, which were excluded.
Because those standard library code is considered as time tested and community

audited, so we can safely ignore them.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Angry Sheep Club Smart Contracts

Platform Ethereum / Solidity

File 1 First100Pool.sol

File 1 MD5 Hash

BO959C91C3BA1A670AF3E12684B733499

File 2

HonoraryMembersPool.sol

File 2 MD5 Hash

9FEOA96E7D9647F2A8E93183BFBD0918

File 3

OGMintersPool.sol

File 3 MD5 Hash

F1F156F61698A57A5DES1F2FAAC98A30

File 4

AngrySheepDistribution.sol

File 4 MD5 Hash

124FACOEB355785AD9F0D90DB695FE2C

File 5

AnarySheepClub.sol

File 5 MD5 Hash

8843499DFB361813AE49E5818BF8A986

Audit Date

March 22nd, 2023

Revised Date

April 4th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://goerli.etherscan.io/address/0xdeb062f79fb80870b1622abce1dfce9f12bd6389#code
https://goerli.etherscan.io/address/0x5058e0da7183075dfd6e0638a81e6ce9badcb2c7#code
https://goerli.etherscan.io/address/0x743da7d22b2895568b4f859ab9e2cdadca214884#code
https://goerli.etherscan.io/address/0xffd8c4bed1a9222037bcf545f821f3375631edc7#code
https://goerli.etherscan.io/address/0x29012e3feb21b19b0db3051481c435484298a03e#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 First100Pool.sol

Owner Specifications:

e The Owner can flip claim rewards.

e Merkle root value can be set by the owner.

YES, This is valid.

File 2 HonoraryMembersPool.sol
e Name: Angry Sheep Club: Honorary Collection
e Symbol: ASCHM
e Total Supply: 50

Owner Specifications:

e The Owner can flip contract deposits.
e BaseURI can be set by the owner.

e \Withdraw money by the owner.

YES, This is valid.

File 3 OGMintersPool.sol

Owner Specifications:
e The Owner can flip claim rewards.

e Merkle root value can be set by the owner.

YES, This is valid.

File 4 AngrySheepDistribution.sol
e Name: AngrySheepClub-Distribution
e Symbol: ascd
e Pre Sale Amount: 100
e Sub Pre Sale Amount: 25
e Total Supply: 15001

Owner Specifications:

e OG Minter spool address can be set by the owner.

e Distribution Merkle root value can be set by the

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

owner.
e The Owner can flip claim rewards.

e Distribute money by the owner.

File 5 AngrySheepClub.sol YES, This is valid.
e Name: AngrySheepClub: Platinum Series
e Symbol: ASC
e Presale Size: 2000
e Sub Presale Amount: 25
e Total Supply: 15000
e Price: 0.0001 ether
e Maximum amount that user can mint per
transaction: 5
e Mint Limit: 5

Owner Specifications:

e The owner can send the nft number 10k-15k to a
wallet address.

e The owner can send the nft number 10k-15k to a
wallet address.

e The owner can mint unlimited tokens.

e The owner can presale minting tokens.

e \Withdraw money by the owner.

e Update mint price by the owner.

e Maximum transaction value can be set by the
owner.

e Maximum transaction value can be set by the

owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues in

the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Angry Sheep Club Protocol are part of its logical algorithm. A library is
a different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Angry Sheep Club Protocol.

The Angry Sheep Club team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Angry Sheep Club Protocol smart contract code in the form of a

goerli.etherscan.io weblink. The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://anarysheep.club which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://angrysheep.club/

AS-IS overview

First100Pool.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | flipclaimReward write access only Owner No Issue
8 | deposit write Passed No Issue
9 [claim First100 RewardM write Passed No Issue
10 | setMerkleRoot write access only Owner No Issue
11 | getMerkleRoot read Passed No Issue

HonoraryMembersPool.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | totalSupply read Passed No Issue
8 | tokenBylndex read Passed No Issue
9 [tokenOfOwnerBylndex read Passed No Issue
10 | supportsinterface read Passed No Issue
11 | balanceOf read Passed No Issue
12 | numberMinted internal Passed No Issue
13 | ownershipOf internal Passed No Issue
14 | ownerOf read Passed No Issue
15 | name read Passed No Issue
16 | symbol read Passed No Issue
17 | tokenURI read Passed No Issue
18 | baseURI internal Passed No Issue
19 | getUriExtension internal Passed No Issue
20 | approve write Passed No Issue
21 | getApproved read Passed No Issue
22 | setApprovalForAll write Passed No Issue
23 | isApprovedForAll read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

24 | transferFrom write Passed No Issue
25 | safeTransferFrom write Passed No Issue
26 | safeTransferFrom write Passed No Issue
27 | exists internal Passed No Issue
28 | safeMint internal Passed No Issue
29 | safeMint internal Passed No Issue
30 [transfer write Passed No Issue
31 | approve write Passed No Issue
32 [setOwnersExplicit internal Passed No Issue
33 | checkOnERC721Received write Passed No Issue
34 | beforeTokenTransfers internal Passed No Issue
35 | afterTokenTransfers internal Passed No Issue
36 | nonReentrant modifier Passed No Issue
37 | setApprovalForAll write | access only Allowed No Issue
Operator Approval
38 | approve write access only Allowed No Issue
Operator Approval
39 | transferFrom write | access only Allowed No Issue
Operator
40 | safeTransferFrom write access only Allowed No Issue
Operator
41 | safeTransferFrom write access only Allowed No Issue
Operator
42 | flipcontractDeposit write access only Owner No Issue
43 | flipclaimReward write access only Owner No Issue
44 | deposit write Passed No Issue
45 | claim_HonoraryMembers_Rew write Passed No Issue
ard
46 | tokenURI read Passed No Issue
47 | setBaseURI external [access only Owner No Issue
48 | baseURI internal Passed No Issue
49 | numberMinted read Passed No Issue
50 | getOwnershipData external Passed No Issue
51 | withdrawMoney external Passed No Issue
52 | callerlsUser modifier Passed No Issue

OGMintersPool.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

7 | flipclaimReward write access only Owner No Issue
8 | deposit write Passed No Issue
9 [claim OGMinters RewardM | write Passed No Issue
10 | claim OGMinters Reward write Passed No Issue
11 | setMerkleRoot write access only Owner No Issue
12 | getMerkleRoot read Passed No Issue
AngrySheepDistribution.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 | transferOwnership internal Passed No Issue
7 | totalSupply read Passed No Issue
8 | tokenBylndex read Passed No Issue
9 | tokenOfOwnerByIndex read Passed No Issue
10 | supportsinterface read Passed No Issue
11 | balanceOf read Passed No Issue
12 | numberMinted internal Passed No Issue
13 | ownershipOf internal Passed No Issue
14 | ownerOf read Passed No Issue
15 | name read Passed No Issue
16 | symbol read Passed No Issue
17 | tokenURI read Passed No Issue
18 | baseURI internal Passed No Issue
19 | getUriExtension internal Passed No Issue
20 | approve write Passed No Issue
21 | getApproved read Passed No Issue
22 | setApprovalForAll write Passed No Issue
23 | isApprovedForAll read Passed No Issue
24 | transferFrom write Passed No Issue
25 | safeTransferFrom write Passed No Issue
26 | safeTransferFrom write Passed No Issue
27 | exists internal Passed No Issue
28 | safeMint internal Passed No Issue
29 | safeMint internal Passed No Issue
30 | transfer write Passed No Issue
31 | approve write Passed No Issue
32 | setOwnersExplicit internal Passed No Issue
33 [checkOnERC721Received write Passed No Issue
34 | beforeTokenTransfers internal Passed No Issue
35 | afterTokenTransfers internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

36 | nonReentrant modifier Passed No Issue
37 | flipclaimReward write access only Owner No Issue
38 | deposit write Passed No Issue
39 [claimHolderMemberRewardM write Passed No Issue
40 | claimHolderMemberReward write Passed No Issue
41 | distributeMoney external Passed No Issue
42 | sendToWallet write Passed No Issue
43 | setOGMinterspoolAddress write access only Owner No Issue
44 | setDistributionMerkleRoot write access only Owner No Issue
45 | getDistributionMerkleRoot read Passed No Issue
AngrySheepClub.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 [onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | totalSupply read Passed No Issue
8 [tokenBylndex read Passed No Issue
9 [tokenOfOwnerBylndex read Passed No Issue
10 | supportsinterface read Passed No Issue
11 | balanceOf read Passed No Issue
12 | numberMinted internal Passed No Issue
13 | ownershipOf internal Passed No Issue
14 | ownerOf read Passed No Issue
15 | name read Passed No Issue
16 | symbol read Passed No Issue
17 | tokenURI read Passed No Issue
18 | baseURI internal Passed No Issue
19 | getUriExtension internal Passed No Issue
20 | approve write Passed No Issue
21 | getApproved read Passed No Issue
22 | setApprovalForAll write Passed No Issue
23 | isApprovedForAll read Passed No Issue
24 | transferFrom write Passed No Issue
25 | safeTransferFrom write Passed No Issue
26 | safeTransferFrom write Passed No Issue
27 | exists internal Passed No Issue
28 | safeMint internal Passed No Issue
29 | safeMint internal Passed No Issue
30 | transfer write Passed No Issue
31 | approve write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

32 | setOwnersExplicit internal Passed No Issue
33 | checkOnERC721Received write Passed No Issue
34 | beforeTokenTransfers internal Passed No Issue
35 | afterTokenTransfers internal Passed No Issue
36 [nonReentrant modifier Passed No Issue
37 | setApprovalForAll write | access only Allowed No Issue
Operator Approva
38 | approve write | access only Allowed No Issue
Operator Approva
39 | transferFrom write | access only Allowed No Issue
Operator
40 | safeTransferFrom write | access only Allowed No Issue
Operator
41 | safeTransferFrom write | access only Allowed No Issue
Operator
42 | sendBackup4kNFTS external | access only Allowed No Issue
Operator
43 | sendBackup1kNFTS external | access only Allowed No Issue
Operator
44 | stopMint external | access only Owner No Issue
45 | startMint external | access only Owner No Issue
46 | mint external callerlsUser No Issue
47 | PresaleMint external callerlsUser No Issue
48 | tokenURI read Passed No Issue
49 | callerlsUser modifier Passed No Issue
50 | setMerkleRoot write access only Owner No Issue
51 | getMerkleRoot read Passed No Issue
52 | setSubPresaleAmount write access only Owner No Issue
53 | getSubPresaleAmount read Passed No Issue
54 | setBaseURI external [access only Owner No Issue
55 [baseURI internal Passed No Issue
56 | numberMinted read Passed No Issue
57 | getOwnershipData external Passed No Issue
58 | withdrawMoney external | access only Owner No Issue
59 [changeMintPrice external [access only Owner No Issue
60 | changeMAX PER Transaction | external | access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the revised contract code.

No high severity vulnerabilities were found in the revised contract code.

Medium

No medium severity vulnerabilities were found in the revised contract code.

Low

No Low severity vulnerabilities were found in the revised contract code.

Very Low / Informational / Best practices:

No Informational severity vulnerabilities were found in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

First100Pool.sol
e flipclaimReward: The Owner can flip claim rewards.

e setMerkleRoot: Merkle root value can be set by the owner.

HonoraryMembersPool.sol
e flipcontractDeposit: The Owner can flip contract deposits.
e flipclaimReward: The Owner can flip claim rewards.
e setBaseURI: BaseURI can be set by the owner.

e withdrawMoney: Withdraw money by the owner.

OGMintersPool.sol
e flipclaimReward: The Owner can flip claim rewards.

e setMerkleRoot: Merkle root value can be set by the owner.

AngrySheepClub.sol
e sendBackup4kNFTS: The Owner can send the nft number 10k-15k to a wallet
address.
e sendBackup1kNFTS: The Owner can send the nft number 10k-15k to a wallet
address.
e stopMint: The Owner can stop minting.

e startMint: The Owner can start minting.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e mint: The Owner can minting tokens.

e PresaleMint: The Owner can presale minting tokens.

o setMerkleRoot: Merkle root value can be set by the owner.

e setSubPresaleAmount: Sub Presale amount can be set by the owner.

e setBaseURI: BaseURI can be set by the owner.

e withdrawMoney: Withdraw money by the owner.

e changeMintPrice: Update mint price by the owner.

e changeMAX PER_Transaction: Maximum transaction value can be set by the

owner.

AngrySheepDistribution.sol
e flipclaimReward: The Owner can flip claim rewards.
e distributeMoney: Distribute money by the owner.
e setOGMinterspoolAddress: OG Minter spool address can be set by the owner.

e setDistributionMerkleRoot: Distribution Merkle root value can be set by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of goerli.etherscan.io weblink. And we have
used all possible tests based on given objects as files. We had not observed any severity
issues in the revised smart contracts. So, the smart contracts are ready for the mainnet

deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - Angry Sheep Club

First100Pool Diagram

@ AngrySheepClut
DefaultOperatorFilterer
Owna
ERCT21A
Reentrancy Guard
WNStrings for uint256
@ {OperatorFinerRegrstry O uint256 MAX_PER_Transaction
© wint256 PRICE
® QisOperator Allowed() © Lint256 currertSupply
© register() 256 TotalCollectionSize.
© registerAndSubscribe() 256 PresaleSize
®© registerAndCopyEntriesQ) 56 SubPresaleAmount @ Firsti 00P ool
® unregister() O Lint256 MintLimit
© updsteOperator() O address=>uint256 nftBalances Ownable
© updateGperators() O string_baseTokenUR
® updiateCodsHash() O bool mintingStopped
© updsteCodeHashes() O bytes32 merkleRoot © bytes32 merkieRoot
© subserlbe() (@) rercr21Recener e ° Lint256=5bool
© umrponOI) © setagprovaForAll) e e
© subscribers() OEETAREEET) SEEE o © AnarySheepClub ascCantract
e © safeTransterFrom() © fipclaimReward()
© iCnersiorFiterec() _ = | ® sendBackupsknFTs0 © Bdepost()
© eCodutiushG Ftared() - © sendBackupkNFTS() © claim_First!00_Rewardh()
P © stophint() @ sethlerklcRoot()
© isCodeHashFitered() . o starthint() Sl iE e
gethlerkleRoot()
© fitereciOperators() L o Bty
© fiteredCodeHashes() -
- © &PresaleMint()
@ fiteredOperatorAt() P o QrokenURi) |
® fiteredCodeHashAt() L o setmierizRo) |
OCRE Twrl) P © QgetherkleRoot()
Slcodelimo) . © seiSubPresaleAmount()
L7 © QgetSubPresaleAmourt() |
. © setBaseURI() |
L7 © Q_baseURI() |
. © Qnumberhinted() |
’ © QgetOwnershipData()
L © withdrawhoney() [
; @ changeMintPrice() |
© changeMAX_PER_Transaction() |
. |
| \ |
’ | — -
T
S | | ~
. | \ | N
’ © ERCT21A | [.
' Context | \ | \
’ ERG165 | |
‘ IERGT21 | \ |
S IERC721Metadata | \ |
| IERCT21Enumerable I \ [
| \
! inAddress for address | |

iNStrings for wintZ56 |

O uint256 currertindex \

! © Unt256 collectionSize \ (
' © UInt256 maxBatchSize | \ |
O string_name |
O string _symbol |
O uint256=>TokenOwnership _ownerships |
' O address=>AddressData _addressData

1 O int25

© Ov‘vnahle |

address _tokenApprovals
' O addres p
; © Lint256 nextOwnerToE xplicillySet
@ e — N © _constructor_() @ ReentrancyGuard Eadiay
) © QotalSupply() (©) petaunopsratorfiterer]
p . © QolenByindex() O Uirt258_NOT_ENTERED
< Querify() I foruint256 | o qrokencrownerByindex() O Uint256 _ENTERED D address _owner CperatorFilterer
< Qrocessproof() ' © Qeupportsinterface() O unt256 _status © _constructor_()
! — © _ constructor__()
" e
Q_efficiertHash() ° &r::m;:gm o S s © Sownerty i
|

© transferownership()

< QownershipOf()
© {ransferOwnershin() |

! ® Qsymbol()

® QtokenURI()

© Q_baseURI()

© @ _getUriExension(y |

1 @ approve()

] © QgetApproved()

' | @ setapprovaForal)

| . @ QisApprovedForAl()

7’ ® transferFrom()

© safeTransferFrom() |
. & Q_exists()

’ < _safeMint()

m _transfer()

B _approve()

| . s | © ZsetownersExplcit(y

’ ' B _checkONERC721Received() |

/ © heforeTokenTransfers()
, ‘ < _afterTokenTransfers() . | |

\vi @ Adciress | \ -
@) sios | | @ sercr2tenumenabie @ iercr2imetadatal | (©) opsratorFittarer
= QisContract() \ (© content ST
< sendvalue() | [tererzt IERCT21 Eitot BperstortiotAllows
O bytests HEX_SYMBOLS B < address operator
e 1 i ® QotalSupply() © Qname() © @_msgSender() © IDperatorFiterRegistry OPERATOR _FILTER_REGISTRY
g 2::1’)‘(%;0 g g?ﬂ::f:g;"zg:"‘fo | @ QtokenCfownerBylndex() © Qsymbol() © Q_msgData() Mo rcommutor 0| 5
© QtokenBylndex() © QuokenURIy = =l
© functionDelegateCall() - & Q_chechFiterOperator()
© QuerifyCalRes() !
]
(© ercies
IERC165
©® Qsupportsinterface()

S
@ IERCT21

IERC165

© Qbalanceof()

© QownerOf()

© safeTransferFrom()
© transferFrom()

© approve()

o QgetApproved)

@ setApprovalForAll()
© QisApprovedForal()

@ ‘lERCTGﬁ

© Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ ICperatorFilterRegistry |

© QisOperatorAl
© register()

© unregister()

© subscribef)
© unsubscrive()

© subscribers()
© subscriberAf(
© isCodeHashOt

© fiteredCodeH

© isRegistered

© registerAndSubscribe()
© registerAndCopyEntries()

© updateOperator(y
© updateOperators(y

© updateCodeHash()
© updateCadeHashes()

© subscriptionOf()
© copyEntriesOf()

© isOperstorFitersd()

© isCodeHashFittered)
© fiteredOperators()

© fiteredOperatorAtt)
@ fiteredCodeHashat()

© codeHashOf()

lowed(y

@ IERCT21Receiver|

© onERC721Receved()

)

fFitereci()

ashes()

)

HonoraryMembersPool Diagram

@ MerkleProof

©Derau\10pwa1urmew

& Queri

 QprocessProof()
B Q_efficientHash()

) OperatorFiltersr

© _constructor_()

@ OperatorFilterer

© ermor Operatorhotallowed
< address operator
© OperatorFiterRegistry OPERATOR_FILTER_REGISTRY

© _constructor_()
@ Q_checkFitterOperator()

i

© Ownabl

e

© HaonoraryMembersPool

DefauitCperatorFilterer
Cwnable

ERCT21A
ReentrancyGuard

WNSHINgS for uint256

© bytes32 merkleRoot

© address=sbool claimuserStatus
< bool isclaimRewardPaused

© bool iscontractDepositPaused
O string _paseTokenURI

© _constructor_{)
© setApprovalForll)
 approve()

© transferFromi)

@ safeTransferFrom()
@ fipcontractDeposit()
© fipclaimReward;)

© Bdepost()

@ ciaim_HonorarylMembers_Reward()
© QtokenURI)

© setBaseURI()

A © & baseuriy

© Qnumberhinted(y

© QgetownershipData()
© withdrawhioney()

|

©) ercratn

Context
ERC165

IERCT21
IERC721Metadata
IERCT21Enumerable

mAddress for address
WNSHrings for uint236

O wint256 currertindex
© int256 colectionSize

< uint256 maxBatchSize

0 string _name

O string _symbol

O wint256=>TokenOwnership _ownerships
O address=»AddressData_addressData
O Wint256=-address tokenApprovals

O addre ppi K
© Wini256 nextOwnerToExpiicilySet

Context

O address _owner

© _constructor_{)
© QotaiSupply()

© QokenByindex()

© QtokenCTOWNErByindex()

© _constructor_{)
© Qowner()
@ renounceOwnership()
© transferownership()

© _transferOwnership()

© Qupportsinterface()
© Qbalance0f()

© Q_numberblinted()
© Qownershipof()

© Qowner0f()

©® Qname()

© Context

© Q_msgSender()
< Q_msgData()

© Qsymbol()y

© QiokenURI)

© Q_baseURI()

© Q_getlrExtension()

© approve()

© QgetApproved()

® setApprovalForAll()

© QisApprovedForAll)

© transferFrom()

© safeTransferFrom()

/| © & exists()

© _sateMint)

_transfer()

8 _approve()

© _setOwnersExplicitf)
_checkOnERC721Received()
< _heforeTokenTransfers()
© _afterTokenTransfers()

[

N \for address

1 N
N
~

\
@ Address

@ IERCT721Enumerable @ IERCT21Metadata
IERCT21 IERCT21
© QtotalSupply() @ Qname()
© QtokenOfOwnerByIndex() © Qsymbol()y
© QtokenByindex() @ QokenURI()
T

(©) erctes

JIERC165

© Qsuppartsinterface()

& [
@ rerer2
IERC185

© Qalancef()
© Qowner0f()

© safeTransferFrome)
® transferFrom()

© approve()

© QgetAppraved()

© setApprovalForAll()
© QisApprovedForAll()

@ ‘fERCTGﬁ

| © Qsupporsitertace() |

© QsCortract()
< sendvalue()

© functionCall(y

© functionCallWith\aluef)
< QfunctionstaticCal()
© functionDelegateCall()
& QuerifyCalResut()

T foruint?s6

@ ReentrancyGuard

O uint256 _NOT_ENTERED
O uint256 _ENTERED
o atus,

© _constructor_()

for uint256

@ Strings

O bytes6 _HEX_SYMBOLS

© QoString(}
< QoHexstring)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ |CperatorFilterRegisiry

© QisOperator Allowed()
© register()
© registerAndSubscribe()
 registerAndCopyEntries()
® unregister()
® updateOperator()
® updateOperators()
® updateCodeHash()
® updateCodeHashes()
© subscribe()
© unsubscribe()
© subscriptionO1Q)
© subscribers()

@ subscriberAt()

© copyEntriesOf()

© isOperatorFitered()

© isCodeHashOfFitered()
© isCadeHashFiterec()
© fiterecOperators()

© fitereciCodeHashes)
© fiterecOperatorat()

© fiteredCodeHashAt()
® isRegistered)

® codeHashOf()

@ MerkleFroof

< Queify()
© QprocessProof()
B Q_efficiertHash()

(@) 1erc21Receier]

© onERCT21Receved()

@ Strings

O bytes1 HEX SYMBOLS

< Qtostring)
< QoHexString))

oG

MintersPool Diagram

© AngrySheepCluly

DefaultOperatorFilterer
Ownable

ERCTZ1A
ReentrancyGuard

inStrings for uint256

O wint256 MAX_PER_Transaction
O uint256 PRICE
O Uint256 currentSupply

Size

O uint256 TotalC:
O Lint256 PresaleSize
O uirt256 SubPresale Amourt

(©) ooMinterspool

O Lirt256 MintLimit

O address=>Uint256 nftSalances
O string _baseTokenURI

O bool mintingStopped

CQwnable

© bytes32 merkleRoot
o

uint256==hool

O bytes3z merkleRoot

© _constructor_()
© setapprovalFor All(
© approve()

© transterFrom()

@ safeTransferFrom()
< | @ sendBackupdkNFTS()

© bool IsclaimRewardPaused
© Wnt358 newTokenld

© AngrySheepClub ascContract
@ fipclaimReward()

© Bdepost()

© claim_OGMinters_Reward()

e ° :f"‘ﬁfﬂ”‘“”“‘"‘”s(’ © claim_OGMinters_Reward()
- - o ﬁ:?‘M‘\ m((); © sethlerkleRoot()
- O FELT © QgetherkleRoot()
- © BPresalehlint() |
L © QokenlRI()
. © setMerkleRoot() |
P ® QgetMerkleRoot()
- © setSubPresaleAmount() |
L7 © QgetSubPresaleAmourt() |
. © setBaseURI) |
© Q_baseURI)
© Qnumberbinted() |
© QgetownershipData() |
© wihdrawhoney() |
7 @ changeMintPrice() \ |
© changeMAX_PER_Transaction() [., |
|
7 | = +
’ |
’
’ | \
. @ ERC721A | \ [
' Context | \ |
’ ERC165 | \ |
‘ IERCTZ1 | \ |
! IERCT21Metadata | \ |
IERCT21Enumerable |
Address for address " |
Strings for int256 |
O Uint256 currentindex | |
I

< Uint256 collectionSize
|

© Unt255 maxBatchSize

O string _name

0 string _symbol

0 uint256=>TokenOwnership _ownerships
|

0 addres:

O uint256=>address tokenApprovals

O address=>mapping address==hool _operator Approvals

© Uint256 nextOwnerToExplicitly Set

=>AddressData _addressData
|

(©) ownanie

Context

°

°

°
for uint256 | o
°
°
<&
o
°
°
°
°

© Q_baseURI()
© Q_getUrExtension()
© approve()
© QgetApproved()
| @ setapprovalForal(
< | @ QisApprovedForAll)
L/ @ transferFrom()
© safeTransferFrom()
’ @ Q_exists()
, < _safebiint() ‘
/| @ _transfer()
B _approve()
© _setOwnersExplicit()

@ ReentrancyGuard

O uint256 _NOT_ENTERED
O uint256 _ENTERED
O uint256 _status

© _constructor_(}

__constructor_()
QutotalSupply()
QuokenByindex()
QtokenOfOwnerByindex()
Qsuppartsinterface()

QbalanceOf(y
_numberiinted)
 transferOwnership()

QuawnershipOf()
© _transferOwnership()

O address _owner

@ _constructor__()
® Qowner()
°

QawnerOf()
Qname{) T
Qsymbol()
QutokenLRI()

B _checkOnERCT21Received()
© _peforeTokenTransfers()
© _afterTokenTransfers()

‘
/for address

@ Address

< QisContract()
< sendvalue()

< functionCall()

< functionCalwithValue()
< QfunctionStaticCall()
 functionDelegateCall()
< QuerifyCalResuit()

© DefaultOperatorFilterer|
OperatorFilterer

& __constructor_()
T

© OperatorFiltarer

< error OperatorNotAllowed

< address operator
O [OperatorFiterRegistry OPERATOR FILTER REGISTRY

| & b \
v < .
| /
| IERCT721Enumerable IERCT21\Metadatal \
@ @ \ @ Context
| IERCT21 IERC721
|| @ Qwtasupio © Qname() | © @_msgSender()
© Q_msgData()

© Qsymbol() |

@ QokenOfownerByindex()
© QtokenURI()
T

© QtokenBylndex()

©) erotes
IERC165
© Qsupportsirterface()

@ sererer

IERC185

© Qhalancef()
© QownerOf()

© safeTransterFrom()
© transferFrom()

© approve()

© QgetApproved(y

© setApprovalForAll)
© QisApprovedForAll)

@ rercres

© Qsupportsinterface()

* _0
> Q_checkFitterOperator()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IOperatorFilerRegistiy|

© QsOperator Alowec()
© register()

@ register Andsubscribe()
© register AndCopyErtries(}
© unregister()

© updateOperator()

@ updateOperators()

© updateCodeHash()

© updteCodeHashes()

© subscribe()

® unsubscribet)

© subscriptionOf()

© subscribers()

() Merkierroot

© Querify(y
© QprocessProof()
B Q_efficiertHash()

AngrySheepDistribution Diagram

@ AngrySheepCGiub
DefaultOperatorFifterer

ERC721A
ReentrancyGuard

WASHrings for uint256

© Lint256 MAY_PER_Transaction
© Lint258 PRICE
© Lint256 currentSupply

O Lint356 TotalCollctionSize,

O Lini256 PresaleSize

O Lint256 SubPresale Amount

O Lint256 MintLimit

© address=aLint55 nftBalances
O string_baseTokenURl

O bool mintingStopped

© bytes3? merkleRoot

© _constructor_()

© setapprovalFarAlQ)

® approve()

© transferFrom()

© safeTransferFrom()

@ AngryShespDistribution

Ownable
ERC721A

ReentrancyGuard

@ 0GMintersPool

@NSHings for 4int256

tes32 merkleRoot

© address
< address NFCAddress
o

< ool isclaimRewar dPaused
O int?256 newTokenld

< AngrySheepClub ascCortract
 OGMintersPoal ogintersCantract

© _constructor_()

.)
© copyEntriesof()

© isOperatorFitered()

© isCodeHashOfFikered()
® isCodeHashFitered()
© fiteredOperators()

© fiteredCodeHashes()
@ fiteredOperatorAt()

© fiteredCadeHashAt)
© isRegistered()

@ codeHashof()

@,ERCH,RECENE, (©) DefauttoperatorF terer] !
OperatarFitterer !
© onERCT21Received() . T :

© OperatorFilterer

 eror Operatortiot Alowed

© address operator
© [OperatorFiterRegistry OPERATOR_FILTER_REGISTRY.

onstructo

v

o «
e

_0
ieckFiterOperator()

© sendBackupdkNFTS()
© sendBackuplkNFTS()
© stophinte)

© starthlin()

o émirt()

© @Fresalelint()

© QokenURI)

© setierkleRoot()

© QgethlerkleRoot()
© setsubPresaleAmourt()
°

© fipclaimReward()
© ddeposi()

Ownable

© bytes32 merkieRact
© atdress=>mapping Uint256=>hool clamuserStatus
© bool isclaimRewardPaused

© w258 newTokenld

© AngrySheepClub ascCortract
 flpclaimReward()

© Bdepost

 claim_OGHinters_Rewardh()

© claim_OGMinters Reward()

© setherkleRooti)

© QgethlerkieRoot()

© claimHolderbemberRewardhi()
© dlaimHolderMemberReward()
© distributehoney()
 sendTowalet()

© setOGHinterspoolAddress()
© setDistributionlerkleRoot()

© QgetDistributiontierkieRoot()
"

/| @ setBascURIy
| abasetriy
S | e anumbertimedny
, © QgetOwnershipData()
© wihdrawioney()
© changehiniFrice()
© changetaX_PER_Transaction()

@ ReentrancyGuard

O unt256 _NOT_ENTERED
O int256 _ENTERED
O Uint56 _status

© _constructor_()

for vint256

@ ERCT21A

h Gontext
' ERC165
IERCT21
. IERGT21Mstadata
IERCT21Enumerable

nAddress for address
Strings for uint256

O w286 currentindex
© UINt256 collsctionSize:
 Unt256 maxBatchSize
0 Siring _name

O siring _symbol

O uint256=>TokenOwnership_ownerships
Adch ‘essDat;

O addres: iressData _addressData
O Lini256=>address {okenApprovls

O address=»may ~+hool _operator
© Uint256 nextGwnerToExplillySet

@ _constructor_()
© QotalSupply()

@ QokenBylndext)

© QokenofOwnerByindext)
© Qsupportsinterface()

for vint256

® Qsymbol()
© QokenURI)

© & _haseURI()

© @ getUriExtension(y

© approve()

© QgetApproved()

@ setApprovaF orAl(y

© QsAppravedForAll)

© transferFrom()

© safeTransferFromg)

@ Q_exists)

© _sateMint()

_transfer()

B _approve()

© _setOwnersExplici()
checkOnERCT21Received()

& petoreTokenTransfers()

< afterTokenTransfers()
T

@ Ownable

Context

Approvals

O address _owner

© _constructor_()
© Qowner()

© renounceCwnership()
 transferOwnership()
© _transferownership()

Sfor uint256 |
y

@ Strings

Oy

 QtoString()
© QoHexString(y \

516 _HEX_SYMBOLS

\for address

\i \
@ Address
@ IERCT2IMetadata) | @ IERCT21Enumerable
© QisCortract() @ Context
© sendvalue() IERCT21 \ IERCT21
g;“”g'““g"}'&‘hv - ® Qname() © QotalSupply() © Q_msgSender()
2 ;:ur:;r‘-ﬂ:smcczl?)e © Qeymhol() \ © Qoken0fOwnerByndex() © Q_msgData()
@ QiokenURI() \ ® QiokenBylndex()

© functionDelegateCal()
© QuerityCalResut()

) (© Eretes

IERC165
@ Qupportsinterface()
v

g

IERCT21

@

IERC165

\ © Qbalance0f()
© Qownerof)

\ © safeTransferFrom(y
© transferFrom()

\ © approve()

© Qgetapproved()
@ setapprovaForAl()
© QisApprovedForAl()

@ IERC165

© Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IOperatorFiterRegisiry]

© QjsOperatorAllowed()
© register()
© register AncSubscribe()
© register AndCopyErtries()
© unregister()
© updateOperator()
© upciateOperators()
© updateCodeHash()
© updateCodeHashes()
© subscribe()
© unsubscribe(y
© subseriptionOf()
© subscribers()
© subscriberat()
© copyErriesOfi()
© isOperatorFitered()
@ isCodeHashOfFitered()
© isCodeHashFitered()
© fiterecOperators()
© fiteredCodeHashes()
© fiterecOperator At()
© fiteredCodeHashAt()
© isRegistered()

© codeHasnOT()

@) rerer2ireceie]

@ onERC721Received()

(&) merderproor

@ Querity()
QprocessProof()
B Q_sfficiertHash()

(©) Defaut

OperatorFilterer

@ 0

AngrySheepClub Diagram

© AngrySheepClub

DefauttOperatorsikerer
Ownable

ERCT21A
ReentrancyGuard

WNStrings for uint256

© UiNt256 MAX_PER_Transaction
© Uint258 PRICE
O Uint256 currentSupply
0 uint256 TetalCollectionSize
O Uint256 PresaleSize
0O uint256 SubPresaleAmourt
O Link255 MintLimit
O address=suint256 nftBalances
O string _baseTokerURI
0 bool mintingStopped
O bytes32 merkleRoot
& __constructor_()
@ setApprovalFor Al(y
@ approve()
@ transferFrom()
© safeTransferFrom()
® sendBackup8kNFTS()
@ sendBackup1kNFTS()
© stophint()
@ starthlint()
° dmirt()
© &PresaleMin()
/ @ QtokenLRI()
e © setherileRoot()

s © QethlerkieRoot()
~ setSubPresaleAmount()
@ QgetSubPresaleAmount() .
© setBaseURI()
& Q_baseURI() N
© Qnumberbinted() \
® QgetOwnershipDatal) \
@ withdrawloney() \
© changeMintPrice() \
@ changeMAX_PER_Transaction(y v

(@) ercraia

IERCT21
IERCT21Metadata
IERCT21Enumerable

NAddress for aodress
nStrings for uint256

O uint256 currentindex
© Lint256 callectionSize

© Uint256 maxBatchSize

O slring _name

O String _symbol

O uint256=>TokenOwnership _ownerships

(©) ownabie

O addess=>AddressData _addressData
O Uint256=>address tokenApprovals
0 addres

© Lint256 nextOwnerToExplicilySel

Context

© __constructor__()
© Qowner)

© renounceOwnership()
© transferOwnership()
© ransferOwnership()

© _constructor_()
@ Qotalsupply()

© QokenBylncex()

© QokenOfOwnerByindex()
© Qsupportsinterface()

© Qpalanceof()

& Q_numberhlinted)

< QownershipOf()

@ Qownerof()

©® Qname()

® Qsymbolf)

@ QokerURI()

& Q_baseURI[)

© Q_getUriExtension()

® approve()

@ QgetApproved()

© setApprovalForAll)

© QisApprovedFor All))

© transferFrom() \

© safeTransferFrom()

A © Q_exists(y

& _safeMint()

B _transfer()

B _approve()
setOwnersExplcit()

8 checkOnERC721Receiveds) 5
/ & _beforeTokenTransfers()

L © _afterTokenTransfers()

|

" for uini256

" for address

|
@ Address

\
@ ReentrancyGuard
O uint256 _NOT_ENTERED
for uint256 O Lint256_ENTERED

O 256 _status
& _constructor_()

© OperatorFilterer

< error OperatorNotAllowed

< address operator
© [OperatorFiterRegistry OPERATOR _FILTER_REGISTRY

@ __constructor__()
© & _checkFiterOperator()

2
@©) contant |

< QisContract()
© sendvalue()
© functionCall()

® Strings

Op

©Q_msgSender()
© Q_msgData()

@ IERCT21Enumerable @ IERCT21Metadata
IERCT21 IERCT21
© QotalSupphy() © Qname()
© QiokenOfOwnerByindex() © Qsymbol()
& QokenBylndex(y & QokenlRI()
T

@ ERC165

IERC165

© Qsupportsintertace()

@ IERCT21

IERC165

© QbalanceOf()

® Qownerof(y

© safeTransferFrom()
® transferfFrom()

® approve()

© Qgetapproved()

© setApprovalForAlly)
© QisApprovedForAll()

@ /ERC;E&

© Qsupportsinterface()

© functionCallWithValue()
@ I

< QeString()
<

es16_HEX_SYMBOLS

90)

 funcionDelegateCall)
© QuerifyCallResutt(y

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Sllther Iog >> First100Pool. soI

Reference:

) should emit an event for:
or-Documentat ion#miss ing-events -ar ithmetic

etval (Firstlee . #836)' 1 A._checkOnERCT
tentially used claration: |'»‘t"'1 == IERC721Rec

).reason (Firstl@8Pcol. =)' in ERC721A. che 'kl-lERC-
potentially used before dec ion: reason.le |-t\ =0 {
eason {Firstl@ep . #)i 721A._checkOnERCT
entially used bef C i

Parameter = yte ata (Fi B ol.sol#709) is not in mixedCase
Function A b : 1 1 mixedCase
Paramet ixedCase
Function # is not in mixedCase
Variable £ ¥_PER_
EIREL .PRICE (Firstl@ 9
TotalcCollect (.sol#g is not in UPPER_CASE_WTITH_UNDERSCORES
.PresaleSize c) 1 in UPPER_CASE_WITH_UNDERSCORES
.SubPresaleAmount (Fir #327) is not in mixedCase

ot in mixedCase

is not in mixedCase

eentrancy in Firstlee claim_Fir 80_RewardM(uint256,bytes32[])

E/t‘ nal calls:

! .transfer(L,SZ‘ICL,‘t (FirstleePool.sol#1

ls\mtt en after the (s):
- claimus thth[r’ .5€ rlinew = true (Firstleo
https: hub. ytic/slither/wiki vulnerabilities-4

-.1 AIRE C ntract (Fir ol. so 1«1111 sl'.Ll_ b onstant

etector-Documentation#state-variables-that-could-be-declared-constant

) shadows :
Reference: 1ing
'-,-'ariall» 'ERC oraryMembersPool.sols in ERC721A.
|::t-:rtiall, used be e declaration:

oraryMembersPool.
pote |t1=11, use

Address.isContrac
- INLINE ASM {

"3"3'3"*‘55-"v"?"if':-"CéHR*?SLIt'ﬁ|3 ol s, (embersPool.sol#317-335) uses assembly
- INLINE ASM (H ool.

ERC721A._checkOnERC721R 2S5, ,ui .bytes) (HonoraryMembersPool.sol#817-848) uses assembly
- INLINE ASM {Ho : # 2 .

MerkleProof._efficie ash : rte { yMembe
- INLINE

) uses assembly

ersPool.so

Hono g z clai embers
lclrLs»l'thth[rs-. ser
Honorar .clai embers_Reward{uin

Refere

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

Low

Low

Low

Low

ress(this).balance * 28 / 100}() (Honorar

yMembersP
- {artist) (Bx2 53 f 466 Pe 3 Y.).call{value: address(this).balance * 20 / 180}() (Hono
rsPool.
https ithub.c ytic/slither/wiki/Detector-Documentation#low-level-calls

is not in mixedCase
ot in mixedCase
is not in mixedCase

Reentrancy in HonoraryMembersPool.claim Honorar mbers_Reward{uint256) (Honorary
Externa
) {HonoraryMembersPool.sol#966)

-vulnerabilities-4

declared-constant

4) should emit an event for:
GFirtersP
/slither/wiki/Detector-Documentation#miss ing-events-arithmetic

tval (0GMintersPool.sol#828)' in heckOnERC
potentially used before declaration: Y IERC721R

g IHGIilt ers . : 't A._ch »-kﬂlERC
used I» i i

ason (0GMinters . 3)' in ERC721A. ch
otentially used before dec ion: vert{uin

- lSLuLfSS I-tLII a) (L
Low level call ir Angry . ' 0GMintersP .
(NFC) C »SSItlls Iclc|-»>l]
el-calls

(0GMintersPool.sol#701) i r‘t in mixedCase
g8) is not i

.PRICE [UGlllteISP ol.) 2 :
TotalCollectionSize_ Min .501#915) 1is not in UPPER_CASE_WITH_UNDERSCORES
1 inte c ? 1 in UPPER_CASE_WITH_UNDERSCORES
b . SubPresaleAmount {0GMintersPe #917) is not in mixedCase
SheepClub.MintLimit {0GMintersPool.sol#91 i t in mixedCase
GFirtersPccl.clairiDGFirtersze ar i yte) {0GMintersPool.sol#1116-1128) is not in mixedCase
- 0GMintersPe im_ OGM1 ytes32[])._tokenId (0GMintersPool. sLlﬁlllﬁ is not in mixedCase

Function 0OGMintersP Minter .sol#113 42) is not in mixedCase
Parameter OGMintersP 3 g s_) nId (OGMinter ol.) is not in mi
o . 2=t . Cons ' .

[S A A

Reentrancy in HGI1|t |sPuul.clair_DGFirters_RewarctLirtjEE} (0GMintersPool.sol#1130-1142):
¥ der).transfer(_userCut) {0GMintersPool.sol#1139)
: ;criahles written after the call(s):
laimuserStatus[msg.sender][n 1= = M1 ol.sol#114
in 0GMintersPool.claim _0GMinters_Re M{uint256,byte) ZGlllt—lstzl sol#1116-112

-vulnerabilities-4

C ciy declared-constant
OGMLntersPool sol analyzed (18 contracts with 84 detectors), 61 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> AngrySheepDistribution.sol

AngrySheepClub .numberMinted({address).owner (AngrySheepDistribution.sol#1073) shadows
) - Ownable.owner() (AngrySheepDistribution.seol#361-363) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

AngrySheepClub.setSubPresaleAmount{uint256) {AngrySheepDistribution.sol#1859-1861) should emit an event for:
) - SubPresaleAmount = s (AngrySheepDistribution.sol#
Reference: https://github.com/crytic/slither/wiki/Detector- D)cuwautat13h~w1551ng events -arithmetic

AngrySheepDistribution.set0GMinterspoolAddress(address)._0GMinterspoolAddress (AngrySheepDistribution.sol#1245) lacks a zero-c
heck on :

) - 0GMintersPooladdress = _0GMinterspoolAddress ({AngrySheepDistribution.sol#1246)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Variable 'ERC721A._checkOnERC721Received(address,address,uint256,bytes).retval (AngrySheepDistribution.sol#8
heckOnERC721Received(address,address,uint256,bytes) (AngrySheepDistribution.sol#854-877) potentially used be
retval == IERC721Receiver{to).onERC721Received.selector (A heepDistribution.sol#864)

Variable 'ERC721A._checkOnERC721Received({address,address,uint256,bytes).reason {Angry MAApDist|ibution sol#8
heckOnERC721Recei {address ,address,uint256,bytes) (AngrySheepDistribution.sol#854-877) potentially used be
reason.length B (AngrySheepDistribution.sol#866)

Variable 'ERC721A._checkOnERC721Received({address,address,uint256,bytes).reason (Angry C'QQPEIStIlbUtth sol#3
heckOnERC721Received(address,address,uint256,bytes) IungrmchAAPDlstllbutlon s0l#854-877) potentially used be
revert(uint256,uint256)(32 + reason, wloajIUIHtAEtlllaason-- {AngrySheepDistribution.sol#870)

Reference: https ffglthub CDﬁfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#pre-declaration-usage-of-local-variables

63)' in ERCT21A. c
fore declaration:
" in ERC721A. ¢
re declaration:

5)
or

i
£

' in ERC721A. ¢
e declaration:

65
for

AngrySheepDistribution.ogmintersContract (AngrySheepDistribution.sol#1177) is set pre-construction with a non-constant functio
n or state variable:

- 0GMintersPool(0GMintersPoolAddress)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state

Pragma version”8.8.4 {AngrySheepDistribution.sol#9) allows old versions
solc-0.8.4 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low level call in Address.sendvalue{address,uint256) (AngrySheepDistribution.sol#2
{success) = recipient.call{value: amount}{) (AngrySheepDistribution. 501 :4-

Low level call in Address.functionCallwithvalue({address,bytes,uint256,string) (AngrySheepDistribution.sol#
{success,returndata) = target.call{value: 5'1U9>|data' {AngrySheepDistribution.sol#286)

Low level call in Address.functionStaticCall{address,bytes,string) (AngrySheepDistribution.sol#293-302):
{success,returndata) = target. stat1ccdllldatal {AngrySheepDistribution.sol#300)
call in Address.functionDelegateCall({address,bytes,string) (AngrySheepDistribution.sol#308-317):
{success,returndata) = target.delegatecall{data) (AngrySheepDistribution.sol#315)
call in AngrySheepClub.withdrawMoney() (AngrySheepDistribution.sol#10884-1887):
(NFC) = msg.sender.call{value: address(this).balance}({) (AngrysSheepDistribution.sol#1085)
call in AngrySheepDistribution.sendToWallet(address,uint256) iAngrv?heepDistribution.sol#1233—1242):
{success) = recipient.call{value: amount}{) (AngrySheepDistribution.sol#1240)
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level- calls

Reentrancy in AngrySheepDistribution.claimHolderMemberReward{uint256,bytes32[]) (AngrySheepDistribution.sol#1208-1221)
External calls:
- address({msg.sender).transfer{_userCut) (AngrySheepDistribution.sol#1219)
State variables written after the call{s):
- ClaiWUSQFCtatUS[WSg sender][newTokenId] = true {AngrySheepDistribution.sol#1220)
Reentrancy in AngrySheepDistribution.claimHolderMemberRewardM{uint256,bytes32[]) 'th\vchQQpDIStllbutloh sol#1192-1285):
External calls:
- address{msg.sender).transfer{_userCut) (AngrySheepDistribution.sol#12083)
State variables written after the call(s):
- claimuserstatus[msg.sender][newTokenId] = true (AngrySheepDistribution.sol#1204)
Reentrancy in OGMintersPool.claim OGMinters_Reward(uint256) (AngrySheepDistribution.sol#1135-1147):
External calls:
- address{msg.sender).transfer{_userCut) (AngrySheepDistribution.sol#1144)
State variables written after the call(s):
- claimusersStatus[msg.sender][newTokenId] = true (AngrySheepDistribution.sol#1145)
Reentrancy in OGMintersPool.claim 0GMinters_RewardM{uint256,bytes32[]) (AngrySheepDistribution.sol#1121-1133):
External calls:
- address({msg.sender).transfer{_userCut) (AngrySheepDistribution.sol#1138)
State variables written after the call{s):
- claimuserStatus[msg.sender][newTokenId] = true (AngrySheepDistribution.sol#1131)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentranc ulnerabilities-4

AngrySheepDistribution.NFCAddress (Angr epDistribution.sol#1178) should be constant
AngrySheepDistribution.artistAddress ({An heepDistribution.sol#1169) should be constant
AngrySheepDistribution.ascContract (Angr epDistribution.sol#1176) should be constant

0GMintersPool.ascContract {AngrySheepDistribution.sol#11168) should be constant

Reference: https://github. CDWIC|vt1cf511th°|f\lklftﬂtﬁctar Documentation#state-variables-that-could-be-declared-constant

Angr epDistribution.ogmintersContract (AngrySheepDistribution.sol#1177) should be immutable
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
AngrySheepDistribution.sol analyzed {19 contracts with 24 detectors), 78 result{s) found

Slither log >> AngrySheepClub.sol

AngrysheepClub . numberMinted({address).owner {AngrySheepClub.sol#1871) shadows
) - Ownable.owner() (AngryShee .sols >) (function)
Reference: https://github. CDﬁfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#local-variable-shadowing

AngrysheepClub.setSubPresaleAmount{uint256) ({AngrySheepClub.sol#1857-1659) should emit an event for:
) - SubPresaleAmount = s IunglyChAApclub.501«1I a)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Variable 'ERC721A._checkOnERC721Received({address,address,uint256,bytes).retval {AngrySheepClub.sol#862)' in ERC721A._checkOnER
C721Received(address,address,uint256,bytes) Iung|v°hanpclub s0l#853-876) potentially used before declaration: retval == IERC72
1Receiv elttog.anRC;AlRecel jed.selector {AngrySheepClub.sol#863)

Variable 'ERC721A._checkOnERC721Received({address, address,uint256,bytes).reason {AngrySheepClub.sol#864)' in ERC721A._checkOnER
C721Received(address,address ,uint256,bytes) (AngrySheepClub.sol#853-876) potentially used before declaration: reason.length ==
8 (AngrySheepClub.sol#865)

Variable 'ERC721A._checkOnERC721Received(address,address,uint256,bytes).reason (AngrySheepClub.sol#864)' in ERC721A._checkOnER
C721Received{address,address,uint2 es) thg 'ChAApclub s0l#853-876) potentially used before declaration: revert(uint256,u
int256)(32 + reason, WlDaj'ulht;-_ reason)) (AngrySheepClub.sol#869)

Reference: https: ffglthub CDﬁfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#pre-declaration-usage-of-local-variables

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

First100Pool.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin® is useful only in very exceptional cases. If you use
it for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 1087:12:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
First100Pool.claim_First100_RewardM(uint256,bytes32[]): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 1170:4:

Gas & Economy

(Gas costs:

Gas requirement of function ERC721A.tokenBylndex is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 571:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 904:8:

Miscellaneous

Constant/View/Pure functions:

AngrySheepClub.safeTransferFrom(address,address,uint256,bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

maore

Pos: 1001:4:

Similar variable names:

MerkleProof.verify(bytes32[],bytes32,bytes32) : Variables have very similar
names "proof" and "root". Note: Modifiers are currently not considered by this
static analysis.

Pos: 900:44:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 1177:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold

for division of (only) Literal values since those yield rational constants.
Pos: 11/8:25:

HonoraryMembersPool.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” i1s useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 1016:18:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
HonoraryMembersPool.claim_HonoraryMembers_Reward(uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not
considered by this static analysis.

more

Pos: 1006:4:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 904:8:

Miscellaneous

Constant/View/Pure functions:

HonoraryMembersPool.safe TransferFrom(address,address,uint256,bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 985:4:

Similar variable names:

MerkleProof.verify(bytes32[],bytes32,bytes32) : Variables have very similar
names "proof" and "root". Note: Modifiers are currently not considered by this

static analysis.
Pos: 900:44:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 1053:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

OGMintersPool.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 108/:12:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
OGMintersPool.claim_OGMinters_Reward(uint256): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 1183:7:

Low level calls:

Use of "call™: should be avoided whenever possible. It can lead to unexpected
behavior If return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 1125:19:

Gas & Economy

(Gas costs:

Gas requirement of function AngrySheepClub.OPERATOR_FILTER_REGISTRY
Is infinite: If the gas requirement of a function is higher than the block gas limit,
it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 178:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(Gas costs:

Gas requirement of function OGMintersPool.claim_OGMinters_Reward is
infinite: If the gas requirement of a function is higher than the block gas limit, it
cannot be executed. Please avoid loops in your functions or actions that modify

large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1183:7:

Miscellaneous

Constant/View/Pure functions:

AngrySheepClub.safeTransferFrom(address,address,uint256,bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 1001:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 946:8:

AngrySheepDistribution.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 1083:12:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 1281:23:

Gas & Economy

Gas costs:

Gas requirement of function AngrySheepClub.withdrawMoney Is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays In storage)

Pos: 1120:2:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 420:8:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

AngrySheepClub.safe TransferFrom(address,address,uint256,bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 997:4:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold
for division of (only) literal values since those yield rational constants.

Pos: 1280:21:

AngrySheepClub.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 1082:12:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 1120:19:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(Gas costs:

Gas requirement of function AngrySheepClub.mint is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops In your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 1024:2:

Miscellaneous

Constant/View/Pure functions:

AngrySheepClub.safeTransferFrom(address,address,uint256,bytes) :
Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 996:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

Pos: 996:10:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

First100Pool.sol

st100Pool.sol: 6:28: Error: Parse error: mismatched input ' ('
expecting {';
First100Pool. Error: Parse e : extraneous input ')'
expecting {';
First1l00Pool.s0l:229:41: Error: Parse : mismatched input ' ('
expecting {';', '='}

HonoraryMembersP .s0l:176: : : S¢ : mismatched input
' (' expecting
HonoraryMembe
') ' expecting
HonoraryMember . :229:41: : error: mismatched input
'('" expecting

OGMintersPool.sol

OGMintersPool.sol:176:28: : : mismatched input ' ('
expecting {';', '='

OGMintersPool.sol:176:45: extraneous input ')'
expecting {';', '='}

OGMintersPool.sol:229: : or: ¢ : mismatched input ' ('
expecting {';', '='}

AngrySheepDistribution.sol

N
GO

AngrySheepDistribution.sol: error: mismatched

input ' (' expecting {';',
AngrySheepDistribution.sol:

)

IS
(@]]

input ')' expecting {';
AngrySheepDistribution. :229:41: : error: mismatched
input ' (' expecting {

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AngrySheepClub.sol

AngrySheepClub.so0l:175:28: Error: Parse error: mismatched input ' ('
expecting {';', '='}
AngrySheepClub.sol:175:45: Error: Parse : extraneous input ')'

.1 | — |
4 4

expecting { =
AngrySheepClub.so0l:228:41: Error: Parse : mismatched input ' ('

expecting {';', '='}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

