@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Hunter Token

Website: archerswap.finance/hunt
Platform: Core Chain

Language: Solidity

Date: March 5th, 2023

https://archerswap.finance/hunt

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 12
AUt FINAINGS oo e 13
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 23
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Hunter Token team to perform the Security audit of
the Hunter Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 5th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e ArcherSwap Hunter Token is a crypto world for users to trade, earn. It will be run on

Core Chain with features including AMM.

Audit scope
Name Code Review and Security Analysis Report for
Hunter Token Smart Contract
Platform Core Chain / Solidity
File Hunter.sol
File MD5 Hash F50FF9F445078AD33815FDE203D4A892
Audit Date March 5th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File: Hunter Contract

Tokenomics:

Name: Hunter
Symbol: HUNT

Decimals: 18

Total BPS Fee: 4%

Treasury Fee BPS: 1%

Liquidity BPS Fee: 1%

Dividend BPS Fee: 2%
Maximum Transactions BPS: 49
Maximum Wallet BPS: 200

Owner Specifications:

Open trading can approve status true by the owner.
Divided amount sent manually by the owner.
marketing Wallet address and liquidity Wallet address
set by the owner.

A market maker pair address can be set with a value by
the owner.

Treasury fees, liquidity fees, dividend fees can be set
by the owner.

An owner can enable swapping.

Owner can set the tax status enabled.

Owner can set the compounding status enabled.
Owner can update divided settings.

It is possible for the owner to update the maximum
transaction BPS value.

A maximum transaction limit can be set for an account

address.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e The maximum wallet BPS can be set by the owner.

File: DividendTracker Contract

Tokenomics:

Name: Hunter_DividendTracker
Symbol: Hunter_DividendTracker
Decimals: 18

minimum Token Balance For Dividends: 10

Owner Specifications:

New balance will be updated by the owner.

Dividends account wallet addresses can be excluded
from dividends account wallet addresses.

Divided amount sent to the holder address manually by
the owner.

Owner can set the process account address status true.
Owner can set the compound account address status

true.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “ Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Hunter Token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Hunter Token.

The Hunter Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Hunter Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://archerswap.finance/hunt

which provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://archerswap.finance/hunt

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | receive external Passed No Issue
8 [name read Passed No Issue
9 | symbol read Passed No Issue
10 | decimals write Passed No Issue
11 | totalSupply read Passed No Issue
12 | balanceOf read Passed No Issue
13 | allowance read Passed No Issue
14 | approve write Passed No Issue
15 | increaseAllowance write Passed No Issue
16 | decreaseAllowance write Passed No Issue
17 | transfer write Passed No Issue
18 | transferFrom write Passed No Issue
19 [openTrading external access only Owner No Issue
20 | transfer internal Passed No Issue
21 | executeTransfer write Passed No Issue
22 | approve write Passed No Issue
23 | mint write Passed No Issue
24 | burn write Passed No Issue
25 | swapTokensForNative write Passed No Issue
26 | addLiquidity write Passed No Issue
27 | includeToWhiteL.ist write Passed No Issue
28 | executeSwap write Passed No Issue
29 | excludeFromFees write access only Owner No Issue
30 | isExcludedFromFees read Passed No Issue
31 | manualSendDividend external access only Owner No Issue
32 | excludeFromDividends write access only Owner No Issue
33 | isExcludedFromDividends read Passed No Issue
34 | setWallet external access only Owner No Issue
35 | setAutomatedMarketMakerP | write access only Owner No Issue
air
36 | setFee external access only Owner No Issue
37 | _setAutomatedMarketMaker | write Passed No Issue
Pair

38 | updateUniswapV2Router write access only Owner No Issue
39 ([claim write

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

40 | compound write Passed No Issue
41 | withdrawableDividendOf read Passed No Issue
42 | withdrawnDividendOf read Passed No Issue
43 | accumulativeDividendOf read Passed No Issue
44 | getAccountinfo read Passed No Issue
45 | getLastClaimTime read Passed No Issue
46 | setSwapEnabled external access only Owner No Issue
47 | setTaxEnabled external access only Owner No Issue
48 | setCompoundingEnabled external access only Owner No Issue
49 | updateDividendSettings external access only Owner No Issue
50 [setMaxTxBPS external

51 | excludeFromMaxTx write access only Owner No Issue
52 | isExcludedFromMaxTx read Passed No Issue
53 | setMaxWalletBPS external access only Owner No Issue
54 | excludeFromMaxWallet write access only Owner No Issue
55 | isExcludedFromMax\Wallet read Passed No Issue
56 | rescueToken external access only Owner No Issue
57 | rescueETH external access only Owner No Issue
58 | receive external Passed No Issue
59 [distributeDividends write Passed No Issue
60 | setBalance external access only Owner No Issue
61 | excludeFromDividends external access only Owner No Issue
62 | isExcludedFromDividends read Passed No Issue
63 [manualSendDividend external access only Owner No Issue
64 | setBalance external Passed No Issue
65 [mint write Passed No Issue
66 | burn write Passed No Issue
67 | processAccount write access only Owner No Issue
68 | withdrawDividendOfUser write Passed No Issue
69 [compoundAccount write access only Owner No Issue
70 [compoundDividendOfUser write Passed No Issue
71 | withdrawableDividendOf read Passed No Issue
72 | withdrawnDividendOf read Passed No Issue
73 | accumulativeDividendOf read Passed No Issue
74 | getAccountinfo read Passed No Issue
75 | getLastClaimTime read Passed No Issue
76 | name read Passed No Issue
77 | symbol read Passed No Issue
78 | decimals write Passed No Issue
79 | totalSupply read Passed No Issue
80 [balanceOf read Passed No Issue
81 [transfer write Passed No Issue
82 | allowance write Passed No Issue
83 | approve write Passed No Issue
84 | transferFrom write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Variable visibility:

address marketingWallet;

address liquidityWallet;

Variables are defined by default visibility which is private. So no way to view those

addresses.

Resolution: We suggest defining the variable as public. Ignore if it is a part of the plan.

(2) Transferred 0 amount:

claim() function allows to transfer 0 tokens.

Resolution: We suggest avoiding 0 amounts to get transferred.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Unused event is defined:

event BlacklistEnabled(bool enabled);

There is a "BlacklistEnabled" event defined in the smart contract but not used anywhere.

Resolution: Remove unused events from the smart contract.

(4) Default value and Range validation mismatch:

»= 75 && bps <= 1@eee, "
maxTxBP5 = bps;

Default value of maxTxBPS is 49, but the range is 75 to 10000. As a result, the range does

not match the default.

Resolution: We suggest correcting the values.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Hunter.sol
e openTrading: Open trading can approve status true by the owner.
e excludeFromFees: Owner can set an account address which excludes the fee
account address.
e manualSendDividend: Divided amount sent manually by the owner.
e excludeFromDividends: Owner can exclude the amount from the dividends account

wallet address.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setWallet: marketing Wallet address and liquidity Wallet address set by the owner.
setAutomatedMarketMakerPair: Owner can set an automated market maker pair
address with value.

setFee: Treasury fees, liquidity fees, dividend fees can be set by the owner.
updateUniswapV2Router: Owner can update a new uniswapV2Router address.
setSwapEnabled: Owner can set the swap status enabled.

setTaxEnabled: Owner can set the tax status enabled.

setCompoundingEnabled: Owner can set the compounding status enabled.
updateDividendSettings: Owner can update divided settings.

setMaxTxBPS: Owner can update the maximum transaction BPS value.
excludeFromMaxTx: Owner can set an account address which excludes maximum
transactions.

setMaxWalletBPS: Owner can set the maximum wallet BPS.
excludeFromMaxWallet: Owner can set an account address which excludes
maximum wallet addresses.

rescueToken: Owner can rescue the token.

rescueETH: Owner can rescue ether amount.

DividendTracker.sol

setBalance: New balance will be updated by the owner.

excludeFromDividends: Owner can exclude the amount from the dividends account
wallet address.

manualSendDividend: Divided amount sent to the holder address manually by the
owner.

processAccount: Owner can set process account address status true.

compoundAccount: Owner can set compound account address status true.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file and we have used all possible tests
based on given objects as files. We have observed some informational severity issues in
the token smart contract. But those issues are not critical. So, it’'s good to go for the

mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “ Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Hunter Token

(®) adoress

© QusContract()

@ sendValue()

© functionCail()

© functionCallAhY alus()
© QuncionStaticCal(y
© functionDelegateCall()
© QuerifyCallResut()

. IUniswap\V2Pair

© Qrame()

© Qsymbol()

@ Qudecimals()
® QotalSupply()

@ approve()

© transter()

© transferfrom()

© QADOMAIN_SEPARATOR()
QPERMIT_TYPEHASH()

® Qnonces()

© permt(y

@ CUMRIMUM_LICUIDITY()

® Quokent()

© QgetReserves()

© QpriceDCumulativelast()
© Qprice1CumulativeLast()

@ ERC20
Gontext
IERG20

IERC20Metadata

O address=>uirt256 _balances
O address=>m;

O unt256 _totalSupply
O string_name

O string _symbol

address=>uint256 _alowances

® Qname()
© Qsymbol()
® Qdecimals()

© transfer()

® Qallowance()

® approve()

© transferFrom()

® increase Alowance()
® decreaseAllowance()
< _ransfer()y

< peforeTokenTranster()
© ZafterTokenTransfer()

@ . 2Factory,
< QuryAdd()
© QurySub() ® QfeeTol)
© QryMul0) fesToSetter()
© QuryDiv() getPair()
© QuryMod() © Qallairs(y
< Qadd() ® QuallPairsLength()
< Qsubi) © createPair()
O Qmuil) ® setFesTo()
< Qdiv) setFeeToSetter()
© Qmod)
. IUniswapV 2Rauter02
® Qfactory()
© QETH()
© addLiquidity()

® daddLiuidtyETH()
® swapExaciTokensFor TokensSupporting? eeOnTransfer Tokens()
P

)
° Tokens()

@) ierc20Metadata

IERC20

© Qname()
© Qsymbol()
© Qecimals()

© Huntar

Ownable
IERC20

address UNISWAPROUTER

string _symbol

unt256 treasuryFeeBPS
UInt255 liguicityFeeBPS
unt356 dividendFeeBPS
uint256 totalFeeBPS
unt258 swapTokensAtAmount
it 256 lastSwapTime

* bool swapAllToken

ool swapEnabled

ool taxEnabled

ool compoundingEnabled
unt256 _totalSupply

| swapping

Int2s6 _s

_whiteList

Dividencracker dvidendTracker

addiess uniswap\/2Pair
uInt256 maxTxBPS
uint256 max\WalletBPS

© @__constructor_()

© Qname()

© Qsymbol()

@ Qulecimals()
QotalSupply()

© QalanceOf()

@ Qallowance()

® approve()

© increaseAllowance()
decreaseAlowance()

© transfer()

© transferFrom()

© openTrading()

< _ransfer()
executeTransfer()

® “approvel)

B mint()

= “hurn()

B swapTokensForhiative()

addLiqui

B inclugeToWnhreList()

B _executeSwap()

© excludeFromFees()

© QsExcludedFromfees()

manusiSendDividenc()

excludeFromDividends()

© QjsExcludedFromDividends()

© setWallet()

© setAutomatecMart etiakerPai()

© setFee()
_setAutomatedhlarkethlaker Pair()

© UpdateUniswap\/2Router()

© claim()

@ compound()

© QuithdrawableDividendOf()y

QwithdrawnDividendO1()

QaccumudativeDividendOf(y

© QgetAccountinfol)

© QgetLastClaimTime()

© setSwapEnabled()

© setTaxEnabled()
setCompoundingEnabled()

© updateDividendSetings()

© setMaxTxBPS()

© excludeFromhaxTx()

© QsExcludedFromaxTx()
setMaxVallEPS()

© excludeFromMaxiallet()

© QisExcludedFromhlaxialet()

© rescueToken()

® rescueETH()

@ unBlackListMany()

[Dniswap\/2Router02 uniswap\/2Router

ool _isExciudedFromhaxTx
ool _isExciudedFromMaxvvalet

(©) owidendTracker

Ownable
I[ERC20

© sddress UNISWAPROUTER

O string _name

O string _symbal

© unt256 lastProcessedindex

O Wnt256 _totalSupply

O addiess=>uint256 _balances

O ni256 magndude

© Unt256 minTokenBalanceF orDividends
O 1t 256 magnifiedDividendPerShare

© unt256 totelDividendsDistributed

© wni256 totalDividends\Withdrawn

© address tokenAderess

© addiess==bool excludedFromDividends

o 1256 magr rections
O addiess==uint256 wihdrawnDividends

O address=>uint256 lastClaimTimes

constructor_()

S allstributeDividends()
setBalance()
excludeFromDividends()
QsExcludedFromDividends()
manualSendDividend()
_setBalance()

i

compoundAccount()
_compoundDividendOfUser ()
QuithdrawableDividendOf()

© QgetLastCiamTime()
@ Qname()

® Qsymbok)

© Qelecimais(y

© QtotalSupply()

® Qbalance0f()

© Giransfer()

© Qallowance()

. Q0

© QransferFrom()

&

%4

J |
@) ierc20

© QtotalSupply()
© Qbalanceor()

© transfer()

© Qalowance()

pro
© transfesFrom(

0
© renounceOwnership()

) | ® transterownership()

A

X
@ Context

© Q_msgSender()
© Q_msgDeta()

S 7| @ _transterownershing)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Sllther Log >> Hunter.sol

Hunter
Hunter.
Refere

Hunter.setFee(ui 5,uint256,uint256) (Hunter.sol#1148-1157) should emit an event for:

e (Hunter.sol#1156)
Hunter.upda ings (,uint25 =Y) should emit an event for:

Hunter.setMaxTxBPS({uint256) (ar. #1259-1262) S|"‘L,1" -I”'L‘t an event for:
- maxTxBPS = bps |
Hunter.setMaxWalle tEPCILut)56) (Hunter.s 72-1278) should emit an event for:
- maxwalletBPS = bps (Hunter.sol#1
rytic/slith

Hunter.constructor(a
- mar

Hunter.constructor(a
- 14

Hunter.setWallet(ad

Hunter.setWallet(add . ess)._Lliqui et (Hunter
- liguidityw 2 _liquidi U.tll—utr
Hunter.updateUniswap) isw
DividendTracker.constru
DividendTracker.c { o5 g 255). un 1s\c|R- er (Hunter.sol#1l

- UNISWAPROUTER | \ uter Il—ut»r sol#13
DividendTracker.manualSendD i (

: https:, 'L|-<'L /Detector-Documentation#missing-zero-address-validation

cy in Hunter. executeSwap{uint256,uint256) (Hunter.sol#10839-10895):
apTokensTotal) (Hunter.sol#1064)

gFeeOnTrans ferTokens{ tokens,8,path,address{this),block.timesta

I—{ clL-: nativ ¥ ess(this), tokens,0,0,liguidityWallet,block.timestamp) (Hu

,liguiditywallet,block.timestamp) (Hu

itten after the call(s):
ken sLi- uidit I'é‘t'L »Ll- uidity

o

o 0o

Reentrancy in Hunter. ranste . . _._:- {Hunter.so 1
External -clls:

i

ontractNativeBalan)
dityETH{value: native}(255(this) ens, 0,08, liquiditywallet,block. timestamp) (Hu
nter
W outer.swapExactTokensForETHSupportingFeeOnTrans ferTokens(tokens, G ;address(this),block.timesta
mp) (Hunter.sol#10812-10818)
- (success ress{dividendTracker).call{value: nativeDividends}{) (Hunter.sol#1083-1098)
External calls se
N ontractNativeBalan
dityETH{value: native}(255(this) ens, 0,08, liquiditywallet,block. timestamp) (Hu

.transfer(nativeMarketing) 3)
ndTracker).call{value: nativ eDividend H) (Hunter.sol#1083-1090)

call{s):

(Hunter.s))

o ({Hunter.sol#1515-152

_compoundDividend0fUser{account) {Hunter.sol#152

r.swapExactTokens ForETHSupportingFeeOnTransferTokens(tokens,0,path,address(this),block. timesta
ds}() (Hunter.sol#1622-18
iért}} {Hunter.sol#

ount) (Hunter.sol#)
dLiquid 'L‘t (ETH{value: "-,'.}Ije-:-:r—:ss[tl'is},t-:k—:rs_.C_.C_.11-:L"L:it';.-"r.lell—:t,|:1-:-:k.tir—:ster|:} {Hu

).transfer(nativeMarketin _:- I'I—th er.so 1#1
dendTracker).call{value: =] (Hunter.sol#10888-16
#983)
Reference:
ress.isContract(
= II'\L_II'\E ASM { c
Address.v |1'.T /Ca HR»Sthlﬁ ytes,string) ({Hunter.sol#331-349) uses assembly

slltl wiki/Detector-Documentation#assembly-usa

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Referer tt i cryt ither
Hunter.sol : zed | : s with 84 detecto

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Hunter.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Hunter.
(address,address,address[]): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 1336:4:

Block timestamp:

Use of "block.timestamp”: "block timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

Pos: 1645:12:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 2119:31:

Gas & Economy

Gas costs:

Gas requirement of function Hunter.transferFrom is infinite: If the gas
requirement of a function i1s higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 2286:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas Limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 1938:8:

ERC
ERC20:

ERC20 contract's "decimals” function should have "uint8" as return type
more

Pos: 1080:4:

Miscellaneous

Constant/View/Pure functions:

DividendTracker.getAccountinfo(address) : Is constant but potentially should
not be. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 2220:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

DividendTracker.compoundAccount(address payable) : Variables have very

similar names "amount” and "account”. Note: Modifiers are currently not

considered by this static analysis.
Pos: 2141:35:

No return:

DividendTracker.transferFrom(address,address,uint256): Defines a return type
but never explicitly returns a value.
Pos: 2286:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 2084:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 2217:15:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Hunter.sol

Error: Parse error: mismatched input '<' expecting

(0¢]
ol
)

ct

:18: Error: Parse error: missing

8: Error: Parse error: missing
:18: Error: Parse error: missing
:18: Error: error: missing
:18: Error: error: missing
:18: Error:
:18: Error:

N
(o))

O O
v}
ct

Hunter.s
Hunter.
Hunter.
Hunter.

)
o ot

0 U1 DN W
o
[}
0}
o

N O O
0

O J
10)

)
S
V)

0 0 n
D

® O

(00]

(0]
W

error: missing
error: missing
5:18: Error: error: missing

3:18: Error: error: missing

4:18: Error: Parse error: missing
3 & :18: Error: Parse error: missing
:1023:18: Error: Parse error: missing

) o
(U

(00)
()
()

U g oo™
SUR R O))

s B

[0)]

B
0}
0
L o

o o ot oot of of o

(U
Q

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

