
Project: Angry Sheep Club
Website: https://angrysheep.club
Platform: Ethereum
Language: Solidity
Date: March 22nd, 2023

https://angrysheep.club

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 16

Audit Findings …………………………………………………………………………………… 17

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 29

● Solidity static analysis ….……………………………………………………………….. 33

● Solhint Linter …………………………………………………………………….……….. 42

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Angry Sheep Club to perform the Security audit of the
Angry Sheep Club smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 22nd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Angry Sheep Club is a Private Membership Club that provides tangible benefits for

its members.

● Angry Sheep Club is allowed a maximum of 5 NFT to be minted per whitelist

member.

● There are 5 smart contracts, which were included in the audit scope. And there

were some standard library code such as OpenZepelin, which were excluded.

Because those standard library code is considered as time tested and community

audited, so we can safely ignore them.

Audit scope

Name Code Review and Security Analysis Report for
Angry Sheep Club Smart Contracts

Platform Ethereum / Solidity

File 1 First100Pool.sol

File 1 MD5 Hash B959C91C3BA1A670AF3E12684B733499

File 2 HonoraryMembersPool.sol

File 2 MD5 Hash 9FE0A96E7D9647F2A8E93183BFBD0918

File 3 OGMintersPool.sol

File 3 MD5 Hash F1F156F61698A57A5DE51F2FAAC98A30

File 4 AngrySheepDistribution.sol

File 4 MD5 Hash 124FAC0EB355785AD9F0D90DB695FE2C

File 5 AngrySheepClub.sol

File 5 MD5 Hash 8843499DFB361813AE49E5818BF8A986

Audit Date March 22nd, 2023

Revised Date April 4th, 2023

https://goerli.etherscan.io/address/0xdeb062f79fb80870b1622abce1dfce9f12bd6389#code
https://goerli.etherscan.io/address/0x5058e0da7183075dfd6e0638a81e6ce9badcb2c7#code
https://goerli.etherscan.io/address/0x743da7d22b2895568b4f859ab9e2cdadca214884#code
https://goerli.etherscan.io/address/0xffd8c4bed1a9222037bcf545f821f3375631edc7#code
https://goerli.etherscan.io/address/0x29012e3feb21b19b0db3051481c435484298a03e#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 First100Pool.sol
Owner Specifications:

● The Owner can flip claim rewards.

● Merkle root value can be set by the owner.

YES, This is valid.

File 2 HonoraryMembersPool.sol
● Name: Angry Sheep Club: Honorary Collection

● Symbol: ASCHM

● Total Supply: 50

Owner Specifications:
● The Owner can flip contract deposits.

● BaseURI can be set by the owner.

● Withdraw money by the owner.

YES, This is valid.

File 3 OGMintersPool.sol
Owner Specifications:

● The Owner can flip claim rewards.

● Merkle root value can be set by the owner.

YES, This is valid.

File 4 AngrySheepDistribution.sol
● Name: AngrySheepClub-Distribution

● Symbol: ascd

● Pre Sale Amount: 100

● Sub Pre Sale Amount: 25

● Total Supply: 15001

Owner Specifications:
● OG Minter spool address can be set by the owner.

● Distribution Merkle root value can be set by the

YES, This is valid.

owner.

● The Owner can flip claim rewards.

● Distribute money by the owner.

File 5 AngrySheepClub.sol
● Name: AngrySheepClub: Platinum Series

● Symbol: ASC

● Presale Size: 2000

● Sub Presale Amount: 25

● Total Supply: 15000

● Price: 0.0001 ether

● Maximum amount that user can mint per

transaction: 5

● Mint Limit: 5

Owner Specifications:
● The owner can send the nft number 10k-15k to a

wallet address.

● The owner can send the nft number 10k-15k to a

wallet address.

● The owner can mint unlimited tokens.

● The owner can presale minting tokens.

● Withdraw money by the owner.

● Update mint price by the owner.

● Maximum transaction value can be set by the

owner.

● Maximum transaction value can be set by the

owner.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues in
the revised smart contract code.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Angry Sheep Club Protocol are part of its logical algorithm. A library is

a different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Angry Sheep Club Protocol.

The Angry Sheep Club team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Angry Sheep Club Protocol smart contract code in the form of a

goerli.etherscan.io weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://angrysheep.club which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://angrysheep.club/

AS-IS overview

First100Pool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 flipclaimReward write access only Owner No Issue
8 deposit write Passed No Issue
9 claim_First100_RewardM write Passed No Issue
10 setMerkleRoot write access only Owner No Issue
11 getMerkleRoot read Passed No Issue

HonoraryMembersPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 totalSupply read Passed No Issue
8 tokenByIndex read Passed No Issue
9 tokenOfOwnerByIndex read Passed No Issue
10 supportsInterface read Passed No Issue
11 balanceOf read Passed No Issue
12 _numberMinted internal Passed No Issue
13 ownershipOf internal Passed No Issue
14 ownerOf read Passed No Issue
15 name read Passed No Issue
16 symbol read Passed No Issue
17 tokenURI read Passed No Issue
18 _baseURI internal Passed No Issue
19 _getUriExtension internal Passed No Issue
20 approve write Passed No Issue
21 getApproved read Passed No Issue
22 setApprovalForAll write Passed No Issue
23 isApprovedForAll read Passed No Issue

24 transferFrom write Passed No Issue
25 safeTransferFrom write Passed No Issue
26 safeTransferFrom write Passed No Issue
27 _exists internal Passed No Issue
28 _safeMint internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _transfer write Passed No Issue
31 _approve write Passed No Issue
32 _setOwnersExplicit internal Passed No Issue
33 _checkOnERC721Received write Passed No Issue
34 _beforeTokenTransfers internal Passed No Issue
35 _afterTokenTransfers internal Passed No Issue
36 nonReentrant modifier Passed No Issue
37 setApprovalForAll write access only Allowed

Operator Approval
No Issue

38 approve write access only Allowed
Operator Approval

No Issue

39 transferFrom write access only Allowed
Operator

No Issue

40 safeTransferFrom write access only Allowed
Operator

No Issue

41 safeTransferFrom write access only Allowed
Operator

No Issue

42 flipcontractDeposit write access only Owner No Issue
43 flipclaimReward write access only Owner No Issue
44 deposit write Passed No Issue
45 claim_HonoraryMembers_Rew

ard
write Passed No Issue

46 tokenURI read Passed No Issue
47 setBaseURI external access only Owner No Issue
48 _baseURI internal Passed No Issue
49 numberMinted read Passed No Issue
50 getOwnershipData external Passed No Issue
51 withdrawMoney external Passed No Issue
52 callerIsUser modifier Passed No Issue

OGMintersPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue

7 flipclaimReward write access only Owner No Issue
8 deposit write Passed No Issue
9 claim_OGMinters_RewardM write Passed No Issue
10 claim_OGMinters_Reward write Passed No Issue
11 setMerkleRoot write access only Owner No Issue
12 getMerkleRoot read Passed No Issue

AngrySheepDistribution.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 totalSupply read Passed No Issue
8 tokenByIndex read Passed No Issue
9 tokenOfOwnerByIndex read Passed No Issue
10 supportsInterface read Passed No Issue
11 balanceOf read Passed No Issue
12 _numberMinted internal Passed No Issue
13 ownershipOf internal Passed No Issue
14 ownerOf read Passed No Issue
15 name read Passed No Issue
16 symbol read Passed No Issue
17 tokenURI read Passed No Issue
18 _baseURI internal Passed No Issue
19 _getUriExtension internal Passed No Issue
20 approve write Passed No Issue
21 getApproved read Passed No Issue
22 setApprovalForAll write Passed No Issue
23 isApprovedForAll read Passed No Issue
24 transferFrom write Passed No Issue
25 safeTransferFrom write Passed No Issue
26 safeTransferFrom write Passed No Issue
27 _exists internal Passed No Issue
28 _safeMint internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _transfer write Passed No Issue
31 _approve write Passed No Issue
32 _setOwnersExplicit internal Passed No Issue
33 _checkOnERC721Received write Passed No Issue
34 _beforeTokenTransfers internal Passed No Issue
35 _afterTokenTransfers internal Passed No Issue

36 nonReentrant modifier Passed No Issue
37 flipclaimReward write access only Owner No Issue
38 deposit write Passed No Issue
39 claimHolderMemberRewardM write Passed No Issue
40 claimHolderMemberReward write Passed No Issue
41 distributeMoney external Passed No Issue
42 sendToWallet write Passed No Issue
43 setOGMinterspoolAddress write access only Owner No Issue
44 setDistributionMerkleRoot write access only Owner No Issue
45 getDistributionMerkleRoot read Passed No Issue

AngrySheepClub.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 totalSupply read Passed No Issue
8 tokenByIndex read Passed No Issue
9 tokenOfOwnerByIndex read Passed No Issue
10 supportsInterface read Passed No Issue
11 balanceOf read Passed No Issue
12 _numberMinted internal Passed No Issue
13 ownershipOf internal Passed No Issue
14 ownerOf read Passed No Issue
15 name read Passed No Issue
16 symbol read Passed No Issue
17 tokenURI read Passed No Issue
18 _baseURI internal Passed No Issue
19 _getUriExtension internal Passed No Issue
20 approve write Passed No Issue
21 getApproved read Passed No Issue
22 setApprovalForAll write Passed No Issue
23 isApprovedForAll read Passed No Issue
24 transferFrom write Passed No Issue
25 safeTransferFrom write Passed No Issue
26 safeTransferFrom write Passed No Issue
27 _exists internal Passed No Issue
28 _safeMint internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _transfer write Passed No Issue
31 _approve write Passed No Issue

32 _setOwnersExplicit internal Passed No Issue
33 _checkOnERC721Received write Passed No Issue
34 _beforeTokenTransfers internal Passed No Issue
35 _afterTokenTransfers internal Passed No Issue
36 nonReentrant modifier Passed No Issue
37 setApprovalForAll write access only Allowed

Operator Approva
No Issue

38 approve write access only Allowed
Operator Approva

No Issue

39 transferFrom write access only Allowed
Operator

No Issue

40 safeTransferFrom write access only Allowed
Operator

No Issue

41 safeTransferFrom write access only Allowed
Operator

No Issue

42 sendBackup4kNFTS external access only Allowed
Operator

No Issue

43 sendBackup1kNFTS external access only Allowed
Operator

No Issue

44 stopMint external access only Owner No Issue
45 startMint external access only Owner No Issue
46 mint external callerIsUser No Issue
47 PresaleMint external callerIsUser No Issue
48 tokenURI read Passed No Issue
49 callerIsUser modifier Passed No Issue
50 setMerkleRoot write access only Owner No Issue
51 getMerkleRoot read Passed No Issue
52 setSubPresaleAmount write access only Owner No Issue
53 getSubPresaleAmount read Passed No Issue
54 setBaseURI external access only Owner No Issue
55 _baseURI internal Passed No Issue
56 numberMinted read Passed No Issue
57 getOwnershipData external Passed No Issue
58 withdrawMoney external access only Owner No Issue
59 changeMintPrice external access only Owner No Issue
60 changeMAX_PER_Transaction external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the revised contract code.

High Severity

No high severity vulnerabilities were found in the revised contract code.

Medium

No medium severity vulnerabilities were found in the revised contract code.

Low

No Low severity vulnerabilities were found in the revised contract code.

Very Low / Informational / Best practices:

No Informational severity vulnerabilities were found in the revised contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

First100Pool.sol
● flipclaimReward: The Owner can flip claim rewards.

● setMerkleRoot: Merkle root value can be set by the owner.

HonoraryMembersPool.sol
● flipcontractDeposit: The Owner can flip contract deposits.

● flipclaimReward: The Owner can flip claim rewards.

● setBaseURI: BaseURI can be set by the owner.

● withdrawMoney: Withdraw money by the owner.

OGMintersPool.sol
● flipclaimReward: The Owner can flip claim rewards.

● setMerkleRoot: Merkle root value can be set by the owner.

AngrySheepClub.sol
● sendBackup4kNFTS: The Owner can send the nft number 10k-15k to a wallet

address.

● sendBackup1kNFTS: The Owner can send the nft number 10k-15k to a wallet

address.

● stopMint: The Owner can stop minting.

● startMint: The Owner can start minting.

● mint: The Owner can minting tokens.

● PresaleMint: The Owner can presale minting tokens.

● setMerkleRoot: Merkle root value can be set by the owner.

● setSubPresaleAmount: Sub Presale amount can be set by the owner.

● setBaseURI: BaseURI can be set by the owner.

● withdrawMoney: Withdraw money by the owner.

● changeMintPrice: Update mint price by the owner.

● changeMAX_PER_Transaction: Maximum transaction value can be set by the

owner.

AngrySheepDistribution.sol
● flipclaimReward: The Owner can flip claim rewards.

● distributeMoney: Distribute money by the owner.

● setOGMinterspoolAddress: OG Minter spool address can be set by the owner.

● setDistributionMerkleRoot: Distribution Merkle root value can be set by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of goerli.etherscan.io weblink. And we have

used all possible tests based on given objects as files. We had not observed any severity

issues in the revised smart contracts. So, the smart contracts are ready for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Angry Sheep Club

First100Pool Diagram

HonoraryMembersPool Diagram

OGMintersPool Diagram

AngrySheepDistribution Diagram

AngrySheepClub Diagram

Slither Results Log

Slither log >> First100Pool.sol

Slither log >> HonoraryMembersPool.sol

Slither log >> OGMintersPool.sol

Slither log >> AngrySheepDistribution.sol

Slither log >> AngrySheepClub.sol

Solidity Static Analysis

First100Pool.sol

HonoraryMembersPool.sol

OGMintersPool.sol

AngrySheepDistribution.sol

AngrySheepClub.sol

Solhint Linter

First100Pool.sol

First100Pool.sol:176:28: Error: Parse error: mismatched input '('
expecting {';', '='}
First100Pool.sol:176:45: Error: Parse error: extraneous input ')'
expecting {';', '='}
First100Pool.sol:229:41: Error: Parse error: mismatched input '('
expecting {';', '='}

HonoraryMembersPool.sol

HonoraryMembersPool.sol:176:28: Error: Parse error: mismatched input
'(' expecting {';', '='}
HonoraryMembersPool.sol:176:45: Error: Parse error: extraneous input
')' expecting {';', '='}
HonoraryMembersPool.sol:229:41: Error: Parse error: mismatched input
'(' expecting {';', '='}

OGMintersPool.sol

OGMintersPool.sol:176:28: Error: Parse error: mismatched input '('
expecting {';', '='}
OGMintersPool.sol:176:45: Error: Parse error: extraneous input ')'
expecting {';', '='}
OGMintersPool.sol:229:41: Error: Parse error: mismatched input '('
expecting {';', '='}

AngrySheepDistribution.sol

AngrySheepDistribution.sol:176:28: Error: Parse error: mismatched
input '(' expecting {';', '='}
AngrySheepDistribution.sol:176:45: Error: Parse error: extraneous
input ')' expecting {';', '='}
AngrySheepDistribution.sol:229:41: Error: Parse error: mismatched
input '(' expecting {';', '='}

AngrySheepClub.sol

AngrySheepClub.sol:175:28: Error: Parse error: mismatched input '('
expecting {';', '='}
AngrySheepClub.sol:175:45: Error: Parse error: extraneous input ')'
expecting {';', '='}
AngrySheepClub.sol:228:41: Error: Parse error: mismatched input '('
expecting {';', '='}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

