@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Enoch
Website: https://enochdev.com

Platform: Ethereum

Language: Solidity
Date: March 15th, 2023

https://enochdev.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Enoch to perform the Security audit of the Enoch smart
contracts code. The audit has been performed using manual analysis as well as using
automated software tools. This report presents all the findings regarding the audit
performed on March 15th, 2023.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

Enoch Metanomics ensures a fluid ecosystem of dual coin utility across the
platform.

A platform made to empower creative minds and 3D artists. Become the best and
earn money on Enoch.

The Enoch contract inherits the ERC20, ERC1967Proxy, Initializable,
UUPSUpgradeable, ERC20Upgradeable, ERC20BurnableUpgradeable standard
smart contracts from the OpenZeppelin library.

These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Enoch Smart Contracts

Platform Ethereum / Solidity

File 1 Enoch.sol

File 1 MD5 Hash

6E45EE220519FCEGF9D40DFEBSE2F7A2

File 2

LoveProxy.sol

File 2 MD5 Hash

6BE3622A88F8CD75FD6144EF90C8AT77D

File 3

Love.sol

File 3 MD5 Hash

DEA251BCAA81E232A17DAB919733FF2D

Updated File 3 MD5 Hash

2CBF282CDA3AEB8501A80D94CC5D45C2

Audit Date

March 15th,2023

Revise Audit Date

March 17th,2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Enoch.sol YES, This is valid.
e Name: ENOCH
e Symbol: ENOCH
e Decimals: 18
e Total Supply: 70 Million ENOCH tokens.
e OpenZeppelin library used.

Owner Specifications:
e Admin can burn amounts.

e Current admin can set a new admin address.

File 2 Love.sol YES, This is valid.
e Name: LOVE
e Symbol: LOVE
e Decimals: 18
e Total Supply: 3 billion
e OpenZeppelin library used.

Owner Specifications:
e Mint amount by the admin.

e Admin can burn amounts.

e Admin can upgrade a new authorized address.

File 3 LoveProxy.sol YES, This is valid.
e Name: LOVE
e Symbol: LOVE
e Decimals: 18
e LoveProxy contract can inherit ERC1967Proxy

contract from openzeppelin library.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 0 low and some very low level issues.

These issues are fixed in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Enoch Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Enoch Protocol.

The Enoch team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Enoch Protocol smart contract code in the form of a file. The hash of that

code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://enochdev.com which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://enochdev.com

AS-IS overview

Enoch.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [burn external | access only Admin No Issue
3 | transferAdminRole external | access only Admin No Issue
4 [name read Passed No Issue
5 | symbol read Passed No Issue
6 | decimals read Passed No Issue
7 | totalSupply read Passed No Issue
8 | balanceOf read Passed No Issue
9 |[transfer write Passed No Issue
10 | allowance read Passed No Issue
11 | approve write Passed No Issue
12 | transferFrom write Passed No Issue
13 | increaseAllowance write Passed No Issue
14 | decreaseAllowance write Passed No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | spendAllowance internal Passed No Issue
20 | beforeTokenTransfer internal Passed No Issue
21 | afterTokenTransfer internal Passed No Issue

Love.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initializer modifier Passed No Issue
3 | reinitializer modifier Passed No Issue
4 | onlylnitializing modifier Passed No Issue
5 disablelnitializers internal Passed No Issue
6 getinitializedVersion internal Passed No Issue
7 islnitializing internal Passed No Issue
8 UUPSUpgradeable init internal | access only Initializing No Issue
9 | _ UUPSUpgradeable_init_ | internal | access only Initializing No Issue

unchained

10 | onlyProxy modifier Passed No Issue
11 [notDelegated modifier Passed No Issue
12 | proxiableUUID external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

13 | upgradeTo write access only Proxy No Issue
14 | upgradeToAndCall write access only Proxy No Issue
15 | authorizeUpgrade internal Passed No Issue
16 ERC20 init internal | access only Initializing No Issue
17 ERC20 init unchained internal | access only Initializing No Issue
18 | name read Passed No Issue
19 | symbol read Passed No Issue
20 | decimals read Passed No Issue
21 | totalSupply read Passed No Issue
22 | balanceOf read Passed No Issue
23 | transfer write Passed No Issue
24 | allowance read Passed No Issue
25 | approve write Passed No Issue
26 | transferFrom write Passed No Issue
27 | increaseAllowance write Passed No Issue
28 | decreaseAllowance write Passed No Issue
29 | transfer internal Passed No Issue
30 | mint internal Passed No Issue
31 [burn internal Passed No Issue
32 | approve internal Passed No Issue
33 | spendAllowance internal Passed No Issue
34 | beforeTokenTransfer internal Passed No Issue
35 | afterTokenTransfer internal Passed No Issue
36 ERC20Burnable init internal | access only Initializing No Issue
37 | __ERC20Burnable_init_unc | internal | access only Initializing No Issue
hained
38 [burn write Passed No Issue
39 | burnFrom write Passed No Issue
40 | onlyAdmin modifier Passed No Issue
41 | initialize external initializer No Issue
42 | mint internal access only Admin No Issue
43 | authorizeUpgrade internal access only Admin No Issue
44 | burn write access only Admin No Issue
LoveProxy.sol
Functions

SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue

2 implementation internal Passed No Issue

3 | getimplementation read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

(1) Pause/Unpause not working properly: Love.sol

Pause and Unpause functions are defined but when the admin pauses the contract then
still any user can do all activities, so both functions are not affected by transfer or burn or

approval, etc.

Resolution: We suggest checking for pause and Unpause functions logic to work properly.
or if both functions are not in use so remove both functions.

Status: This issue is fixed in the revised contract code.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

No Very Low severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Enoch.sol
e burn: Admin can burn amount.

e transferAdminRole: Current admin can set a new admin address.

Love.sol
e initialize: Admin can initialize ids.
e mint: Mint amount by the admin.
e burn: Admin can burn amount.

e _authorizeUpgrade: admin can upgrade a new authorized address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We had observed 1 high severity issue in the smart
contracts.These issues are fixed in the revised contract code. So, the smart contracts

are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Enoch

Enoch Diagram

(&) sarematn

< Cadd()
< Qusubl)
< Gumul()

& Oudliv()

< Qumod()
< auming)
O Qsgrt()

@ Addrass

O QisContract()

< sendvalue()

< functionZall()

< functionCallith' alue()
B _functionCallithaluel)

< address _owner
O uint256 _totalSupply

@ _ constructor__ ()
@ burn()

2 transferAdminRole)

Context

© ERC20
TERCE20

IER C20Metadata

addresg==Uin256 _balances

address==mapping address=>uirt256 _allowances

uirt256 _totalSupply

string _name
O string _symbaol

oooao

@ _ constructor__ ()
@ QtotalSupply ()

@ Qbalancedf()

@ transfer()

@ Qallowancel)

D@ approvel)

@ transferFromi)

@ increaselllowance()
@ decreaselllowance)
< _transfer()

< _mint(y

< _burn()

< _approvel)

< _spendAllowance()
<+ _beforeTokenTransfer()
< _afterTokenTransfer()

| © (;:o ntext

<
.

@ IERC20Metadata

TERC20
! < 4, _msgSender() @ Q.name()
< Q_msgDatal) @ Qsymbal()

@ Q.decimals()

(@ rerczo

OtotalSupply()
Q.decimals()

A symbol()

Q. name()
QgetOwner()
O.balanceOf()
transfer()
Qallowance()
approvel)
transferFrom()

o000 OCOOROD

ta

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Love Diagram

@ Love

Initiatizable
@ AddressUpgradeable WUPSUpgradeable
ERC20Upgradeable
© QsContract() @ StorageSiotUpgradeable gf,iii%&;fﬁ;z%’;ﬂeame
< sendValue()

© functionCall)
< functionCallWith'/alue()
© QfunctionSteticCall)

© QetAddressSiot()
© QgetBooleansiat()

O address _owner
© QgetBytes32Slot() —-
© QuerifyCallResuttFromTarget() © Qgetlint256Slot)) © intialize()
< QuerifyCallResutt() A © mint(y
B Q_revert() @ burn()
' _authorizeUpgrade()
® pause() N\,
@ unpause() N
N
ré \
| \ N
@ERCQOBumahIeUpgradeame ‘-_
/ Initializable \ \
/ ContextUpgradeable \
@ 1BeaconUpgradeabie / ERC20Upgradeable "‘.
© Qimplemertation) O uint256 __gap 1
< __ERC20Burnahle_init() \
< __ERC20Burnable_init_unchainec() ".
@ burn() \
© burnFrom() \
1 1
/ [\
| | \
[\
[I‘.
(©) ercanupgradeatie - ‘ ‘
| \ | \
Initializable | \ | \
Contextlipgradeable | | | \
IERC20Upgradeable | | |
IERC20Metadatalpgradeable | \ I
. N 1
| \/
O address=>uint256 _balances | | \/ |
O address==mapping address=>uint256 _allowances | \ @ @
O Uirt256 totalSupply ‘I | PausableUpgradeable | UUPSUpgradeable
e
e [\ Initializable | Intializable
& m%g b . | | Contextlipgradeable ‘ IERC1822 Proxiablelngradeable
dnes gep | \ ERC1967Upgradelpgradeable
© __ERC20_init() | \
© _FRC20_int_unchained() | | O hool _paused |
@ Qname() | \ O uint256 _gap O address __self
e =
g ézz::“a‘go | \ © _ Pausable_int() uint255 _gap
© QotalSuppiy() | | © __Pausable_nt_unchained() © __UUPSUpgradeable_init()
o Qba‘mfg:o | | © Qpaused() © _UUPSUpgraceable_init_unchained()
& transfert) | \ © Q_requireNetPaused() © QproxiableLUUID()
& Qalowance() \ © Q_requirePaused() ® upgradeTo()
© approve)) | | © _pause() © dupgradeToAndCall()
|
© transferFrom() | | © _unpause() < _authorizeUparade()
@ increaseAllowance() | | T
© decreasellowance() ‘I ‘.‘ | |
< _transfer() | | | |
< mint() \ | I
& _purn() | | | | ‘
© _approve() | [I
© _spendAllowance() | \ | | |
@ _heforeTokenTransfer() X | | |
< _afterTokenTransfer() | | | |
' I '
| | | | |
| I
‘ \ , :
J | \ | | () ERC1967URgradeUporadeable
\ |
{ | \ | | | Inttializable
/ \ | \
[| | | | \
/ | \
/ | ‘I | \ YRY; | : \ O bytes32 ROLLBACK_SLO
| | \ | \ < bytes32 _IMPLEMENTATION_SLOT
| \ | | © ContextUpgradeable | [\ < bylesa2 _ADMIN_SLOT
I‘ | | | \ < byles32 BEACON SLOT
@fERC?OMe(adaerpgradeable] Initializable " I\ \V | O uint256 _gap
| | < __FRC1967Upgrade_int()
IERC20Upgradeable | | | @ IERC1822Pre i jparade_
s | O U256 _gap I | < _ERC1967Upgrade_nt_unchained()
| @ Qname() | \ — | | © QproxiableULUID() | & Q_getimplementation()
| @ Qeymbol() | | < __Context_init() | | | B _setimplementation()
| © Qdecimals() | \ © _Cortext_int_unchained() | | | < _upgradeTo()
| ' \ © Q_msgSender() I | | © “upgradeToAndCall()
\ \ © Q_msgData() | | [© _upgradeToAndCallUUPS()
\ | | / & & _getAdming)
| I { / B _setAdmin()
| | [/ < _changeAdmin()
\ I [/ < Q_getBeacon()
\ . / B _setBeacon()
\ \ | < _upgradeBeaconToAndCall()
\ | | B _functionDelegateCall()

‘ ,
@’ERC%U"Q’QGEQM - @ Initializable
© QotalSupply() 0 uint8 _intializec

@ QbalanceOf() O bool _initializing

® transfer()

© Qallowance()
© approve()
© transferFrom()

< _disablelnttializers()
< Q_getinttialized\/ersion()
© @ shnttializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Address

LoveProxy Diagram

< QisContract()

< genddValuel)

“ functionCall{)
 functionCallvith'/alue()
B _functionCallyith'aluel)

@ IERC1822Proxiable

@ LoveProxy

ERC1967 Proxy

@ QproxiableLUID0)

@ IBeacon

@ Qimplementation()

@ & __constructor__()
@ O getimplementation()

@ ERC1967Proxy

Proxy
ERC1967Upgrade

@ & __constructor__()
0 jmplementation()

.r ‘.

-
F

.|
*,
|

@ ERC1967Uparade

I'.'"’
@ Promy

O bytes32 ROLLBACK _SLOT

< bytes32 _IMPLEMENTATION_SLOT

< bytes32 _ADMIN_SLOT
< bytes32 _BEACON_SLOT

< _delegate

< O_implementationi)
< _fallback()

@ & __constructor__()
<+ _peforeFallback()

< 4, _getimplementation|)

B _setlimplementation])

< _upgradeTal)

< _upgradeToAndCall()

< _upgradeToAndCallJUPS()
< Q_getAdming)

B _setAdming)

< _changeAdming)

< 0,_getBeacon()

B _setBeacon()

< _upgradeBeaconToAndCall)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Sllther Iog >> Enoch.sol
) should emit an event for:
ik i/Detector-Documentation#miss ing-events-access-control
ess . isContract() c =)) uses assembly
- INLINE ASM (En)
ss._functionCallwWith re es,uint256,string) (Enoch.sol#131-153) uses assembly
- INLINE acl’ » 7
Reference: https i h. ¢ r/wiki/Detector-Documentation#assembly-usage
d versions

slither /wiki/Detector-Documentation#incorrect-versions-of-solidity

) 1s not in mixedCase
ik i/Detector-Documentation#conformance-to-solidity-naming-co

—"/|"I—SS'L n "this
#redundant-statements

h.slitherConstructe i es() | # -561) uses literals with too many digits:
_totalsupply

ector- I:- umentation#too-many y-digits

ctions:

= IERCECI
- IERCZ a. [ch.)
Reference: https:/, h. C crytic/ er/wik i/Detector-Documentation#unimplemented- functions

_tota ICLH. Z noch. ; h nstant
ce: https i b tic/slither, ki/Detector-Documentation#state-variables-that-could-be-declared-constant

0l#468)' in ERC1967Up
laration: reguire(

" IMPLEMEN N TUpgr | ‘ o
: https:// hub ic/sli wiki/ : 3 of-local-variables

ressUpgradeable.
- INLINE /!
StorageSlotUpgrade
- INLINE A c :
StorageSlotUpgrade = ole (es32) |). 50l#401-405) uses assembly
= IILIIE ASM V2. #
.50l#407-411) uses assembly

StorageSlotUpgradeab 256 (es32) | 2.50l#413-417) uses assembly
- INLINE ASM { A
Jgithub Jory slltl‘-‘r.-'\ iki/Detector-Documentation#assembly-usage

.TLI"‘t'L- nCa U.I_

'C‘t ‘t'L- Ca 11'
rSS.L,"LI"t

Pausable
PcLScl 1»

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

s old versions

Function ContextUy ble._ Context_init() (# i in mixedCase
Function extUp =._ Conte init_unchained() (2V =) is not in mixedCase
Variable cable. (3
Function ble. init({string, ing) | 3) is not in mixedCase
Function ble. | _init_unchained(ing, 1 (ol#215-218) is not in mixedCase
Variable 2 (i i i 3
Function) 2 = init() :) 1 in mixedCase
Function 2 = =._ | r ini chai (:) is not in mixedCase
Variable) 8. 3 i
Function 96 elUp 2 z. 2 (EZ : 425) n mixedCase
Function =Up 2, | | . #427-428) 1is not in mixedCase
Variable allp 2 2 . 2
Function UUPSUp 8. init() (ol#524-535) 1 in mixedCase

UUPSUp = = S b init_unc ed() (#537) is not in mixedCase

le LLPELr f 3)

—L|-t1-r 2 = 2. a e_init() (WESY i in mixedCase
Function 2 ble._ Pausab init_un (#582-584) is not in mixedCase
Variable 3 (
Pc'ar-t»l 1 a_ (V2.) is not in mixedCase
#

: is not in mixedCase
15 not in mixedCase

) is
is not 1in = i
ic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

d-be-declared-constant

ess.isContract(
- INLINE ASM { = E 7
d ress._Tchtichallwitk o es,uint256,string) (LovePro #52) uses assembly

: ILLILE ASM 2 c 3
https:, C ytic/slither/wiki/Detector-Documentation#assembly-usage

should be removed

d should

d and should
SF:LI. I» rem

versions
iki/Detector-Documentation#incorrect-versions-of-solidity
dvalue(address,uint2

1r1»|t -cll{,clL»:
_functionCa llalﬂ

_IMPLEMENTATI
AEVIL SLOT (

Refere : hub. com, i ither /wiki/Detector-Documentation#unused-state
LoveProxy.sol analyzed (7 contracts thh 24 detectors) 24 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Enoch.sol
Gas & Economy

Gas costs:

Gas requirement of function Enoch.burn is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays In storage)

Pos: 25:4:

Miscellaneous

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 13:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 30:8:

Love.sol
Gas & Economy

Gas costs:

Gas requirement of function Love.initialize is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 27:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function Love.pause is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)

Pos: 45:4:

Gas costs:

Gas requirement of function Love.unpause is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid

loops In your functions or actions that modify large areas of storage (this includes
clearing or copying arrays in storage)
Pos: 49:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" If x can be false, due to e.g. invalid input
or a failing external component.

Pos: 20:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Enoch.sol

Enoch.sol:3:1: Error: Compiler version ~0.8.0 does not satisfy the r
semver requirement

Enoch.so0l:20:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

Love.sol

Error: Compiler version 70.8.7 does not satisfy the r

Error: Code contains empty blocks

LoveProxy.sol

LoveProxy.sol:2:1: Error: Compiler version "~0.8.4 does not satisfy
the r semver requirement

LoveProxy.sol:8:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
LoveProxy.sol:11:5: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

