
Project: Hunter Token
Website: archerswap.finance/hunt
Platform: Core Chain
Language: Solidity
Date: March 5th, 2023

https://archerswap.finance/hunt

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Hunter Token team to perform the Security audit of
the Hunter Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 5th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● ArcherSwap Hunter Token is a crypto world for users to trade, earn. It will be run on

Core Chain with features including AMM.

Audit scope

Name Code Review and Security Analysis Report for
Hunter Token Smart Contract

Platform Core Chain / Solidity

File Hunter.sol

File MD5 Hash F50FF9F445078AD33815FDE203D4A892

Audit Date March 5th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File: Hunter Contract
Tokenomics:

● Name: Hunter

● Symbol: HUNT

● Decimals: 18

Total BPS Fee: 4%
● Treasury Fee BPS: 1%

● Liquidity BPS Fee: 1%

● Dividend BPS Fee: 2%

● Maximum Transactions BPS: 49

● Maximum Wallet BPS: 200

Owner Specifications:
● Open trading can approve status true by the owner.

● Divided amount sent manually by the owner.

● marketing Wallet address and liquidity Wallet address

set by the owner.

● A market maker pair address can be set with a value by

the owner.

● Treasury fees, liquidity fees, dividend fees can be set

by the owner.

● An owner can enable swapping.

● Owner can set the tax status enabled.

● Owner can set the compounding status enabled.

● Owner can update divided settings.

● It is possible for the owner to update the maximum

transaction BPS value.

● A maximum transaction limit can be set for an account

address.

YES, This is valid.

● The maximum wallet BPS can be set by the owner.

File: DividendTracker Contract
Tokenomics:

● Name: Hunter_DividendTracker

● Symbol: Hunter_DividendTracker

● Decimals: 18

● minimum Token Balance For Dividends: 10

Owner Specifications:
● New balance will be updated by the owner.

● Dividends account wallet addresses can be excluded

from dividends account wallet addresses.

● Divided amount sent to the holder address manually by

the owner.

● Owner can set the process account address status true.

● Owner can set the compound account address status

true.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “ Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Hunter Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Hunter Token.

The Hunter Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Hunter Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://archerswap.finance/hunt

which provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://archerswap.finance/hunt

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 receive external Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue

10 decimals write Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 allowance read Passed No Issue
14 approve write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 transfer write Passed No Issue
18 transferFrom write Passed No Issue
19 openTrading external access only Owner No Issue
20 _transfer internal Passed No Issue
21 _executeTransfer write Passed No Issue
22 _approve write Passed No Issue
23 _mint write Passed No Issue
24 _burn write Passed No Issue
25 swapTokensForNative write Passed No Issue
26 addLiquidity write Passed No Issue
27 includeToWhiteList write Passed No Issue
28 _executeSwap write Passed No Issue
29 excludeFromFees write access only Owner No Issue
30 isExcludedFromFees read Passed No Issue
31 manualSendDividend external access only Owner No Issue
32 excludeFromDividends write access only Owner No Issue
33 isExcludedFromDividends read Passed No Issue
34 setWallet external access only Owner No Issue
35 setAutomatedMarketMakerP

air
write access only Owner No Issue

36 setFee external access only Owner No Issue
37 _setAutomatedMarketMaker

Pair
write Passed No Issue

38 updateUniswapV2Router write access only Owner No Issue
39 claim write Transferred 0 amount Refer Audit

Findings

40 compound write Passed No Issue
41 withdrawableDividendOf read Passed No Issue
42 withdrawnDividendOf read Passed No Issue
43 accumulativeDividendOf read Passed No Issue
44 getAccountInfo read Passed No Issue
45 getLastClaimTime read Passed No Issue
46 setSwapEnabled external access only Owner No Issue
47 setTaxEnabled external access only Owner No Issue
48 setCompoundingEnabled external access only Owner No Issue
49 updateDividendSettings external access only Owner No Issue
50 setMaxTxBPS external Default value and Range

validation mismatch
Refer Audit

Findings
51 excludeFromMaxTx write access only Owner No Issue
52 isExcludedFromMaxTx read Passed No Issue
53 setMaxWalletBPS external access only Owner No Issue
54 excludeFromMaxWallet write access only Owner No Issue
55 isExcludedFromMaxWallet read Passed No Issue
56 rescueToken external access only Owner No Issue
57 rescueETH external access only Owner No Issue
58 receive external Passed No Issue
59 distributeDividends write Passed No Issue
60 setBalance external access only Owner No Issue
61 excludeFromDividends external access only Owner No Issue
62 isExcludedFromDividends read Passed No Issue
63 manualSendDividend external access only Owner No Issue
64 _setBalance external Passed No Issue
65 _mint write Passed No Issue
66 _burn write Passed No Issue
67 processAccount write access only Owner No Issue
68 _withdrawDividendOfUser write Passed No Issue
69 compoundAccount write access only Owner No Issue
70 _compoundDividendOfUser write Passed No Issue
71 withdrawableDividendOf read Passed No Issue
72 withdrawnDividendOf read Passed No Issue
73 accumulativeDividendOf read Passed No Issue
74 getAccountInfo read Passed No Issue
75 getLastClaimTime read Passed No Issue
76 name read Passed No Issue
77 symbol read Passed No Issue
78 decimals write Passed No Issue
79 totalSupply read Passed No Issue
80 balanceOf read Passed No Issue
81 transfer write Passed No Issue
82 allowance write Passed No Issue
83 approve write Passed No Issue
84 transferFrom write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Variable visibility:

Variables are defined by default visibility which is private. So no way to view those

addresses.

Resolution: We suggest defining the variable as public. Ignore if it is a part of the plan.

(2) Transferred 0 amount:

claim() function allows to transfer 0 tokens.

Resolution: We suggest avoiding 0 amounts to get transferred.

(3) Unused event is defined:

There is a "BlacklistEnabled" event defined in the smart contract but not used anywhere.

Resolution: Remove unused events from the smart contract.

(4) Default value and Range validation mismatch:

Default value of maxTxBPS is 49, but the range is 75 to 10000. As a result, the range does

not match the default.

Resolution: We suggest correcting the values.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Hunter.sol
● openTrading: Open trading can approve status true by the owner.

● excludeFromFees: Owner can set an account address which excludes the fee

account address.

● manualSendDividend: Divided amount sent manually by the owner.

● excludeFromDividends: Owner can exclude the amount from the dividends account

wallet address.

● setWallet: marketing Wallet address and liquidity Wallet address set by the owner.

● setAutomatedMarketMakerPair: Owner can set an automated market maker pair

address with value.

● setFee: Treasury fees, liquidity fees, dividend fees can be set by the owner.

● updateUniswapV2Router: Owner can update a new uniswapV2Router address.

● setSwapEnabled: Owner can set the swap status enabled.

● setTaxEnabled: Owner can set the tax status enabled.

● setCompoundingEnabled: Owner can set the compounding status enabled.

● updateDividendSettings: Owner can update divided settings.

● setMaxTxBPS: Owner can update the maximum transaction BPS value.

● excludeFromMaxTx: Owner can set an account address which excludes maximum

transactions.

● setMaxWalletBPS: Owner can set the maximum wallet BPS.

● excludeFromMaxWallet: Owner can set an account address which excludes

maximum wallet addresses.

● rescueToken: Owner can rescue the token.

● rescueETH: Owner can rescue ether amount.

DividendTracker.sol
● setBalance: New balance will be updated by the owner.

● excludeFromDividends: Owner can exclude the amount from the dividends account

wallet address.

● manualSendDividend: Divided amount sent to the holder address manually by the

owner.

● processAccount: Owner can set process account address status true.

● compoundAccount: Owner can set compound account address status true.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed some informational severity issues in

the token smart contract. But those issues are not critical. So, it’s good to go for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “ Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Hunter Token

Slither Results Log
Slither Log >> Hunter.sol

Solidity Static Analysis
Hunter.sol

Solhint Linter

Hunter.sol

Hunter.sol:10:32: Error: Parse error: mismatched input '<' expecting
';'
Hunter.sol:385:18: Error: Parse error: missing ';' at '{'
Hunter.sol:426:18: Error: Parse error: missing ';' at '{'
Hunter.sol:459:18: Error: Parse error: missing ';' at '{'
Hunter.sol:508:18: Error: Parse error: missing ';' at '{'
Hunter.sol:824:18: Error: Parse error: missing ';' at '{'
Hunter.sol:837:18: Error: Parse error: missing ';' at '{'
Hunter.sol:849:18: Error: Parse error: missing ';' at '{'
Hunter.sol:866:18: Error: Parse error: missing ';' at '{'
Hunter.sol:878:18: Error: Parse error: missing ';' at '{'
Hunter.sol:974:18: Error: Parse error: missing ';' at '{'
Hunter.sol:997:18: Error: Parse error: missing ';' at '{'
Hunter.sol:1023:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

