@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Dekasino
Platform: Ethereum
Language: Solidity

Date: March 11th, 2023

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUAIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 22
® SOININt LiNtEr oo 25

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Dekasino Protocol to perform the Security audit of the

Dekasino Protocol smart contracts code. The audit has been performed using manual

analysis as well as using automated software tools. This report presents all the findings

regarding the audit performed on March 11th, 2023.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The Dekasino contract is a blockchain based casino game smart contract.

It is using API3 protocol to acquire a random number from a QRNG provider

The Dekasino contract inherits the IERC721, IERC20, Ownable, ERCZ20,
IERC20Metadata standard smart contracts from the OpenZeppelin library.

The Dekasino contract inherits the RrpRequesterV0 standard api from the API3
protocol contracts library.

These OpenZeppelin and API3 protocol contracts are considered

community-audited and time-tested, and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
Dekasino Protocol Smart Contracts
Platform Ethereum / Solidity
File 1 DekasinoRoulette.sol
File 1 MD5 Hash D632D05ED56EAE172502C92E4B4379BB
File 2 BaseVault.sol
File 2 MD5 Hash A8177DE608661A9C8E644C259E960B04
Audit Date March 11th,2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 DekasinoRoulette.sol

Owner Specifications:

e A new token address, vault value, minBet, maxBet,
and isSupported status can be set by the owner.
e API3 addresses and sponsor wallet addresses can

be changed by the owner.

YES, This is valid.

Owner authorized wallet
can set some percentage
value and we suggest
handling the private key

of that wallet securely.

File 2 BaseVault.sol
e Staking Percent: 3%
e Maximum Supply: 0.1 Million

Owner Specifications:

e A new vault controller address can be set by the
owner.

e Staking contract address and stake percentage can
be changed by the owner.

e A new maximum supply value can be set by the

owner.

YES, This is valid.

Owner authorized wallet
can set some percentage
value and we suggest
handling the private key

of that wallet securely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 0 low and some very low level issues.
Please be noted that these issues are fixed / acknowledged in the revised contract

code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Dekasino Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Dekasino Protocol.

The Dekasino team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Dekasino Protocol smart contract code in the form of a github link. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: which provided rich information

about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

DekasinoRoulette.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor read Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 checkOwner internal Passed No Issue
6 | transferOwnership write access only Owner No Issue
7 transferOwnership internal Passed No Issue
8 [placeBet external Passed No Issue
9 validateBet internal Passed No Issue
10 | setToken external Critical operation Acknowledged

lacks event log
11 | setOracle external Critical operation Acknowledged
lacks event log

12 | getTotalBetsByUser external Passed No Issue
13 | getTotalBets external Passed No Issue
14 | getBetsOfUser external Passed No Issue
15 | getAllBets external Passed No Issue

BaseVault.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 checkOwner internal Passed No Issue
6 | transferOwnership write access only Owner No Issue
7 transferOwnership internal Passed No Issue
8 [name read Passed No Issue
9 [symbol read Passed No Issue
10 | decimals read Passed No Issue
11 | totalSupply read Passed No Issue
12 | balanceOf read Passed No Issue
13 | transfer write Passed No Issue
14 | allowance read Passed No Issue
15 | approve write Passed No Issue
16 | transferFrom write Passed No Issue
17 | increaseAllowance write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

18 [decreaseAllowance write Passed No Issue
19 | transfer internal Passed No Issue
20 [mint internal Passed No Issue
21 | burn internal Passed No Issue
22 | approve internal Passed No Issue
23 | spendAllowance internal Passed No Issue
24 | beforeTokenTransfer internal Passed No Issue
25 | afterTokenTransfer internal Passed No Issue
26 | onlyController modifier Passed No Issue
27 | deposit external The totalSupply Fixed
does not increase
when it is deposited
28 | withdraw external Passed No Issue
29 | lockBet external access only No Issue
Controller
30 | unlockBet external access only No Issue
Controller
31 | setVaultController external Critical operation Acknowledged
lacks event log
32 | setStakingParams external Function input Acknowledged
parameters lack of
check, Critical
operation lacks
event log
33 | setMaxSupply external Critical operation Acknowledged
lacks event log
34 | getUnderlyingAmount read Passed No Issue
35 | getShareAmount read The totalSupply Fixed
does not increase
when it is deposited
36 | getUnderlyingBalance read Passed No Issue
37 | getHighWaterMark read Passed No Issue
38 | decimals read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) The totalSupply does not increase when it is deposited: BaseVault.sol

getShareAmount(_underlyingAmount) (
(_underlyingAmount * totalSupply() / getUnderlyingBalance());

deposit(_underlyingAmount) {
amountToMint = getShareAmount(_underlyingAmount);
(totalSupply() + amountToMint <= maxSupply * scalingFactor, "Max
underlying.transferFrom(.sender, (), _underlyingAmount);

_mint(.sender, amountToMint);

In the deposit function totalSupply is not increasing, it's always returning 0, So deposit
function always minting 0 amount. And totalSupply is not predefined when smart contracts

deploy.

Resolution: Need to confirm the totalSupply is defined with some specific number of

limits, When smart contract deployed.

Status: This issue is fixed in the revised contract code.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Function input parameters lack of check: BaseVault.sol
Function "setStakingParams()" parameter, There is a not set range of the "stakingPercent"
variable. This is a percentage calculation variable. That needs to require validation before

execution.

Resolution: We suggest using validation like percentage type variables, values should

have some range like minimum 0 and maximum 100.

This issue is acknowledged in the revised contract code.

(2) Critical operation lacks event log:
Missing event log for:
DekasinoRoulette.sol

e setToken

e setOracle

BaseVault.sol
e setVaultController
e setStakingParams

e setMaxSupply

Resolution: Please write an event log for listed events.

Status: This issue is acknowledged in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

DekasinoRoulette.sol
e setToken: Owner can set a new token address, vault value, minBet, maxBet,
isSupported status.
e setOracle: Owner can set a new API3 address, sponsor wallet address.

BaseVault.sol
e setVaultController: Owner can set a new vault controller address.
e setStakingParams: Owner can set a new staking contract address and new staking
percentage.

e setMaxSupply: Owner can set a new maximum supply value.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github link. And we have used all possible
tests based on given objects. We had observed 1 high severity issue and some very low
severity issues in the smart contracts. These issues are fixed/acknowledged in the revised

contract code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ WVault

@ SQalTimeHigh()

@ Qallowance])

@ approvel)

@ Qhalance0f()

@ Qdecimals()

@ decreaselllowancel)
@ deposit()

@ 4 getHighvWateriark()
@ Q,getShareAmount()
@ O getUnderlyingsmount()
@ G getUnderlyingBalance()
@ QhighWatertarki)

@ increaselllowancel)
@ Qis\VaultController()
@ QlockAmounts()

@ lockBet()

@ GmaxSupply()

@ G name()

o Qowner()

@ renouncelwnership()
@ setMaxSupply()

@ setStakingParams()

@ setVautController()

© QstakingContract()

@ C.stakingPercent()

@ Qsymbol()

@ GtotalSupply()

@ transfer()

@ transferFrom()

@ transferOwnershipl)
@ Qunderlying()

@ unlockBet()

@ withdraw()

Code Flow Diagram - Dekasino

DekasinoRoulette Diagram

@ DekasinoRoulette

@ IERC20

@ IERCT21

IERC165

@ OtotalSupply()
@ Cbalance0f()
@ transfer()
@ Qallowancel)
@ approvel)
@ transferFrom()

@ Qbalancedf)

@ QownerOf)

@ safeTransferFromi)
@ transferFrom()

@ approvel)

@ setApprovalForAll()
@ QgetApproved()

@ QisfpprovedForAll)

Ownable

< address airnode

< address rrpaAddress

L] hbytes32 endpointldUint 256
address sponsoryallet

bytes3Z==address idTolser
bytes32==uint256 idToSysteminde:x

bytes32==uint256 idTollserindex
uint256==hool validChoice

Eet alBets
address==null userBets
address=>Token tokens

_ constructor__()
placeBet()

< O _validateBet()

O setToken()

@ setOraclel)

0 QgetTotalBetsBylser()
@ QgetTotalBets()

o QgetBetsOfUser()

2 QoetAlBets()

@@ |loocoD0OoOOO <

@ IéRCfﬁﬁ

@ Qsupportsinterface()

@ O.v.n.rnahle

Context

O address _owner

© _ eonstructor__()
@ Cowner()

< G,_checkOwner()

@ renounceOwnershipl)
@ transferCwnership()
& _transferOwnership()

!

© Context

< G, _msgSender()
< Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BaseVault Diagram

@ BaseWault

ERCZ0
Ownable

IERC20Metadata underlying
uirts _decimals

uiMt256 scalingFactor

uirt256 highvwatermark
uirt256 allTimeHigh

address stakingContract
uiMt25E5 stakingPercent
uirt256 maxSupply
address==bool is"aultController
UMt Z256==uim256 lockAmounts
uint256 totall ockedAmourt

0000000000000 (0000000400

_ constructor__ ()
deposit()

wwithicdr s

lockBet()

unlockBet()
setVaultCTortraller()
setStakingParams()
setMaxSupply ()
SugetlUnderlyingfmount()
QgetShareAmount()
QgetinderlyingBalance()
S getHighvWaterMark()
Qdecimal=z()

@ Owna-ble

Contexd

O address _owner

@ _ constructor__ ()
@ Qowner()

O O _checkOwner()

@ renounceCwnership()
@ transferOwnership()
< _transferOwnership()

@ Address

(B) satenath

< QuisContract()
< sendvalue()
< functionCall{)

< QfunctionStaticCall()
< QverifyCallResult()

< functionCalWith v alus)

S aclel)
Asubl)
Smull)
Ccliv()
Smod()
Sming)
Qsqrt()

0000000

(e) Erczo

Context
TERCZ20
JER C20Metadats

address==uiMt256 _balances
address==mapping address=>uiMt256 _allowances

uirt2s6 _totalSupply

string _name
string _symbol

_ constructor__ ()
A name()

O symbol()
Ddecimals()
CtotalSupply()

O balanceOf()
transfer()
Callowance()
approve])
transferFromi)
increaseAllowance()
decreaselllowance()
_tran=sfer()

_mirtti()

_burn)

_approve()
_spendAllowance)

Qoo C0000000CO0OQRGROQO|(000DDO

< _afterTokenTransfer()

< _beforeTokenTransfer()

©- Context

OOy _megSender()
OO _msgDatal) |

@ IERC 20NMetad ata

IERCZ20

@ O rname()
@ Qsymbol()

@ CGoecimals()
"

v

(T) 1erc:z

@ QtotalSupply()
@ QbalanceDf()
@ transter()
@ Fallowance()
@ approvel)
@ transferFromi)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Iog >> DekasmoRouIette soI

wom

Wow oW w

= = = s = s = = s = I}
w

m

expressi
https

Roulette.

BaseVault.co

BaseVault.ce

Reentrancy
External
- underl iw

_mint{msg.

structor(ac
0._name |BGS

sent
BaseVa
calls:

nlockBet{uint256,uint256)

-Documentation#local-variable-shadowi

{Dekas inoRoulette.sol#340)
ulnerabilities-3

»tdr-Lrts,_tcker,klr'k.tirestar“
wik i/Detector-Documentatio

ver used and shoul
ki/Detector-Documentation#
allows old

VELERT T

'wik i/Detector-Documentation#incorrect-versions-of-solidity

»tdr-L|ts (k' { Ett?.SL
Va th uint256,) IE kastr- ul . 71) N in mixedCase
vault,uint256, -) is not in mix

Vault,uint256,
ault,

mixedCase
mixedCas
mixedCas

_vault
_minBet (Dekasti
_maxBet (Dekasin
(Dekas inoRoulette
Wallet (De chlP

is not in

is not in

t in

n mixedCase
not in mixedCase

is r:t in
solidity

{Dekas in

] mix -Ccsh
ctor-Documentat ion#c

e-to -nami ventions
[Dekas inoRoulette.
com/crytic/slither,

1#198)" inContext (Dekasin
ki/Detector-Documentat ion#

Roulette.sol#192-201)
edundant -statements

er used in DekasinoRoulette (Dekasti
in DekasinoRoulette (Dekasino
oulette (De kasinoRoulette.
) ed in DekasinoRoulette (DekasinoRoule tte.sol#2
iki/De t--t.r Documentation#unused-state-variable

in Dekasi

ik i/Detector-Documentation#local-variable-shadowing

) {BaseVault.sol#843-846) should emit an event for:
t (Bas ult.sol#245)

ki/Detector- Euquéltaticr#rissirg—everts—ar1tkretic

) lacks a zero-check on

_underlyingAmount) (BaseVault.so
0 |t'“|1|t 7
unt] += amo th (Bas ult.so 1«r40

{Basevault.so

tlcrsfer[rsgt

ulnerabilities-2

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

arence: htty
Vault.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

DekasinoRoulette.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
DekasinoRoulette.placeBet(address,uint8[38]): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 73:4:

Block timestamp:

Use of "block.timestamp™: "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 11/:91:

Gas & Economy

Gas costs:

Gas requirement of function DekasinoRoulette.getBetsOfUser Is infinite: If the gas
requirement of a function is higher than the block gas Limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)

Pos: 397:4:

Gas costs:

Gas requirement of function DekasinoRoulette.getAllBets is infinite: If the gas
requirement of a function is higher than the block gas Limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 404:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

DekasinoRoulette._validateBet(address,uint8[38]) : Is constant but potentially
should not be. Note: Madifiers are currently not considered by this static
analysis.

more

Pos: 120:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

more

Pos: 253:8:

BaseVault.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
BaseVault.unlockBet(uint256,uint256): Could potentially lead to re-entrancy

vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 65:4:

Block timestamp:

Use of "block.timestamp”: "block timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 87:48:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function BaseVaultwithdraw is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops In your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 49:4:

Miscellaneous

Similar variable names:

BaseVault.lockBet(uint256,uint256) : Variables have very similar names
"lockAmounts” and "_lockAmount". Note: Modifiers are currently not considered

by this static analysis.
Pos: b/:36:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug In your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 100:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) lteral values since those yield rational constants.

Pos: 117:16:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

DekasinoRoulette.sol

Solhint Linter

DekasinoRoulette.
expecting {';"',
DekasinoRoulette.
expecting
DekasinoRoulette.

sol:
v:v}
sol:

{l;l, 1)

sol:

expecting {';', '='}

DekasinoRoulette.
expecting
DekasinoRoulette.

sol:
{v;v, |:v}

sol:

expecting {';', '='}

DekasinoRoulette.
expecting
DekasinoRoulette.
DekasinoRoulette.
expecting
DekasinoRoulette.

sol:
{l,.l, |7l}
sol:
sol:
R

sol:

]] | — |
=)

expecting {';"',

Error:

Error:

Error:

Error:

Error:

Error:

error:

error:

mismatched input

mismatched input
mismatched input

matched input

mismatched input

mismatched input

missing ';' at '{

mismatched input

mismatched input

BaseVault.sol

BaseVault.sol:
the r semver
BaseVault.sol:

]
>m N

A

)

[

Bdo@ﬂdnlr 501:62:
your business log
BaseVault.sol:87:
your business log

Error:

Compiler ver

il rement

45:
ic
49:;
ile

Error:
1ctors to

Explicitly mark
true if using
Error: Avoid to

Error:

visibility
solidity >=0.
make time-based de

Avoid to make time-base

y in fu
7.0)
isions 1in

d decisions in

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

