@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Spoon Exchange

Website: https://spoon.exchange

Platform: Core Chain

Language: Solidity
Date: March 15th, 2023

https://spoon.exchange

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 9
Technical QUICK Stats ..o e 10
Code QUANIRY ... e 1
DOoCUMENTAtION ... 11
USE Of DEPENUENCIES ... e e nenaenes 11
ASIS OVEIVIEW ... 12
Severity DefinitioNS ... 26
AUt FINAINGS oo e 27
@70 o T3 1017 T o 36
(@ 0] 1Y/ =1 1 T To [o] 0T) 37
DISCIAIMEIS ... e 39
Appendix
o Code FIoW Diagramououoiiii s 40
o Slither RESUIS LOQ ...uviiiiii i e e e 57
o Solidity Static ANalysSis.o 64
o SOININt LINtEr. . o e 80

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Spoon Exchange team to perform the Security audit
of the Spoon Exchange smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 15th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Spoon is a decentralized exchange platform derived from Andre Cronje's initial
concept of a perpetual decentralized exchange.
e Spoon is built on Core Chain that offers low-cost token exchanges and reduced

swap fees, using a governance model called the ve(3,3) system and with many

improvements.
Audit scope
Name Code Review and Security Analysis Report for
Spoon Exchange Smart Contracts
Platform Core Chain / Solidity
File 1 Bribes.sol
File 1 MD5 Hash 169EAAA52FA9568549466FEE15D56DAF
File 2 GaugeV2.sol
File 2 MD5 Hash 7A3F2E2A748573CDFB8654A714DCCCFO
File 3 import.sol
File 3 MD5 Hash 9DB89ED56B653E26510B7013EFFE47B0
File 4 MinterUpgradeable.sol
File 4 MD5 Hash CC72DA59047D4EDFC18F63280583D9AD

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 5

Pair.sol

File 5 MD5 Hash

A0A52C205D83C869CB6E2F37177C8FCA

File 6

PairFees.sol

File 6 MD5 Hash

6DC3657D376FA99476F3DA48D1537310

File 7

RewardsDistributor.sol

File 7 MD5 Hash

9DE86D1D49D818493DE6850893712ED2

File 8

Router.sol

File 8 MD5 Hash

BA37485099CDESB7CB4156D4E917C468

File 9

RouterV2.sol

File 9 MD5 Hash

AF5AFC6498B484220F717769E3505EAB

File 10

Spoon.sol

File 10 MD5 Hash

BDAOFDF1411C41BFAA5E138F8994503E

File 11

VeArtProxyUpgradeable.sol

File 11 MD5 Hash

FB4D2E453E58F8266B3295BDB1DEQ9F5

File 12

VoterV2_1.sol

File 12 MD5 Hash

48DB1D3D8035DA9F46A657243830FADO

File 13

VotingEscrow.sol

File 13 MD5 Hash

ES5CC7D7617C2AC7C80FEAGFGOEGDG6A3

File 14

BribeFactoryV2.sol

File 14 MD5 Hash

11AESE800B94E9650FD617985B91BACY

File 15

GaugeFactoryV2.sol

File 15 MD5 Hash

10ef53c0d003b7cd9b16e94e981edd80

File 16

PairFactory.sol

File 16 MD5 Hash

988DOEEG054E78F7D8C37B85207BA4E2

File 17

PairFactoryUpgradeable.sol

File 17 MD5 Hash

5119B35B5C61F5EFF047D36D72F91B4C

Audit Date

March 15th,2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 Bribes.sol

e Rewards are released over 7 days

Ownership Control:
e Owner can recover the ERC20 token address with the

amount.
e Voter address can be set by the Owner.
e Reward address can be set by the Owner.
e Minter address can be set by the Owner.
e Reward token addresses can be added by the Owner.

e A new owner address can be set by the current Owner.

YES, This is valid.

File 2 GaugeV2.sol

Ownership Control:

e Distribution address can be set by the Owner.
e (Gauge rewarder address can be set by the Owner.

e Extra rewarder pid can be set by the Owner.

YES, This is valid.

File 3 import.sol
e Import contract can inherit the

TransparentUpgradeableProxy contract.

YES, This is valid.

File 4 MinterUpgradeable.sol
e MinterUpgradeable is used to codify the minting rules as
per ve(3,3), abstracted from the token to support any
token that allows minting.
e Maximum Team rate: 5%

e Allows minting once per week.

Ownership Control:
e Emission rate can be set by the Owner.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Team rate value can be set by the Owner.

File 5 Pair.sol
e Pools that are either stable or volatile, as the base pair.

e Decimals: 18

YES, This is valid.

File 6 PairFees.sol
e Pair Fees contract is used as a 1:1 pair relationship to
split out fees, this ensures that the curve does not need

to be modified for LP shares.

Other Specifications:

e claimFeesFor us allow the pair to transfer fees to users.

YES, This is valid.

File 7 RewardsDistributor.sol
e The Depositor can be set by the Owner.
e A new owner address can be set by the current Owner.

e Owner can withdraw ERC20 tokens from the contract.

YES, This is valid.

File 8 Router.sol
e Minimum Liquidity: 1000

YES, This is valid.

File 9 RouterV2.sol
e RouterV2 : Support for Fee-on-Transfer Tokens.

e Only accept ETH via fallback from the WETH contract.

YES, This is valid.

File 10 Spoon.sol
e Name: Spoon Token
e Symbol: POON

e Decimals: 18

YES, This is valid.

File 11 VeArtProxyUpgradeable.sol
e VeArtProxyUpgradeable contract can inherit

OwnableUpgradeable contract.

YES, This is valid.

File 12 VoterV2_1.sol

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Rewards are released over 7 days

File 13 VotingEscrow.sol
e Name: veSpoon
e Symbol: vePOON
e Decimals: 18

e version: 1.0.0

YES, This is valid.

File 14 BribeFactoryV2.sol
wnershi ntrol:
e \oter owners can create a new Bribe.
e Voter address can be set by Owner.

e Owner can add a new reward address

YES, This is valid.

File 15 GaugeFactoryV2.sol

Ownership Control:
e Distribution address can be set by Owner.

YES, This is valid.

File 16 PairFactory.sol
e Maximum Referral Fee: 12%
e Maximum Fee: 0.25%
e Stable Fee: 0.04%
e \olatile Fee: 0.18%

YES, This is valid.

File 17 PairFactoryUpgradeable
e Maximum Referral Fee: 12%
e Maximum Fee: 0.25%
e Stable Fee: 0.04%
e \olatile Fee: 0.18%

YES, This is valid.

This is a private and confidential document. Mo part of thi
be disclosed to third party without prior written permissio

Email: audit@EtherAuthority.io

s document should
n of EtherAuthority.

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 2 low and some very low level issues.

Medium severity issue has been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Spoon Exchange are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Spoon Exchange.

The Spoon Exchange team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Spoon Exchange smart contract code in the form of a file. The hash of

that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://spoon.exchange which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://spoon.exchange

AS-IS overview

Bribes.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered internal Passed No Issue
6 | onlyOwner modifier Passed No Issue
7 | getEpochStart read Passed No Issue
8 | getNextEpochStart read Passed No Issue
9 [addReward write Passed No Issue
10 | rewardsListLength external Passed No Issue
11 | totalSupply external Passed No Issue
12 | totalSupplyAt external Passed No Issue
13 | balance OfAt read Passed No Issue
14 | balanceOf read Passed No Issue
15 | earned read Passed No Issue
16 | earned internal Passed No Issue
17 | rewardPerToken read Passed No Issue
18 | deposit external Passed No Issue
19 | withdraw write Passed No Issue
20 | getReward external Passed No Issue
21 | getRewardForOwner write Passed No Issue
22 | notifyRewardAmount external Passed No Issue
23 | recoverERC20 external Owner drain all Refer to audit

tokens findings

24 | setVoter external | access only Owner No Issue
25 | setMinter external | access only Owner No Issue
26 | addRewardToken external | access only Owner No Issue
27 | setOwner external | access only Owner No Issue

GaugeV2.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered internal Passed No Issue
6 | onlyOwner modifier Passed No Issue
7 | owner read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 checkOwner internal Passed No Issue
9 | renounceOwnership write access only Owner No Issue
10 | transferOwnership write access only Owner No Issue
11 | transferOwnership internal Passed No Issue
12 | updateReward modifier Passed No Issue
13 | onlyDistribution modifier Passed No Issue
14 | setDistribution external | access only Owner No Issue
15 | setGaugeRewarder external | access only Owner No Issue
16 | setRewarderPid external | access only Owner No Issue
17 | totalSupply read Passed No Issue
18 | balanceOf external Passed No Issue
19 | lastTimeRewardApplicable read Passed No Issue
20 | rewardPerToken read Passed No Issue
21 | earned read Passed No Issue
22 | rewardForDuration external Passed No Issue
23 | depositAll external Passed No Issue
24 | deposit external Passed No Issue
25 | deposit internal Passed No Issue
26 | withdrawAll external Passed No Issue
27 | withdraw external Passed No Issue
28 | withdraw internal Passed No Issue
29 | withdrawAllAndHarvest external Passed No Issue
30 | getReward write Passed No Issue
31 | periodFinish external Passed No Issue
32 | notifyRewardAmount external access only No Issue
Distribution
33 | claimFees external Passed No Issue
34 | claimFees internal Passed No Issue
import.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ifAdmin modifier Passed No Issue
3 [admin external access if Admin No Issue
4 | implementation external access if Admin No Issue
5 | changeAdmin external access if Admin No Issue
6 | upgradeTo external access if Admin No Issue
7 | upgradeToAndCall external access if Admin No Issue
8 admin internal Passed No Issue
9 beforeFallback internal Passed No Issue
10 | requireZeroValue write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

MinterUpgradeable.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue

Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing

4 [onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write initializer No Issue
11 initialize external Passed No Issue
12 | setTeam external Passed No Issue
13 | acceptTeam external Passed No Issue
14 | setVoter external Passed No Issue
15 | setTeamRate external Passed No Issue
16 | setEmission external Passed No Issue
17 | setRebase external Passed No Issue
18 | circulating supply read Passed No Issue
19 | calculate emission read Passed No Issue
20 | weekly emission read Passed No Issue
21 | circulating emission read Passed No Issue
22 | calculate rebate read Passed No Issue
23 | update period external Passed No Issue
24 | check external Passed No Issue
25 | period external Passed No Issue
26 | setRewardDistributor external Passed No Issue

Pair.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | lock modifier Passed No Issue
3 | observationLength external Passed No Issue
4 [lastObservation read Passed No Issue
5 [metadata external Passed No Issue
6 | tokens external Passed No Issue
7 | isStable external Passed No Issue
8 [claimFees external Passed No Issue
9 update0 internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

10 | update1 internal Passed No Issue
11 | updateFor internal Passed No Issue
12 | getReserves read Passed No Issue
13 | update internal Passed No Issue
14 | currentCumulativePrices read Passed No Issue
15 | current external Passed No Issue
16 | quote external Passed No Issue
17 | prices external Passed No Issue
18 | sample read Passed No Issue
19 | mint external Passed No Issue
20 | burn external Passed No Issue
21 | swap external Passed No Issue
22 | skim external Passed No Issue
23 | sync external Passed No Issue
24 | f internal Passed No Issue
25| d internal Passed No Issue
26 | get y internal Passed No Issue
27 | getAmountOut external Passed No Issue
28 | getAmountOut internal Passed No Issue
29 | k internal Passed No Issue
30 | mint internal Passed No Issue
31 | burn internal Passed No Issue
32 | approve external Passed No Issue
33 | permit external Passed No Issue
34 | transfer external Passed No Issue
35 [transferFrom external Passed No Issue
36 | transferTokens internal Passed No Issue
37 | safeTransfer internal Passed No Issue
38 | safeApprove internal Passed No Issue

PairFees.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 safeTransfer internal Passed No Issue
3 | claimFeesFor external Passed No Issue

RewardsDistributor.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [timestamp external Passed No Issue
3 checkpoint token internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

4 | checkpoint token external Passed No Issue
5 find timestamp epoch internal Passed No Issue
6 find timestamp user epoch internal Passed No Issue
7 | ve for at external Passed No Issue
8 checkpoint total supply internal Passed No Issue
9 [checkpoint total supply external Passed No Issue
10 | claim internal Passed No Issue
11 claimable internal Passed No Issue
12 | claimable external Passed No Issue
13 | claim external Passed No Issue
14 | claim _many external Passed No Issue
15 | setDepositor external Passed No Issue
16 | setOwner external Passed No Issue
17 | withdrawERC?20 external Passed No Issue
Router.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ensure modifier Passed No Issue
3 | receive external Passed No Issue
4 | sortTokens write Passed No Issue
5 [pairFor read Passed No Issue
6 | quoteLiquidity internal Passed No Issue
7 | getReserves read Passed No Issue
8 [getAmountOut external Passed No Issue
9 | getAmountsOut read Passed No Issue
10 | isPair external Passed No Issue
11 | quoteAddLiquidity external Passed No Issue
12 | addLiquidity internal Passed No Issue
13 | quoteRemoveLiquidity external Passed No Issue
14 | addLiquidity external Passed No Issue
15 | addLiquidityETH external Passed No Issue
16 | removeLiquidity write Passed No Issue
17 | removeliquidityETH write Passed No Issue
18 | removeLiquidityWithPermit external Passed No Issue
19 | removelLiquidityETHWithPer | external Passed No Issue
mit
20 | swap internal Passed No Issue
21 | swapExactTokensForTokens | external Passed No Issue
Simple
22 | swapExactTokensForTokens | external Passed No Issue
23 | swapExactETHForTokens external Passed No Issue
24 | swapExactTokensForETH external Passed No Issue
25 | safeTransferETH internal Passed No Issue
26 | safeTransfer internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

| 27 | safeTransferFrom | internal | Passed | No Issue
RouterV2.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ensure modifier Passed No Issue
3 | receive external Passed No Issue
4 | sortTokens write Passed No Issue
5 [pairFor read Passed No Issue
6 | quoteLiquidity internal Passed No Issue
7 | getReserves read Passed No Issue
8 [getAmountOut read Passed No Issue
9 [getAmountsOut read Passed No Issue
10 | isPair external Passed No Issue
11 | quoteAddLiquidity external Passed No Issue
12 | quoteRemoveliquidity external Passed No Issue
13 | addLiquidity internal Passed No Issue
14 | addLiquidity external Passed No Issue
15 | addLiquidityETH external Passed No Issue
16 | removeLiquidity write Passed No Issue
17 | removeliquidityETH write Passed No Issue
18 | removelLiquidityWithPermit internal Passed No Issue
19 | removeliquidityETHWithPermit | internal Passed No Issue
20 | swap internal Passed No Issue
21 | swapExactTokensForTokensSi external Passed No Issue
mple
22 | swapExactTokensForTokens external Passed No Issue
23 | swapExactETHForTokens external Passed No Issue
24 | swapExactTokensForETH external Passed No Issue
25 | UNSAFE_swapExactTokensFo | external Passed No Issue
rTokens
26 | safeTransferETH internal Passed No Issue
27 | safeTransfer internal Passed No Issue
28 | safeTransferFrom internal Passed No Issue
29 | removeliquidityETHSupporting write Passed No Issue
FeeOnTransferTokens
30 | removeliquidityETHWithPermit | external Passed No Issue
SupportingFeeOnTransferToke
ns
31 | _swapSupportingFeeOnTransf internal Passed No Issue
erTokens
32 | swapExactTokensForTokensSu | external Passed No Issue
pportingFeeOnTransferTokens
33 | swapExactETHForTokensSupp | external Passed No Issue

ortingFeeOnTransferTokens

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

34 | swapExactTokensForETHSupp | external Passed No Issue
ortingFeeOnTransferTokens

Spoon.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [setMinter external Passed No Issue
3 [initialMint external Passed No Issue
4 | approve external Passed No Issue
5 mint internal Passed No Issue
6 transfer internal Passed No Issue
7 | transfer external Passed No Issue
8 | transferFrom external Passed No Issue
9 | mint external Passed No Issue

VeArtProxyUpgradeable.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _Ownable_init internal access only No Issue

Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing

4 | onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write initializer No Issue
11 | toString internal Passed No Issue
12 | tokenURI external Passed No Issue

VotingEscrow.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonreentrant modifier Passed No Issue
3 | setTeam external Passed No Issue
4 | setArtProxy external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

5 | tokenURI external Passed No Issue
6 | ownerOf read Passed No Issue
7 balance internal Passed No Issue
8 | balanceOf external Passed No Issue
9 | getApproved external Passed No Issue
10 | isApprovedForAll external Passed No Issue
11 | approve write Passed No Issue
12 | setApprovalForAll external Passed No Issue
13 | clearApproval internal Passed No Issue
14 | isApprovedOrOwner internal Passed No Issue
15 | isApprovedOrOwner external Passed No Issue
16 | transferFrom internal Passed No Issue
17 | transferFrom external Passed No Issue
18 | safeTransferFrom external Passed No Issue
19 | isContract internal Passed No Issue
20 | safeTransferFrom write Passed No Issue
21 | supportsinterface external Passed No Issue
22 | tokenOfOwnerBylndex external Passed No Issue
23 | addTokenToOwnerList internal Passed No Issue
24 | addTokenTo internal Passed No Issue
25 | mint internal Passed No Issue
26 | _removeTokenFromOwnerLi | internal Passed No Issue
st
27 | removeTokenFrom internal Passed No Issue
28 | burn internal Passed No Issue
29 | get last user slope external Passed No Issue
30 | user point history ts external Passed No Issue
31 | locked end external Passed No Issue
32 | checkpoint internal Passed No Issue
33 | deposit for internal Passed No Issue
34 | block number external Passed No Issue
35 [checkpoint external Passed No Issue
36 | deposit for external Passed No Issue
37 | create lock internal Passed No Issue
38 [create lock external Passed No Issue
39 [create lock for external Passed No Issue
40 | increase amount external Passed No Issue
41 | increase unlock time external Passed No Issue
42 | withdraw external Passed No Issue
43 | find block epoch internal Passed No Issue
44 | balanceOfNFT internal Passed No Issue
45 | balanceOfNFT external Passed No Issue
46 | balanceOfNFTALt external Passed No Issue
47 | balanceOfAtNFT internal Passed No Issue
48 | balanceOfAtNFT external Passed No Issue
49 | totalSupplyAt external Passed No Issue
50 | supply at internal Passed No Issue
51 | totalSupply external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

52 | totalSupplyAtT read Passed No Issue
53 | setVoter external Passed No Issue
54 | voting external Passed No Issue
55 [abstain external Passed No Issue
56 | attach external Passed No Issue
57 | detach external Passed No Issue
58 | merge external Passed No Issue
59 | split external Passed No Issue
60 | delegates read Passed No Issue
61 | getVotes external Passed No Issue
62 | getPastVotesIndex read Passed No Issue
63 | getPastVotes read Passed No Issue
64 | getPastTotalSupply external Passed No Issue
65 [moveTokenDelegates internal Passed No Issue
66 | findWhatCheckpointToWrite | internal Passed No Issue
67 | moveAllDelegates internal Passed No Issue
68 | delegate internal Passed No Issue
69 | delegate write Passed No Issue
70 | delegateBySig write Passed No Issue

VoterV2_1.sol

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 Ownable init internal | access only Initializing No Issue
3 Ownable init unchained | internal | access only Initializing No Issue
4 | onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 ReentrancyGuard init internal | access only Initializing No Issue
11 | _ ReentrancyGuard_init_u | internal | access only Initializing No Issue

nchained

12 | nonReentrant modifier Passed No Issue
13 | nonReentrantBefore write Passed No Issue
14 | nonReentrantAfter write Passed No Issue
15 | reentrancyGuardEntered internal Passed No Issue

16 | initialize write Anyone can initialize Refer to audit
contract findings

17 | _initialize external Missing Error Refer to audit
Message, Infinite loop findings

18 | setMinter external | Missing Error Message | Refer to audit
findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

19 | setGovernor write Missing Error Message | Refer to audit
findings
20 | setEmergencyCouncil write Missing Error Message | Refer to audit
findings
21 | reset external | Missing Error Message | Refer to audit
findings
22 | reset internal Infinite loop Refer to audit
findings
23 | poke external Missing Error Refer to audit
Message, Infinite loop findings
24 | vote internal Infinite loop Refer to audit
findings
25 | vote external | Missing Error Message | Refer to audit
findings
26 | whitelist write Missing Error Message | Refer to audit
findings
27 | _whitelist internal | Missing Error Message | Refer to audit
findings
28 | createGauge external Ambiguous Error Refer to audit
Message findings
29 | killGauge external Passed No Issue
30 [reviveGauge external Passed No Issue
31 | attachTokenToGauge external | Missing Error Message | Refer to audit
findings
32 | emitDeposit external Missing Error Refer to audit
Message, Unused findings
functions
33 | detachTokenFromGauge external | Missing Error Message | Refer to audit
findings
34 | emitWithdraw external Missing Error Refer to audit
Message, Unused findings
functions
35 | length external Passed No Issue
36 | poolVotel ength external Passed No Issue
37 | notifyRewardAmount external Passed No Issue
38 | updateFor external Passed No Issue
39 | updateForRange write Infinite loop Refer to audit
findings
40 | updateAll external Passed No Issue
41 | updateGauge external Passed No Issue
42 | updateFor internal Passed No Issue
43 | claimRewards external Removed -
44 | claimBribes external Missing Error Refer to audit
Message, Infinite loop findings
45 | claimFees external Infinite loop Refer to audit
findings
46 | distributeFees external Infinite loop Refer to audit
findings
47 | distribute write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

48 | distributeAll external Passed No Issue
49 | distribute write Passed No Issue
50 | distribute write Passed No Issue
51 | _safeTransferFrom internal | Missing Error Message | Refer to audit
findings
52 | setBribeFactory external Passed No Issue
53 | setGaugeFactory external | Missing Error Message | Refer to audit
findings
54 | setPairFactory external | Missing Error Message | Refer to audit
findings
55 | killGaugeTotally external Passed No Issue
56 [whitelist write Passed No Issue
57 | initGauges write Missing Error Refer to audit
Message, Anyone can findings
initGauges, Infinite loop
58 | increaseGaugeApprovals external | Missing Error Message | Refer to audit
findings
59 | setNewBribe external | Missing Error Message | Refer to audit
findings
VotingEscrow.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonreentrant modifier Passed No Issue
3 | setTeam external Passed No Issue
4 | setArtProxy external Passed No Issue
5 [tokenURI external Passed No Issue
6 | ownerOf read Passed No Issue
7 balance internal Passed No Issue
8 | balanceOf external Passed No Issue
9 | getApproved external Passed No Issue
10 | isApprovedForAll external Passed No Issue
11 | approve write Passed No Issue
12 | setApprovalForAll external Passed No Issue
13 | clearApproval internal Passed No Issue
14 | isApprovedOrOwner internal Passed No Issue
15 | isApprovedOrOwner external Passed No Issue
16 | transferFrom internal Passed No Issue
17 | transferFrom external Passed No Issue
18 | safeTransferFrom external Passed No Issue
19 | isContract internal Passed No Issue
20 | safeTransferFrom write Passed No Issue
21 | supportsinterface external Passed No Issue
22 | tokenOfOwnerBylndex external Passed No Issue
23 | addTokenToOwnerList internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

24 | addTokenTo internal Passed No Issue
25 | mint internal Passed No Issue
26 | _removeTokenFromOwnerLi | internal Passed No Issue
sti
27 | removeTokenFrom internal Passed No Issue
28 | burn internal Passed No Issue
29 | get last user slope external Passed No Issue
30 | user point history ts external Passed No Issue
31 | locked end external Passed No Issue
32 | checkpoint write Passed No Issue
33 | deposit for internal Passed No Issue
34 | block number external Passed No Issue
35 | checkpoint external Passed No Issue
36 [deposit for external Passed No Issue
37 | create lock internal Passed No Issue
38 [create lock external Passed No Issue
39 [create lock for external Passed No Issue
40 | increase amount external Passed No Issue
41 | increase unlock time external Passed No Issue
42 | withdraw external Passed No Issue
43 | find block epoch internal Passed No Issue
44 | balanceOfNFT internal Passed No Issue
45 | balanceOfNFT external Passed No Issue
46 | balanceOfNFTAt external Passed No Issue
47 | balanceOfAtNFT internal Passed No Issue
48 | balanceOfAINFT external Passed No Issue
49 | totalSupplyAt external Passed No Issue
50 | supply at internal Passed No Issue
51 | totalSupply external Passed No Issue
52 | totalSupplyAtT read Passed No Issue
53 | setVoter external Passed No Issue
54 | voting external Passed No Issue
55 | abstain external Passed No Issue
56 [attach external Passed No Issue
57 | detach external Passed No Issue
58 | merge external Passed No Issue
59 | split external Passed No Issue
60 | delegates read Passed No Issue
61 | getVotes external Passed No Issue
62 | getPastVotesIindex read Passed No Issue
63 | getPastVotes read Passed No Issue
64 | getPastTotalSupply external Passed No Issue
65 [moveTokenDelegates internal Passed No Issue
66 | findWhatCheckpointToWrite | internal Passed No Issue
67 [moveAllDelegates internal Passed No Issue
68 | delegate internal Passed No Issue
69 | delegate write Passed No Issue
70 | delegateBySig write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BribeFactoryV2.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 [onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write Passed No Issue
11 | createBribe external Passed No Issue
12 | setVoter external Passed No Issue
13 | addReward external Passed No Issue
14 | addRewards external Passed No Issue
GaugeFactoryV2.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 [onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write Passed No Issue
11 | createGaugeV2 external Passed No Issue
12 | setDistribution external | access only Owner No Issue
PairFactory.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | allPairsLength external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

3 [pairs external Passed No Issue
4 | setPauser external Passed No Issue
5 | acceptPauser external Passed No Issue
6 | setPause external Passed No Issue
7 | setFeeManager external Passed No Issue
8 | acceptFeeManager external Passed No Issue
9 | setDibs external Passed No Issue
10 | setReferralFee external Passed No Issue
11 | setFee external Passed No Issue
12 | getFee read Passed No Issue
13 | pairCodeHash external Passed No Issue
14 | getlnitializable external Passed No Issue
15 | createPair external Passed No Issue
PairFactoryUpgradeable.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __ Ownable init_unchained internal access only No Issue
Initializing
4 | onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write | access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 [onlyManager modifier Passed No Issue
11 | initialize write Passed No Issue
12 | allPairsLength external Passed No Issue
13 | pairs external Passed No Issue
14 | setPause external Passed No Issue
15 | setFeeManager external access only No Issue
Manager
16 | acceptFeeManager external Passed No Issue
17 | address _dibs external access only No Issue
Manager
18 | setReferralFee external access only No Issue
Manager
19 | setFee external access only No Issue
Manager
20 | getFee read Passed No Issue
21 | pairCodeHash external Passed No Issue
22 | getlnitializable external Passed No Issue
23 | createPair external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

(1) ClaimRewards function is not working: VoterV2_1.sol

claimRewards([] _gauges, [1[1] _tokens)
(i ; 1 ¢ pauges.length; i++) {
IGauge(_gauges[i]).getReward(msg.sender, tokens[i]);

The claimRewards function calls Gauge's getReward function with arguments. But

Gauge's getReward function doesn’t not have any parameters.

Resolution: We suggest removing parameters from claimRewards's getReward.

Status: Fixed. This function has been removed in the revised code.

Low

(1) Owner can drain all tokens: Bribes.sol, RewardsDistributor.sol

The owner can drain all tokens. This would create trust issues in the users.

Resolution: If this is a desired feature, then please disregard this issue.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Missing Error Message: VoterV2_1.sol

setMinter(_minter) :
(msg.sender == emergencyCouncil);
minter = minter;

_governor)
(c er == governor);
governor = | rnor;

setEmerg yCouncil(_council)
(.sender == emergencyCouncil);
emergencyCouncil = council;

reset(_tokenId) nonReentrant {{

(IvotingEscrow(_ve).isApprovedorowner(.sender, tokenId));

A require is without error messages in these functions:
e reset
o setMinter
e initialize
e setEmergencyCouncil
e setGovernor
e poke
e vote
e whitelist
e whitelist
e attachTokenToGauge
e emitDeposit
e detachTokenFromGauge
e emitWithdraw
e claimBribes
e safeTransferFrom
e setGaugeFactory
e setPairFactory
e initGauges
e increaseGaugeApprovals

e setNewBribe

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We advise writing appropriate error messages.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract: VoterV2_1.sol
The initialize function is public and accessible to anyone. operator is not set during

contract deployment,So any user can become an operator

Resolution: We suggest to always make sure that contract should be initialized by owner

(2) Anyone can initGauges: VoterV2_1.sol
The initGauges is a public function, emergencyCouncil can execute this unlimited times.

This might lead to losing vote data.

Resolution: We suggest to re-check the logic and usage limit for this function.

(3) Infinite loop: VoterV2_1.sol
In below functions ,for loops do not have upper length limit , which costs more gas:
e claimBribes
e claimFees
e distributeFees
e initGauges

e updateForRange

e vote

e poke

e reset

e initialize

Resolution: Upper bound poolinfo.length should have a certain limit in for loops.

(4) Unused functions, variables:

Unused variables: GaugeV2.sol

_VE , external_bribe are public variables which are not used anywhere in the contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Unused functions: VoterV2_1.sol

emitDeposit(tokenId, account, amount)

(isGauge[.sender]);
(isAlive[.sender]);
Deposit(account, .sender, tokenId, amount);

detachTokenFromGauge(tokenId, account)
e[.sender]);
kenId > @) IVotingEscrow(ve).detach(tokenId);
Detach(account, .sender, tokenId);

emitwWithdraw(tokenId, account, amount)
(isGauge[.sender]);
withdraw(account, .sender, tokenId, amount);

The emitDeposit , emitWithdraw functions only require and emit statements. No code logic

is written.

Resolution: We suggest removing these unused functions and variables.

(5) Ambiguous Error Message: VoterV2_1.sol

tokenB) {

nA] && isWhitelisted[tokenB], "!white

The mentioned error message does not explain exactly the error of the operation.

Resolution: As error messages are intended to notify users about failing conditions, they
should provide enough information so that appropriate corrections can be made to interact

with the system.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Bribes.sol
e addReward: Owner can add a new reward address.
e recoverERC20: Owner can recover the ERC20 token address with the amount
e setVoter: Voter address can be set by the Owner.
e setMinter: Minter address can be set by the Owner.
e addRewardToken: Reward token address can be added by the Owner.

e setOwner: A new owner address can be set by the Owner.

GaugeV2.sol
e setDistribution: Distribution address can be set by the Owner.
e setGaugeRewarder: Gauge rewarder address can be set by the Owner.
e setRewarderPid: Extra rewarder pid can be set by the Owner.
e checkOwner: Thrown when the sender is not the owner.
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

MinterUpgradeable.sol
e setTeam: Team address can be set by the Owner.
e acceptTeam: Owner can accept the team.
e setVoter: Voter address can be set by the Owner.
e setTeamRate: Team rate value can be set by the Owner.
e setEmission: Emission rate can be set by the Owner.
e setRebase: Rebase rate can be set by the Owner.

e setRewardDistributor: Reward Distributor address can be set by the Owner.

_checkOwner: Thrown when the sender is not the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

RewardsDistributor.sol
e setDepositor: The Depositor can be set by the Owner.
e setOwner: A new owner address can be set by the current Owner.

e withdrawERC20: Owner can withdraw ERC20 tokens from the contract.

Spoon.sol
e setMinter: Owner can set the minter address.
e initialMint: Owner can initial mint recipient address.

e mint: Owner can mint a token from the address.

VoterV2_1.sol
e _initialize: Minter owner or EmergencyCouncil owner can initialize token addresses.
e setMinter: EmergencyCouncil owner can set minter address.
e setGovernor: Owner can set a new governor address.
e setEmergencyCouncil: Owner can set a new emergencyCouncil address.
e whitelist: Owner can add token address in whitelist.
e killGauge: Owner can kill gauge address.
e reviveGauge: Owner can revive gauge address.
e setBribeFactory: Owner can set a bribe factory address.
e setGaugeFactory: Owner can set a gauge factory address.
e setPairFactory: Owner can set a pair factory address.
e killGaugeTotally: Owner can kill gauge addresses.
e whitelist: Owner can add token address in whitelist.
e initGauges: Owner can initialize gauges addresses.
e increaseGaugeApprovals: Owners can increase gauge approval addresses.
e setNewBribe: Owners can set new bribe addresses.
e checkOwner: Thrown when the sender is not the owner.
e renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

VotingEscrow.sol
e setTeam: Team address can be set by the Owner.
e setArtProxy: Proxy address can be set by the Owner.
e setVoter: Voter address can be set by the team Owner.
e voting: Voting tokenld can be set by the Voter Owner.
e abstain: Abstain tokenld can be set by the Voter Owner.
e attach: Attach tokenld can be set by the Voter Owner.

e detach: Detach tokenld can be set by the Voter Owner.

BribeFactoryV2.sol
e createBribe: Voter owners can create a new Bribe.
e setVoter: Voter address can be set by the Owner.
e addReward: Owner can add a new reward address.
e addRewards: Owner can add multiple new reward addresses.
e checkOwner: Thrown when the sender is not the owner.
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

GaugeFactoryV2.sol
e setDistribution: Distribution address can be set by Owner.
e _checkOwner: Thrown when the sender is not the owner.
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

PairFactory.sol
e setPauser: Pauser address can be set by Owner.

e acceptPauser: Owner can accept Pauser address.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setPause:Owner can set pause state.

setFeeManager: Manager Owner can set a Fee Manager address.
acceptFeeManager: Manager Owner can accept fee manager.
setDibs: Manager Owner can set dibs address.

setReferralFee: Manager Owner can set referral fee.

setFee: Manager Owner can set a fee.

PairFactoryUpgradeable.sol

setPause: Pauser address can be set by the Owner.
setFeeManager: Manager Owner can set a Fee Manager address.
acceptFeeManager: Manager Owner can accept fee manager.
setDibs: Manager Owner can set dibs address.

setReferralFee: Manager Owner can set referral fee.

setFee: Manager Owner can set a fee.

_checkOwner: Thrown when the sender is not the owner.

renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

transferOwnership: Current owner can transfer ownership of the contract to a new

account.

VeArtProxyUpgradeable.sol

_checkOwner: Thrown when the sender is not the owner.

renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

transferOwnership: Current owner can transfer ownership of the contract to a new

account.

Import.sol

admin: Admin can return the current admin address.
implementation: Admin can return the current implementation.
changeAdmin: Admin can change the admin of the proxy.

upgradeTo: Admin can upgrade the implementation of the proxy.

upgradeToAndCall: Admin can upgrade the implementation of the proxy, and then

call a function from the new implementation as specified data.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PairFees.sol

e claimFeesFor: Owner can allow the pair to transfer fees to users.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests
based on given objects as files. We have observed 1 medium severity issue, 2 low severity
issues and some informational severity issues in the token smart contract. Medium
severity issue has been resolved in the revised code and the rest are not critical issues.

So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

® Math

< Qumax()
< qmin()
< Qegr()
& aebr)

Code Flow Diagram - Spoon Exchange

@ IVotingE scrow

@ create_lock_for()

@ Qlocked()

@ QtokenOfOwnerBylindex()
@ Qoken()

@ team()

@ Qepoch()

@ Qpoint_history()

@ Quuser_point_history()
@ Quuser_point_epoch()
@ Qowner0f()

@ QjsApprovedOrowner()
@ transferFrom()

@ Quoted()

@ Quattachments()

@ voting()

@ abstain()

@ attach()

@ detach()

@ checkpoint()

® deposit_for()

@ QbalanceOfNFT()

© QbalanceOf()

® QotalSupply()

@ Qsupply()

@ Quecimals()

Bribes Diagram

@ IMinter

@ update_period()
@ Qcheck()
@ Qperiod()
@ Quactive_period()

@ console

<> address CONSOLE_ADDRESS

B Q_sendLogPayload()
& Qlogl)

< Qlogint(y

< QagUint()

© QlogString()

@ IVoter

< QlogBool()
© QlogAddress()
© QlogBytes()

® q_ve()

@ Qgovernor()

@ Qgauges()

@ Qfactory()

@ Quminter()

@ QuemergencyCouncil()
@ gttachTokenToGauge()
@ detachTokenFromGauge()
@ emitDeposit()

@ emitWithdraw()

@ QisWhitelisted()

@ notifyRewardAmount()
@ distribute()

® distribute All()

® distributeFees()

@ Qinternal_bribes()

@ Qexternal_bribes()

@ QusedWeights()

® Qastvoted()

@ Qpoolyote()

@ Qvotes()

® Qpoolyotelength()

© QogBytes1()
© QlogBytes2()
< QlogBytes3()
© QlogBytesd()
 QlogBytesS()
© QlogBytesB()
& QlogBytesT()
& QlogBytesB()
© QogBytesd()
< QlogBytes10()
< QogBytes11()
< QogBytes12()
< QogBytes13()
< QogBytes14()
© QlogBytes15()
< QlogBytes16()
© QlogBytes17()
© QlogBytes18()
< QlogBytes19()
< QlogBytes20()
< QlogBytes21()
< QlogBytes22()

< QlogBytes23()

© QlogBytes24()
& QlogBytes25()
& QogBytes26()
< QogBytes27()
< QogBytes28()
< QogBytes28()
< QogBytes3n()
< QogBytes31()
© QlogBytes32()

© Bribe

Reentrancy Guard
nSafeERC20 for JERC20

@ uint256 WEEK

© uint256 firstBribeTimestamp

© address==mapping uint=>Reward rewardData
© address==bool isRewardToken

© address rewardTokens

© address voter

© address bribeFactory

@ address minter

© address ve

@ address owner

@ string TYPE

@ uint256=>mapping address=>uint258 user Timestamp
© uint256==Lint256 _totalSupply

O uint256=>mapping uiM256=>0int256 _balances

© Ownable

@ __constructor__()
@ QgetEpochStart()

@ QgetNextEpochStart()
@ addReward()

@ QrewardsListLength()
@ QtotalSupply()

@ QtetalSupplyAt()

@ QpalanceOfAt()

@ QbalanceOf()
Qeearned()
Q_earned()
QrewardPerToken()
_deposit()
_withdraw()
getReward()
getRewardForOwner()
notifyRewardAmount()
recoverERC20()
setVoter()

setMinter()
addRewardToken()
setOwner()

ecsooOeOOOO®ORO® (O

Confext

O address _owner

@ __constructor__()
@ Qowner()

& Q_checkOwner()

@ renounceOwnership()
@ transferOwnership()
< _transferOwnership()

foriERC20 |

V

(@) rerczo

@ SafeERC20

© ReentrancyGuard

@ QiotalSupply()
@ Qbalance0f()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

mdddress for address O uint256 _NOT_ENTERED

O uint256 _ENTERED

© safeTransfer() O uint256 _status

< safeTransferFrom()

< safelpprove() © __constructor__()
]

< gafelncreasefllowance() nonReentrantBefore()
<> gafeDecr 1ce() [] nReentrantAfter()
B _callOptionalReturn() < Q_reentrancyGuardEnterecd()

:for address
\'wr)

\/
@ Address

< QisContract()

< sendValue()

< functionCall()

< functionCallWithvalue()
< QfunctionStaticCall)
© QuerifyCallResutt()

@ C.nntext

© G,_msgSender()
@ Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IGauge

® notifyRewardAmount()
@ getReward()

@ clamFees()

@ QrewardRate()

@ QbalanceOf()

@ QisForPair()

® QotalSupply()

@ Qearned()

® setDistribution()

(@) math

@ IRewarder|

© Qumax()

< amin() ® onReward()

© Qsartf)

© Qchrt()

@ rair

@ 1Bribe

@ Qmetadstal)
@ claimFees()

GaugeV2 Diagram

i
/
f

®

© GaugeV2

ReentrancyGuard
Ownable

ivSafeMath for wint256
MSafeERC20 for [ERC20

© hool isForPair

© IERC20 rewardToken

O [ERC20 _VE

© [ERC20 TOKEN

© address DISTRIBUTION

© address gaugeRewarder

@ address internal_ribe

© address external_bribe

© uint256 rewarderPid

© uint256 DURATION

© uint256 periodFinish

© uint256 rewardRate

© uint256 lastUpdateTime

@ uint256 rewardPerTokenStored
int256 userRewardPerTokenPaid
int256 rewards
otalSupply

int256 _balances

@ __constructor__()

@ setDistribution()

@ setGaugeRewarder()
@ setRewarderPid()

@ QiotalSupply()

@ QhalanceOf()

© QlastTimeRewardApplicable()
@ QrewardPerToken()
@ Qearned()

@ QrewardForDuration()
@ depostAll()

@ deposit()

< _deposit()

@ withdrawAl()

@ withdraw()

@ _withdraw()

@ withdrawAllAndHarvest()
@ getReward()

@ Q_periodFinish()

@ naotifyRewardAmourt()
@ claimFees()

© _claimFees()

T T

Jforuint2s6 for IERC20

© Ownable

@ Qtokens()
@ transferFrom()

(®) sarecrc20

<

Context

@ _ceposit()

@ _withdraw()

@ getRewardForOwner()
@ notifyReward Amount()
°© Qeft))

@ permit()

@ swap()

@ burn()

© mint()

@ QgetReserves()
@ QgetAmountOut()
@ Qname()

@ Qgymbol()

® QotalSupply()
@ Qdecimals()

@ Qclaimabled()
@ Qclaimablel()
@ QjsStable()

@ IERC20

@ QtotalSupply()
@ QhalanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

& QiryAdd()
< QtrySub()
< QtryMul()
< QtryDiv()
< QtryMod()
< Qadd()
< Qsub()
gy
< Qiv()
< Qmocl()

iAddress for address

<> gafeTransfer()

<> gafeTransferFrom()

< safelpprove()

< gafelncreaseAllowance()
<> gafeDecreaseAllowance()
B _callOptionalReturn()

O address _owner

@ ReentrancyGuard

:for address
\w)

\/
@ Address

& QsCortract()

© sendValue()

© functionCallf)

© functionCall\ith\Value()
& QfunctionStaticCall()
& QuuerifyCallResult()

@ __constructor__()
@ Quowner()

@ 6_checkOwner()

@ renounceOwnership()
@ transferOwnership()
@ _transferOwnership()

O uint256 _NOT _ENTERED
O vint256 ENTERED
O uint256 _status

@ __constructor__()

B _nonReentrantBefora()

B _nonReentrantAfter()

< G _reentrancyGuardEntered()

© (;omex‘t

© Q_msgSender()
& Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Address

o QisContract()

< sendValuel)

2 functionCall()

2 functionCallith alue)

< G functionStaticCall()

2 functionDelegateCall)

< QverifyCallResultFromTarget()
< QyerifyCallResult)

B 4 revert()

import Diagram

@ Storagesiot

& QugetAddressSiot() @Admanpgradeabmtmew

< O,getBoaleanSlot()
< QgetBytes32SIot()

TransparentUpgradeableProxy

< O,getUint256SIot]) @ @ __constructor__()

< O,getStringSlot()
< QgetBytesSlat()

@TransparentupgradeahlePrnxy

ERC1967 Proxy

@ IBeacon

& __constructor__()

@ IERC1822Praxiable &admin()

@implementation()

@ Qimplementation()

& changeAdming)

@ QproxiableUUID)) BupgradeTo()

200000

dupgradeToAndCall()
< G _admin()

< _peforeFallback()

B _reguireZeroValue()

@ ERC1967Proxy

Proxy
ERC1967 Upgrade

@ & __constructor__()
g jmplemertation()

.Ir 1.

|--.-':
F
s
15

@ ERC1967Upgrade

O bytes32 ROLLBACK _SLOT

< bytes32 _IMPLEMEMTATION_SLOT
< bytes32 _ADMIN_SLOT

< bytes32 _BEACOMN_SLOT

< 4,_getimplementation|)

B _setlmplementation()

< _upgradeTa()

< _upgradeToAndCall()

< _upgradeToAndCallUUPS()
& Q_getAdmin)

B _setAdming

< _changeAdming)

< Q,_getBeacon()

B _setBeacon()

< _upgradeBeaconToAndCall()

e

<
© P oy

_delegate()

< G,_implementation()
2 _fallback()

@ &__constructor__()
< _peforeFallback()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@Mafh

< Quma()
< amin()
< Qsort()
< Qebrt()

@ IVotingEscrow

@ create_lock_for()

@ Qocked()

@ QtokenOfOwnerByindex()
@ Qtoken()

@ team()

@ Qepoch()

© Qpoint_history()

© Quser_point_histary()
@ Quuser_point_epoch()
@ QownerOf()

@ QisApprovedCrOwner()
@ transferFrom()

@ Qvated()

@ Qattachments()

@ wvoting()

@ abstain()

@ gttach()

@ detach()

@ checkpoint()

@ deposit_for()

@ QbalanceOfNFT()

@ Qbalance0f()

© QtotalSupply()

© Qsupply()

@ Qelecimals()

@ 1Spoon

@ QotalSupply()
@ QbalanceOf()
@ approve()

@ transfer()

@ transferFrom()
@ mirt()

@ mirter()

@ IRewardsDistributor

@ checkpoint_token()

© Qoting_escrow()

@ checkpoint_total_supply()
@ Qclaimable()

MinterUpgradeable Diagram

@ IVoter

@ Q_ve()

@ Qgovernor()

@ Qgauges()

@ Qfactory()

@ Qumirter()

@ QemergencyCouncil()
@ attachTokenToGauge()
@ detachTokenFromGauge()
@ emitDeposit()

@ emitWithdraw()

© QisWhitelisted()

@ notifyRewardAmount()
@ distribute()

@ distributeAll[)

@ distributeFees()

@ Qinternal_kribes()

© Qexternal_bribes()

@ QusedWeights()

® QlastVated])

@ QpoolVaote()

@ Quotes()

@ QpoolVaotelength()

@ MinterlUpgradeahle

IMinter
Ownablelpgradeable

© ool isFirstMint

O uint EMISSION

© uint TAIL_EMISSION

O uint REBASEMAX

© uint PRECISION

O uirt teamRate

© uint MAX_TEAM_RATE
© uint WEEK

O uirt weekly

O uirt active_period

@ uint LOCK

< address _initializer

© address team

© address pendingTeam
© |Spoon _spoon

O |Woter _vaoter

© otingEscrow _ve

[+]

IRewardsDistributor _rewards_distributor

@ __constructor__()
@ initialize()

@ _initialize()

@ setTeam()

@ acceptTeam()

@ setVaoter()

@ setTeamRate()

@ setEmission()

@ setRebase()

@ Qeirculating_supply()
@ Qcalculate_emission()
@ Quweekly_emission()
L]
L]

Q.circulating_emission()

Qcalculate_rebate()
@ update_period()
@ Qcheck()
@ Qperiod()
@ setRewarcdDistributor()

@ AddressUpgradeable

< QisContract()

< sendvalue()

< functionCall()

< functionCallWith'/ alue()

@ QfunctionStaticCall()

< QuerifyCallResultFromTarget()
< QuerifyCalResulty)

B Q_revert()

@ IMinter

@ update_period()
© Qcheck()

© Qperiod()

@ Qactive_periocl()

© OwnablelUpgradeable

Initializable
ContextUpgradeable

O address _owner
O uim256 _ gap

< __ Ownable_init()

< __ Ownable_init_unchainec()
@ Qowner()

< Q_checkOwner()

@ renouncelwnership()

@ transferOwnership()

< _transferOwnership()

| © ContextlUpgradeable

| Initializable

O uint256 _ gap

| & Context_init()

| < __ Context_init_unchained()
| < Q,_msgSender()

\ < Q_msgDatal)

7

(©) nitiaizable

O uints _initialized
O kool _inttializing

< _disableinttializers()
< Q,_getinttialized/ ersion()
< Q_jsInitializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(&) matn

< Qmax()
< Qmin()
< Qsqrt()
© Qebrt()

@ ipaircatiee

@ 1Dibs

Pair Diagram

@ Pair

IPair

@ string name

@ string symbol
© uirtd decimals
© bool stable

© uint totalSupply

@ address==uint balanceOf

< bytes32 DOMAIN_SEPARATOR
< bytes32 PERMIT_TYPEHASH
@ address==uint nonces
 uint MINIMUM_LIQUIDITY

@ address tokend

© address tokenl

O address fees

< address factory

< uint periodSize

© Observation observations
< uint decimals0

< uint decimals1

@ uint reserved

© uint reservel

@ uint blockTimestampLast
wuint reserve0Cumulativel ast
uint reserve Cumulativel ast
uint index0

wint index1

address==uint supplylndex0
address==uint supplyindex
address==uint claimabled
address==uint claimable1

< uint _unlocked

0OQC000O0O0O0

@ address==mapping address==uint allowance

© FairFactory

© hook()

(@) serc20

@ QtotalSupply()
@ transfer()

@ Qecimals()
@ Qsymbol()

@ Qhalance0f()
@ transferFrom()
@ Qallowance()
@ approve()

@ reward()
@ QfindTotalRewardFor()

@ PairFees

< address pair
 address token0
< address token?

@ __constructor__()
< _safeTransfer()
@ claimFeesFor()

@ _ constructor_()

@ QobservationLength()

@ QastObservation()

@ O metadatal)

@ Qtokens()

@ QisStable()

@ claimFees()

< _update0()

@ _updatel()

< _updateFor()

@ QgetReserves()

@ _update()

@ QeurrentCumulativePrices()
@ Qecurrent()

@ Qouote()

@ Qprices()

@ Qsample()
@ mint()

@ burn()

@ swap()
@ skim()

(]

@ O getAmountOut()
< O_getAmourtOut()
& q_k()

< _mint()

< _purn()

@ approve()

@ permit()

@ transfer()

@ transferFrom()

< _transferTokens()
< _safeTransfer()
< _safeApprove()

IPairFactory

© bool isPaused

< address pauser

< address pendingPauser

© uint256 stableFee

O uint256 volatieFee

© uirt256 MAX_REFERRAL_FEE
© uirt256 MAX_FEE

O address feeManager

O address pendingFeeManager
© address dbs

O address=>mapping address=>mapping bool=>address getPair
© address allPairs

@ address==hool isPair

< address _temp0

< address _temp1

< ool _temp

@ __constructor__()
@ QallPairsLength()
@ Qpairs()

@ setPauser()

@ acceptPauser()

@ setPause()

@ setFeeManager()

@ acceptFeeManager()
@ setDibs()

@ setReferralFee()

@ setFee()

@ QgetFes()

@ QpairCodeHash()
@ Qgetinitializable()
@ createPair()

|

@ .fPaJ'r

@ Qmetadata()

@ claimFees()

@ Qtokens()

@ transferFrom()
@ permit()

@ swap()

® burn()

© mint()

© QgetReserves()
@ G getAmountOut()
@ Qname()

@ Qsymbol()

@ QtotalSupply()
@ Qeecimals()

@ Qclaimable0()
@ Qclaimablel ()
@ QisStable()

@ IPairFactory

@ QalPairsLength()
@ QisPair()

@ QallPairs()

@ QpairCodeHash()
@ QgetPair()

@ createPair()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PairFees Diagram

@ IERC20

@ CtatalSupply()
@ transfer()

@ Qdecimals()
@ Qsymbol()

@ Qbalancedf()
@ transferFrom()
o Qalowance()
O approvel)

@ PairFees

» address pair
 address token0
 address token1

@ _ constructor__()
< _safeTransfer()
@ claimFeesFor()

@ IPairFactory

@ QallPairsLength()
@ QisPair()

@ QallPairs()

@ QpairCodeHash()
@ QgetPair()

@ createPair()

Spoon Diagram

@ Spoon

ISpoon

© string name

2 string symbol
O uirt2 decimals

O uint totalSupply
O address==uint balanceOf

© bool intialMinted

O address minter

2 address redemptionReceiver
o address merkleClaim

O address=>mapping address=>uint allowance

@ _ constructor__ ()
@ setMinter()

@ initialMint()

@ approvel)

< _mirt()

“» _transfer()

@ transfer()

@ transferFrom()

@ mint()

!

@I;ptmn

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RewardsDistributor Diagram

@ RewardsDistributor

@ TERCZ20

@ Math

O Qumax()
O Quming)
< Quegrt()
< Qebrt()

o QiotalSupply()
@ transfer()

@ Qdecimals()
@ Qeymbol()

@ Qbalancedf()
@ transferFrom()
@ Qallowance()
@ approvel)

IRewardsDistributor

< wirt VWEEK

O ouint start_time

O uint time_cursaor

O uint==uint time_cursor_of
O uint==uint user_epoch_of
O ouint last_token_time

O uint tokens_per_week

O uint token_last_balance
O ouint ve_supply

O address owner

2 address voting_escrow
2 address token

< address depositor

@ IWVotingE scrow

@ create_lock_for()

@ Qlocked()

@ QtokenDfOwnerBylndex()
@ Qtoken()

@ team()

@ Qepochi)

@ Cpoint_history()

@ Quser_point_history()
@ Quser_point_epoch()
@ QownerOfi)

@ QisApprovedOrOwner()
@ transferFrom()

@ Qyoted()

@ Qattachments()

@ vating()

@ abstain()

@ attachi)

@ detachi)

@ checkpoint()

@ deposit_for()

@ QbalanceOfMNFT()

@ Qbalance0f()

@ QtotalSupply()

@ Qsupply()

© Qdecimals()

@ _ constructor__ ()

@ Qtimestamp)

o _checkpoint_token()

@ checkpoirt_token()

< 4, find_timestamp_epoch()

O _find_timestamp_user_spoch()

@ Qe for_at()
 _checkpoint_total_supply()
@ checkpoirt_total_supply()
2 _claim()

@ Q_claimable()

@ Qelaimakle])

claim()

claim_many()
setDepositor()
setOwner()
withdrawERC20()

L

@ IRewardsDistributor

@ checkpoint_token()

@ Qvoting_escrow()

@ checkpoint_total_supply()
@ Qelaimaklel)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Math

& Cuman()
< Qming)
< Qsgrt()
< Qchrt()

@ IPairFactory

@ GallPairsLength()
@ QisPair()

@ QallPairs()

@ QpairCodeHash()
@ OgetPair()

@ createPair()

@ IERC20

@ QtotalSupply()
@ transfer()

@ Qdecimals()
@ Qsymbal()

@ Qbalance0f()
2 transferFrom()
@ Qallowancel)
@ approve()

@ IWETH

@ ddeposi()
@ transfer()
@ withdrawi)

Router Diagram

@ 1Pair

© Fouter

IRouter

2 address factory

O WETH weth

< uint MINIMUM_LIQUIDITY
< bytes32 pairCodeHash

o O metadata()

@ claimFees()

@ Qtokens()

@ transferFrom()
@ permiti)

@ swapl)

@ burn()

© mirtf)

@ QgetReserves()
@ QgetAmountOut()
@ Qnamel)

@ Qsymbal()

@ CQtotalSupply()
@ Qoecimals()

@ Qclaimable0)
@ Qclaimablel ()
@ QisStablel)

@ &__constructor__()

@ QzorTokens()

@ QpairFar()

< G guoteLiguidity ()

@ QoetReserves()

@ CQgetAmountOut()

@ G getAmountsOut()

@ QisPair()

@ O quoteAddLiguidity()

@ QguateRemoveliguidity()

< addLiguicity()

@ addLiguidity()

@ daddLiguidityETH()

@ removeliguidity()

@ removeLiguidityETH()

D removeliguidityWithPermit()

@ removeliguidityETHWRPermit()
< _swap()

@ swapExactTokensForTokensSimple()
@ swapExactTokensForTokens()
@ éswapExactETHForTokens()
@ swapExactTokensForETH)

< _safeTransferETH{)

< _safeTransfer()

< _safeTransferFrom{)

@ .l'..#.?:‘ou?er

@ QpairFar()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ I1BaseV1Factory

@ QallPairsLength()
@ QisPair()

@ QpairCodeHash()
® QgetPair()

@ createPair()

@ IFairFactory

RouterV2 Diagram

© Routery2

inMath for wint

O address factory

O WVETH wETH

< uint MINIMUM_LIQUIDITY
“ bytes32 pairCodeHash

@ 1BaseV1Pair

@ erc20

@ transferFrom()

@ permit()

@ swap()

@ burn{)

@ mint()

@ QgetReserves()
@ QgetAmourtOut()

© QiotalSupply()
@ transfer()

@ Qdecimals()
@ Qsymbol()

@ QbalanceOfi)
@ transferFrom()
@ approvel)

@ IWETH

@ QgetFee()
@ QMAX_REFERRAL_FEE()

@ Bdeposit()
@ transfer()
@ withdraw()

@ é_ _constructor__()

@ QsortTokens()

@ QpairFor()

© QuquoteLiguidity()

@ QgetReserves()

@ QgetAmourtOut)

@ QgetAmountsOut()

@ QisPair()

@ QquoteAddLiguidity()

@ QguoteRemoveLiguidity()

© _addLiquidity()

@ addLiguiclity()

@ daddLiguidityETH()

@ removeliguidity()

@ removeLliguidityETH()

@ removeLiguidityWWithPermit()

@ removeliguidityETHWithPermit()

< _swap()

@ swapExactTokensForTokensSimple()

@ swapExactTokensForTokens()

@ @swapExactETHForTokens()

@ swapExactTokensForETH()

@ UNSAFE_swapExactTokensForTokens()

© _safeTransferETH()

< _safeTransfer()

© _safeTransferFrom()

@ removeliguidityETHSupportingFeeOnTransferTokens()

@ removeLiguidityETHWithPermitSupportingFeeCnTransferTokens()
© _swapSupportingFeeOnTransferTokens()

@ swapExactTokensForTokensSupportingFeeOnTransferTokens()
© @swapExactETHForTokensSupportingFeeOnTransfer Tokens()
@ swapExactTokensForETHSupportingFeeOnTransferTokens()

|
|
:for uint

7

y
@ Math

< Gumin()
< Qsgr()
< Qsub()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Spoon Diagram

@ Spoon

ISpoon

< string name
O string symbol

O uints decimals

@ IPairFactory © uint totalSupply
O address==uint balanceOf

O address=>mapping addregs==uint allowance
C bool intialinted

@ QallPairsLength()

g &:;ﬂiﬂﬂ © address minter
® QpairCoeHashl] 2 address redemptiu_nReceiver
® QgetPair() o address merkleClaim
@ createPair() @ _ constructor__()
@ sethMinter()
@ initialdirt()
@ approvel)
T mirt()

& _transfer()

@ transfer()

@ transferFrom()
@ mirt()

!

©I;puun

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VeArtProxyUpgradeable Diagram

@ AddressUpgradeable
@VeAdPrqupgradeahle
< QiisContract()
WeArtProxy
@ Base64 l COwnableUpgradeabls g :f:ﬂ;";ilg:ﬁg)
@ _ constructor__{) < functionCallvith aluel)
© Qencode() ® initialize() < @ functionStaticCall()
<+ QtoString() < QyerifyCallResultFromTarget()
@ Q_tokenURI() & QerifyCallResutt()
y v | O_revert()

@ OwnahblelUpgradeahble

Initializable
ContextUpgradeable

I;r
e
ra

@ fVeAﬁPmX‘;l O address _owner
O uint256 _ gap

1
@ O_tokenURI() I < Ownable_init()
< Ownable_int_unchained()
@ Qowner()
o 0,_checkOwner()
@ renouncelwnership)

@ transferOwnership()
< _fransferOwnership()

=
L

| |

k|

' @ ContextUpgradeable

[Initializable

| O uint256 _ gap

| o Cortext_init()

| < Context_int_unchained()
[< O_msgSender()

' < 4,_msgDatal)

T
i

<1
y
@ Initializable

O uints _initialized
O kool _initializing

< _disablelnitializers()
< 0,_getintializedVersion()
< 4, isIntializingl)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

. 18ripeFactory

®

VoterV2 1 Diagram

@ r=rc20 @ rcauge

® notifyRewardAmount()

@ QrotalSupply() ® getReward()

Ear ey

¢
createExternabribe()
createBriber)

. I1BaugeFactory

® createGauge()
® createGaugeV2()

. rdinter

@ update_periad()
® GQcheck()
® Speriod()

® claimFees()
o Qeymbot) 2 dern

® Qbalanceor()
@ transferFrom()

® QrewardRate()
® QpalanceOfi)

@ QisForPair()
: Qallowance() & QeotalSupply ()
approvel) © Qeamed)

.J’P‘a\n’

© Qactive_period()

® Gumetadata()
® claimFees()

@ votenva_1

Moter
Own,

< uint inglex
<

able
Reentrancy Guardupgradeabie

© address gavernos
© sodress emergeneyCouncil

address=>uit supplyindex

© intiglize()
& _initaize()
@ setMinter()

® kilGaugs()

© Sength

@ updateFord

@ distribute()

@ _whitekst()
© createGauge()

© __constructor__()

@ setGovernor()
® setEmergencyCouncill)

@ reviveGauge()
sttachTorenT oGaugE()
mitDe

® detachTokenFromGauge()
© emitWithdraw()

]
® QpoolVoteLengthi)
mmyﬁawardmnuurt()

- ..p«mForR-ng-n
® update)
@ updateGauge()

@ claimBribes()
© claimFees()
@ distributeFees()

© distributeAll()
< _sateTransferFrom()
@ setBriceFactory()

® setGaugeFactory()
© setPairFactory()

@ KillGaugeT otaly()

® Quokens()

© transterFrom() (@) reanractors

© permi(y

® swap()

: m"a()) : ::P:\mungu)
mi

® QgetReserves() o :'_:L'::C";“a;,mm
O get AmourtOut() e
‘Qname(} © createPair()

& Qsymbol()

& QuotaSupply()

® Qde:

@ Sclaimabled()
® Qclaimable ()

= QisStable()

@ console

< Qogl)
< Qngint()
@ Qloglint()
“ QogStri
. {VolingE scrow > q.u;-’f'.,’:%“
® create_lock_for() < QlogBytes))
@ Qocked() < QlogBytes1()
QtokenO1ownerByindex() @ QUogBytes2i)
Atol < QogByles3()
team() © QlogBytesd()
Qepochi() © QlogBytess()
Qpoirt_history() < QlogBytess()
@ Quser_paint_histary() < QlagBytesT()
® Quser_point_epochi) © QlogBytes8()
@ Qownerom() < QogBytes()
°q 0 o

® transferFrom(}

or()
L4 Q.halﬁncw!NFT()
© Qpalanceof()

e cum-lSupply()

@ Qsupply()

© Qaecimals()

< QogBytes11()

< address CONSOLE_ADDRESS
= Q_sendlogPayload()
)

QAfactory()

Quminter()
QemergencyCaunci()
attachTokenTaGauge()
detachTokenFromGauget)
emiiDeposi()
emifARndra(}

distributeAll()
distributeFees()
Qnternal_beibes()
Sexternal_bribes()

[EXXERN]
1z
FEH
As_
a

wotes()
@ Qpoolvatelength()

(&) ownableUngradeanie

Initializable
Contextiipgradeable

O pddress _owner
O uint256 _gap

@ _Ownable_nit()

& __Ownable_init_unchained()

® Qowner()
© @ _checkOwner()

© renounceOwnershipc)

® transterOwnership)

< _transferOwnership]

]

@ ReenfrancyGuardUpgradeable

@ AdaressL

< q\:c:nra-:\:J

H)
© funclionCal/inValue)

O WN256 _NOT_ENTERED

© QlogBytes12()
© QlogBytes13()
< QogBytes14()

“ QfunctionStaticCali(y
< QuuerityCalResultF romTarget()
© QuverifyCalResul()

® getRewardForownes()
@ notifyReward Amourt()
- Qent()

__ReentrancyGuard_init()

__ReertrancyGuard_i mn _unchained()

© QlogByles3()

m Q_revert()

_nonReentrantAfier()
El _reentrancyGuardEntered()

~ ‘"f

y

@ ComextUpgradsable

Initializatie

O uint2S6 __gap

@ __Context_init()

O __Context_init_unchained)
< &_msgSender()

< Q_msgData()

(©) mitializable

© uint8 _intialized
© bool _ntisiizing

< Q_sntializing()

© _disableintializers()
< Q_getintializedyersion()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VotingEscrow Diagram

@ wotingE s crow
IERCT2T

JERC T2 1ASetadats
Miotes

Aaddress tokern
address woter
Acdress team
address artProxy
——Poirt poat_hestory
Bytesa—-bool Supportedinterfaces
Eytesd ERC16S_INTERFACE 1D
Byiesa ERCTZ1 TERFACE 1D
Eytesd ERCT21 _METADATA INTERFACE ID
iret to boe rlicl
e _not _erdtered
e _erm=red
IS _ortorod_simto
trimg name
trimg svmizal
tring wersion
e decimals
rt——mcldr ess idT OO e
e e e e e T olMNF ToleryC owurt
—=address AT oApprowals
Address=—=mappng address==bhoal ownerToOperators:
—=1ant owenership_chanoge
ress=-mapping wWnt=>uirt owner ToMNFE Tokenldlist

Ly

E[E |21 \Nlﬂ EIEJE

== uses_poEnt_spoch
==r-\.|l usa D“'!t history

==, cl1
t==int128 siope_changes

Bytes32 DOMAIN_T YPEHASH
bytes32 DELEGATION TYPEHASH

Address—acldress _dolegetes

- IVotingEscromw mint Mas DELEGATES

Address=mappng wWrit3Z=>Checkpoint checkpairts
Address ==L 32 umChec ports
address=——=uirt nonces

create_lock_tor()
bocked()

Dtoke O TOwmnerByirndesx()
constructor__ ()
:l’nk.;r() =etTeaami()
Sepochi) g.gﬁrmmlg)
P oETt_hestoryi) S0 e OT D
Quuser_poirt_historyw() @ _balance()
Dumer_poirt_epochi) Slance o)
CI.QWHBI’OTU Sgetlpprowecd ()
Qs ApprovecOrC w reni) O A g O e O o BT
= transfesFromi) approve)
- SetApprowalF or AN
= _clear Aparowal ()

T _isubun po one e Or Onavrer ()
O A g rore HO O e ree
_transfers rom)
transferFromi)
=afeTramnsfer Fromi()
Q_isCormrect()
CLsupportsinter tace()
ok er O Ones By incesol)

checkpoirt()
deposit_tor()

o
t=]
L=
(=]
=

<

<
<>

-~

<

<

-

-
=
=
=1
L=

-~

<>

<
<
L=
<
<
=1
o
o
=
=1
L=
<>
<
<
<
L=
L=
=
=
|
=]
o
o
L=
=
-
-
-
<
-
-
=
=
-

-

<
=

-

- -

- -

= O batareceOTIE T

-

-

-

batarc e}
c._s._.p::..,,u e _addTokenToOwrerLis()
pdecimats () TeddTokenTon

ity
_remowveTokenFromChunwnes st
_remoweTokenFromy
i TE—
Qget_last_user__slope()
Sumer _point_history =)
Spocked___emdi)
_checkpoimt()y
_deposit_for()

@
<
<
<>
<
<
<
-
-
-
<
<

Ncrease_amourty
erease_uniock_timel)
v vl)

Q_find_block_epochd)

[ATE R I OT X KoY | .ll(}.
¢
i
v

CLgetPastsotesinde)
QgetPast otes()
UgetPastTotalSupe vl)
_mowveTokenDelegates()
T i et O e ki ol T ol ite]
_moweAlDelsgates])

—delegate()
delegste()
delegate By Siol)

-
L
-
-
=
-
-

<

<
<
<
-
-

(X remrczo
{E) svores \
Seor—r— | .-:ERC?ZfMeeadare
= transfer @@ 1ERCT21 Receiver = Agetvote=0 | —
= Sudecimalsiy = SugetPastotes() \
- O symboll) ~ & O getPastTotalSuppiy) \ = ———
o A balanceOT() e o 1 X o e 10 = q.dsegahesx) \ = Ssymbol(}
& transferFromd) & delegate | & CUtokenURI)
- CLalowance() - dslag-—nayslg() ~
= approwel) \

IERCTES

A alEmncsOT)
==l)
safeTransferFrom)

trars ferFrom(l

o e
setApprovalForsm
A getApproved(d
AisspprovedEor A0

T

(@ rercres

- A supportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IVotingEscrow

®Mam

© Qumax()
< Quming)
< Qsgil)
< acbt))

® create_lock_for()

@ Qlocked()

© QiokenOfOwnerByindex()
© Qoken()

® team()

@ Qepoch()

@ Qupoint_history()

@ Quser_point_histery()
® Quser_point_epoch()

® Qownerof()

© QsApprovedOrowner()
® transferFrom()

@ Quoted()

® Qattachments()

@ veting(y

® abstain()

© attach()

@ detach()

® checkpoint()

@ depostt_for()

@ QbalanceOfNFT()
© QbalanceOf()
@ QotalSupply()
@ Qsupply()

© Qulecimals()

BribeFactoryV2 Diagram

@ IMinter

© update_period()
© Qeheck()
© Qperiocl()
© Qactive_period()

@ console

< address CONSOLE_ADDRESS

m Q_send_ogPayload()
< Qlog()

© Qogintty

© QogUintt)

& QogString()

@ IVater

< QogBool()
< QogAddress()
< Qlogk

)
© QlogBytes1 ()

@ Q_ve()

@ Qgovernor()

@ Qgauges()

@ Qfactory()

© Qminter()
QemergencyCouncil}
attachTokenToGauge()
detachTokenFromGauge()
emitDeposit()
emitithdraw ()
QisWhitelisted()y
natifyRewardAmount()
distribLte()
distributeAl)
distributeF ees()
Qinternal_bribes()

© Qexternal_bribes()

@ QusedWeights()

© QlastVoted()

© QpoolVote()

© Quates()

© QpoolVateLength()

e0c00000000

© QogBytes2()
© QogBytes3()
< QogBytesd()
© QogBytess()
© QogBytest()
© QogBytes7()
© QogBytes8()
© QogBytess()
© QogBytes10()
< QlogBytes11()
< QlogBytes12()
© QogBytes13()
© QogBytes4()
© QogBytes15()
© QogBytes1 ()
< QlogBytes17()
< QlogBytes18()
© QogBytes19()
© QogBytes20()
© QogBytes21()

© QogBytes22()
o

J
© QogBytes24()
© QogBytes25()
© QogBytes26()
© QogBytes27()
© QogBytes28()
© QogBytes29()
< QogBytes30()
© QogBytes3()
© QogBytes32()

@ IERC20

o QiotalSupply()
® QpalanceOf()
@ transfer()
® Qallowance()
® approve(y
© transferFrom()

® AddressUpgradeable

< QisContract()

© sendValue()

© functionCall()

© functionCalWVith\ alue()
© QfunctionStaticCal()

© QuerifyCalResutFromTarget()

© QerifyCalResult()
m Q_revert()

@ 1Bribe

© addReward()

@ Bribe

ReentrancyGuard
WNSafeERC20 for IERC20

© Lint256 WEEK

O Lint256 frstBribeTimestamp

© address=>mapping uint=>Reward rewar dDta
© address=rbool isRewardToken

© address rewardTokens

© address voter

© address bribeFactory

© address mirter

© address ve

© address owner

© string TYPE

© Lint256=>mapping address=>uint256 userTimestamp
© Lint256=~uim 256 _totalSupply

O Lint256=>mapping Unt256=>Uint256 _balances

@ Ownahle

© __constructor__()

© QgetEpochStart()

@ QgethextEpochStart()
@ addReward()

@ QrewardsListLength()
© QotalSupply()

© QuotalSupplyAt()

© QhalanceOfAL()

® Qbalance0f()

® Qearned()

“ Q_earned()

® QrewardPerToken()
© _depost()

© _withdraw()

® getReward()

@ getRewardForOwner()
@ notifyRewardAmount()
@ recoverERC200)

® setloter()

© setiinter()

® adcdRewardToken()

® setOwner()

Context

0 address _owner

__constructor_()
Qowner()

© & _checkOwner()

@ renounceOwnership()
© transferOwnership()
© _ansferownership()

®
®

@ BribeFactonyv'2

OwnableUpgradeable

© address last_bribe
O address voter

© _constructor_()

@ initialize()

© createBrioe()
® setvoter()

© addReward()
o

Jerigrc20 |

17

® SafeERC20

© ReentrancyGuard

mAddress for address O uint256 _NOT_ENTERED
O uint256 _ENTERED

© safeTransfer() O uint256 _status

< safeTransferFrom()

© safeApprove() ® __constructor__()
< L]

el)

© safeDy)
m _callOptionalReturn()

u_r (]
© Q_reentrancyGuardEntered()

:fo! address

|
7

@ Address

© QsCortract{y

© sendValue()

> functionCall()

© functionCallAthV alus()
© QfunctionStaticCall()
< QerifyCalResut()

@ Context

© Q_msgSender()
© @_msgData()

)

@ OwnableUpgradeable

Initializable
ContextUpgradeable

O address _owner
O w256 _gap

© __ownable_init0)

' __Ownable_init_unchained()
© Qowner()

© O_checkOwner()

© renounceOwnership()

© transferOwnership()

< _transferOwnership()

@ ContextUpgradeable

Initializable

O uint256 __gap

© __Context_initQ)

|| © —Cortext_ink_unchained()
© O _msgSender()

© Q_msgData()

© Initializable

O uint? _nfialized
O hool intializing

< _disableinitializers()
© Q_gethitialized\ersion()
© Q_sinitializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IPair

@ Math

< Qmax()
© amin()
© Qsgri()
& Qebrt()

© Qmetadata()
© clainFees()

© Qokens()

© transferFrom()

@e= | |im
© swap()
© _depost() @ burn(y
© _wihdraw() © mint()
© getRewardForowner() © QetReserves()
®) ® i
© Qlefti) © Qrame()
© Qsymol))

@ rerc20

© QutotalSupply()
© Qpalance0f()
© transfer()

°

(@) 1Rewarder]

© Qclaimablet ()
© QisStable()

GaugeFactoryV2 Diagram

@ SafeMath|

@

© QisContract()
© sendValue()
© functionCalll)

© onReward()

© functionCallVithalue()
© 10y

© approve()
© transferFromQ)

@ IGauge

© setDistribution()

© QuerifyCalResutFromTarget()
© QuerifyCalResut(y

B Q_revert()

& QtryAdd()
© QurySub)

© Quadd()
& Qsubl)
< amu(y
© Qdiv)

@ Gaugev2

ReentrancyGuard
Ownabie

nSafeMath for wint256
NSafeERC20 for [ERC20

© bool isForPair
© ERC20 rewardTaken

0 ERC20_VE

O [ERC20 TOKEN

© address DISTRIBUTION
© address gaugeRewarder
© address internal_bribe

© wint256 DURATION
© wint256 periodFinish

© uint256 rewardRate

© UINt256 lastUpdate Time:

o ewardPerTokenStored
o >UNt256 userRewardPer TokenPaid
© geldress=~Lint258 rewards
O uini256 totalSupply
© address=>.int256 _balances

Uini256 r
addres:

= _0

© setDistribution()

© setGaugeRewarder()

© setRewarderPid()

@ QtotalSupply()

© Qbalance0f()

© QastTimeRewardApplicable()
© QrewardPerToken()

© Qearned)

© QrewardForDuration()
© deposrall)

© deposi()

 _deposit()

© withdrawAll()

© withdraw()

< _witheraw()

© withcrawAlLAndHar vest()
© getReward()

© Q_periodFinish()

© nofifyRewardAmount()
/| @ claimFees))

‘ < _clainFees()

‘ i
1 for uint?56 for IERC20
/

‘

v @ Ownable

® SareERC20 Contond

nAdaress for address

© safeTransfer()
© safeTransferFrom()
< safeApprove()
< safeincreaseAllowance()
< safeDecreaseAlowance()

@ renounceCwnership()
BFC|CRllse el g @ transferOwnership()

0 address _owner

© _constructor_()
© Qowner()
© Q_checkQwner()

@ ReentrancyGuard

O uint256 _NOT_ENTERED
O Lint256_ENTERED
O Lint256 _status

@ GaugeF actonyv2

IGaugeFactory
CwnableUpgradeable

© address last_gauge
© _constructor_{)
© intialize()

© createGaugev2()
© setDistribution()

(©) ownableuporadeable

Inttializable
L Contexttpgradeable

0O address _owner
0 uirl256 _gap

(@) 1caugeractor

® _constructor_()

& _Ownable_init)

© createGaugeV/2()
< __Ownable_int_unchained()

o)
B norResntrantAfer()

© Q_resntrancyGuardEntered()

! © _transferOwnership()

O Qmed()y

i
|
i
|
for address
|

7

(@) aduress

© Context

© QsContract()

© sendvalue()
& _msgSender()

“ functionCall()
 Q_msgDatal)

 functionCallithV alue ()
° il

© QuerifyCalResut()

© Qowner()
@ Q_eheckOwner()

© renounceQwnership()
© transferOwnership()
© _transferOwnership()

‘ 3

|
| | © contextuporadsable

Initializable

O Lini256 __gap
© __Context init()

© __Context_init_unchained()
© Q_msgSender()

© Q_msgDataf)

%
@ Initializable

0 uint8 _initialized
0 b ializing

< _disablelntializers()
© Q_getintializedersion()
© Q_Jsintializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@) matn

< amax()
© Qmin)
© Qsart()
< Qehrt()

@ rere20

© QotalSupply()
© transfer()

© Qaecimals()
© Qsymbol()

@ Qalance0f()
© transferFrom()
© Qallowance()
@ approve()

@ IPairCallee

PairFactory Diagram

@ Pair

IPair

string name
string symbol
wit8 decimals
bool stable
it totalSupply
address=>mapping address=>uint allowance
address=surnt balanceOr
loytes32 DOMAIN_SEPARATOR
Ioytes32 PERMIT_TYPEHASH
address=>uint nonces
it MINIMUM_LIQUIDITY
address tokend
address tokent
address fees

idress factory
int periodSize
Observation observations
it decimals0
it decimals
uint reserve
Uit reserve1
uirt blockTimestampLast
uirt reserveOCumulativeL ast
it reserve1 Cumulativel ast

indexd

PPl 0
T supplyindext
1 claimabled

@ 1oibs

© hook()

® reward()
L

© PairFees

© address pair
< address tokend
< address tokent

© _safeTransfer()
® claimFeesFort)

@ __constructor_()

claimable

000000000000 GOGOGGO000GOGGO000000O0
=2

uirt_unloched

© PairFactory

IPairFactory

© boolisPaused

O address pauser

© address pencingPauser
© UINt256 stableFee

255 MAX_FEE
iress feelanager
iress pendingF eeManager
Iress dibs

19

getPair

address alPairs

000000000

© _construetor_()
© QobservationLength{y
© QastObservation()
© Qmetadata()

© Qokens()

© Qsstable()

© claimFees()

© _updaten()

© _updatet ()

© ZupdateFor()

© QgetReserves()
© _update()

© QeurrentCumulativePrices()
© Qeurentf)

© Qquote()

® Qprices()

© Qsample()

© mint(y

@ burn()

© swap()

© skim()

@ synci)

S a_m

< a0

< Q_get_y()

© QgetAmountOut()
© Q_getAmourtOut()
@ k)

< _mink()

< _burn()

@ approve()

© permitf)

© transfer()

© transferFrom()

< _transferTokens()

isPair
© address _temp0

< address _tempt

< bool _temp

© PairFactoryUpgradeable

IPaicFactory
OwnableUpgradeable

© pool isPaused

© Lint356 stableFes

© Lin256 volatileF se

O Lint256 MAX_REFERRAL_FEE
© Lint256 MAX_FEE

© address feehanager

© address pendingFeehanager
© address cibs

address alPairs
isPair
ress_temp0
ress _temp1
bool _temp

ac
uc

Qoo000

getPair

© _constructor_()
© QualPairsLength()
© Qpairs()

© setPauser()

© acceptPauser()

© setPause()

© setFeellanager()

© acceptFeehlanager()
© setDibs()

® setReferralFee()

© setFee()

© QgetFee()

© QpairCodeHash()
© Qgetnitializable()

© createPair()

© __constructor_()
© initialize()

© QualPairsLength()

@ Qpairs()

© setPause()

© setFeeManager()

© accepiFeeManager()
© setDibs()

© setReferraFee()

© seffee|

© QgetFee()

© QpairCodeHash()

© Qgetintializable()

© createPair()

© _safeTransfer()

< _safefpprove()
@) 17arr

© Qumetadata()

@ AddressUpgradeable

© claimFees()
© Qtokens()

© transferFrom()

< QisCentract()

© sendValue()

© functionCal)

© functionCallithV alue()
© QunctionStaticCall()

© permit()

© swap()

© burn(y

© mint()

© QgetReserves()
° out()

© QuerifyC
© QuerifyCalResutt))
B Q_revert()

) © Qname()

© Qsymbol()
°)
© Quecimals()
© Qclaimable0f)
© Qclaimablel()
© Qsstable()

@ IPairFactory

© QalPairsLength()
© QisPair()

© QalPairs()

© QpairCodeHash()
© QgetPair()

© createPair()

@ OwnableUpgradeable

Initializable
Contexillpgradeable

O address _owner
0 uint256 _gap

< __Ownable_init()
< __Ownable_init_unchained()
® Qowner()
© Q_checkOwner()
@ renounceOwnership()
© transferOwnership(}
< _transferOwnership()
T T

| © ContextUpgradeable

Initializable

_gap

& __Context_init()

& _Context_init_unchained()
© @ _msgSender()

| | © @ msgData0)

”

@ Initializable

0 wintd _iniialized
o itializing

© _disableintializers()
© @_getintializedVersion()
© Q_Jsintializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@) matn

< amax()
© Qmin)
© Qsart()
< Qehrt()

@ rere20

© QotalSupply()
© transfer()

© Qaecimals()
© Qsymbol()

@ Qalance0f()
© transferFrom()
© Qallowance()
@ approve()

@ IPairCallee

PairFactoryUpgradeable Diagram

@ Pair

IPair

string name
string symbol
wit8 decimals
bool stable
it totalSupply
address=>mapping address=>uint allowance
address=surnt balanceOr
loytes32 DOMAIN_SEPARATOR
Ioytes32 PERMIT_TYPEHASH
address=>uint nonces
it MINIMUM_LIQUIDITY
address tokend
address tokent
address fees

idress factory
int periodSize
Observation observations
it decimals0
it decimals
uint reserve
Uit reserve1
uirt blockTimestampLast
uirt reserveOCumulativeL ast
it reserve1 Cumulativel ast

indexd

PPl 0
T supplyindext
1 claimabled

@ 1oibs

© hook()

® reward()
L

© PairFees

© address pair
< address tokend
< address tokent

© _safeTransfer()
® claimFeesFort)

@ __constructor_()

claimable

000000000000 GOGOGGO000GOGGO000000O0
=2

uirt_unloched

© PairFactory

IPairFactory

© boolisPaused

O address pauser

© address pencingPauser
© UINt256 stableFee

255 MAX_FEE
iress feelanager
iress pendingF eeManager
Iress dibs

19

getPair

address alPairs

000000000

© _construetor_()
© QobservationLength{y
© QastObservation()
© Qmetadata()

© Qokens()

© Qsstable()

© claimFees()

© _updaten()

© _updatet ()

© ZupdateFor()

© QgetReserves()
© _update()

© QeurrentCumulativePrices()
© Qeurentf)

© Qquote()

® Qprices()

© Qsample()

© mint(y

@ burn()

© swap()

© skim()

@ synci)

S a_m

< a0

< Q_get_y()

© QgetAmountOut()
© Q_getAmourtOut()
@ k)

< _mink()

< _burn()

@ approve()

© permitf)

© transfer()

© transferFrom()

< _transferTokens()

isPair
© address _temp0

< address _tempt

< bool _temp

© PairFactoryUpgradeable

IPaicFactory
OwnableUpgradeable

© pool isPaused

© Lint356 stableFes

© Lin256 volatileF se

O Lint256 MAX_REFERRAL_FEE
© Lint256 MAX_FEE

© address feehanager

© address pendingFeehanager
© address cibs

address alPairs
isPair
ress_temp0
ress _temp1
bool _temp

ac
uc

Qoo000

getPair

© _constructor_()
© QualPairsLength()
© Qpairs()

© setPauser()

© acceptPauser()

© setPause()

© setFeellanager()

© acceptFeehlanager()
© setDibs()

® setReferralFee()

© setFee()

© QgetFee()

© QpairCodeHash()
© Qgetnitializable()

© createPair()

© __constructor_()
© initialize()

© QualPairsLength()

@ Qpairs()

© setPause()

© setFeeManager()

© accepiFeeManager()
© setDibs()

© setReferraFee()

© seffee|

© QgetFee()

© QpairCodeHash()

© Qgetintializable()

© createPair()

© _safeTransfer()

< _safefpprove()
@) 17arr

© Qumetadata()

@ AddressUpgradeable

© claimFees()
© Qtokens()

© transferFrom()

< QisCentract()

© sendValue()

© functionCal)

© functionCallithV alue()
© QunctionStaticCall()

© permit()

© swap()

© burn(y

© mint()

© QgetReserves()
° out()

© QuerifyC
© QuerifyCalResutt))
B Q_revert()

) © Qname()

© Qsymbol()
°)
© Quecimals()
© Qclaimable0f)
© Qclaimablel()
© Qsstable()

@ IPairFactory

© QalPairsLength()
© QisPair()

© QalPairs()

© QpairCodeHash()
© QgetPair()

© createPair()

@ OwnableUpgradeable

Initializable
Contexillpgradeable

O address _owner
0 uint256 _gap

< __Ownable_init()
< __Ownable_init_unchained()
® Qowner()
© Q_checkOwner()
@ renounceOwnership()
© transferOwnership(}
< _transferOwnership()
T T

| © ContextUpgradeable

Initializable

_gap

& __Context_init()

& _Context_init_unchained()
© @ _msgSender()

| | © @ msgData0)

”

@ Initializable

0 wintd _iniialized
o itializing

© _disableintializers()
© @_getintializedVersion()
© Q_Jsintializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Iog >> Bribes.sol

es (Bribes. 5P1+11'3 sh
ss) IElchs

) should emit an event for:
/wiki/Detector-Documentation#missing-events-access-control

Bribe.earned({uint25) (Bribes.sol#2250-2) has external calls inside a 1 : _endTimestamp = IMinter({minter).active_

wiki/Detector-Documentation/#calls-inside-a-1lc
255,UiNt256) (Bribes.sol#2357-2

oken).safeTransferFrom(msg.se s ess{this),reward) (Bribes.sol#2359)
written after the callis)
stamp = _startTimestamp IEribe
en][_startTimestamp].rew lastReward + reward (Bribes.s
en][_startTimestamp].lastU 2 2 block.timestamp (Bribes.sol#2
n][_startTimestamp] i N1 startTimestamp + WEEK (Bri
ytic/slither/wiki/Dete -Documentation#reentrancy lercralllltl»s—;

express
https: #redundant-statements
_rewardToken (Bribes.sol# 7) is too similar to Bribe.rewardTokens (Bribe

1; 17

iable Bribe.getReward{uint256,address[]) ewardToken (Bribes.sol#23308) is too similar to Bribe.rewardTokens (Bribes.sol#21

ariable Bribe._earned(uint256,address,uint256)._rewardToken (Bribes.sol#2277) is too similar to Bribe.rewardTokens (Bribes.so
is too similar to Bribe.rewardTokens (Bribes.sol#2172)
riable-names-too-similar

be immutable
should be immutable

clared- immutable

should emit an event for:
or-Documentation#miss ing-events-access-control
) should emit an event for:
ki/Detector-Documentation#missing-events-arithmetic
ess,address,address, address,address,address,b)._distributien

- DISTRIBUTION = _distribution (Gau sol#
r _internal_bribe (Gaugev2

_external_bribe {Gaugev2

Function IBribe (Uint256 nt256) | se
Function i i (i i ase
Parameter is not in mixedCase
Parameter) is not in mixedCase
7) mixedCase
is not in mixedCase
Case
mixedCase
is not in mixedCase
) is not in mix
o (is not in mix
.ELRH ION (: i in mixedCase
_tota 1‘L|r1 (V2. 4) is not in mixedCase
) is not in mixedCase
/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

immutable

should be immutable
be immutabl

immutable
iFFLtc|1¢
C -Documentation#state-variables-that-could-be-declared- immutable

Gaugevz sol analyzed (12 contracts with 84 detectors), 66 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> import.sol

rsion”0. (1 rt. 45 old versions

8.4 is |Lt z e yme i
https ithub. ytic/slither/wiki/Detector-Documentation#inc =T rsions-of-solidity

call
(succe }. (
1 call 1 2 s int256 ing) (import.sol#125-134):

(succe
call i
- (success, (
el call in Address.functionDe (255, bytes, (1 rt.sol#177-184):
- {success,returndata .delega (data) (1import.so 1#182)
Reference: https github ik i/Detector-Do tati level-calls
import.sol analyzed (9 contracts “with 84 detectors), 43 result(s) found

allows old versions

radeable.sol#194)
eable. TLF tl-lccllaltl = s t es,uint256,string
target.cal { clL» i
ble. functi

e .EMISSION (MinterUpgra B #560) 1s not in mixedCase
AIL EIICCIﬁL flilth Upgra 2. 561) is not in mixedCase
- is not in mixedCase
#569) is not in mi
is not in mixedC
ot in mixedCase
r‘t in Flf¢CCcS~

is not in mixedCase
formance-to-solidity-naming-

ol#215-224) should emit an event for:

/wiki/Detector-Documentation#missing-events -arithmetic
(Pair.sol#188) lacks a zero-check on
118)
_to k nl 'Pcll sol#1088) lacks a zero-check on
= ir =
PairFactory.setPause
PairFactory.
Pair.co

{Pair.sol#33

ess-validation

[Pair.sol#) should be immutable
.symbol {Pair.s
declared- immutable

PairFees.constructor
- to k|l
PairFees.constructor

: https it micrytic/sli : 4iki/Detector-Documentation#miss g-ze dress-validation
allows old versions

d yment
'_;511t|»|-\iki;Eetectcr—Echrertaticr#irccrrect—versicrs—:f—sclicity

PairFees. sol analyzed (2 contracts with 84 detectors), 5 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> Router.sol

t tructor(

/slith m
ith 84 dete : . sul) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> VeArtPronypgradeable sol

Low level call

L all
{succ
call 1

Low level

Function
Parameter

Parameter VeArtProxyUpgradeable

yUpgradeable.
Parameter

in mixedCa
Parameter

rtProxyllpgradeable

-‘rtPrcxprgraceable

_tokenURI{uint256,uint256
_tokenURI{uint256,uint256
_tokenURI{uint256,uint256,

_tokenURI{uint256,uint256

ble.sendvalue(addre
11{ salue: amount}
b TLF'tl |C511d1

TLr'tlwrthtl Ccll'é-.
cll'bctc

RI{uint256,uint256,uint256,uint256)
LRIILllt_EE Lllt_EE

,uint256,uint2 “r,._

,uint2s56,
,uint256,
uint256,

,uint256,

2_1.claimBribes(address[],ad

_1l.claimBribes(
1. -1=1rB|1k=s

killGaug
.whitelist(
.initGauges(a

.DURATION
2 https
Votervz_l

-
be disclosed to third party without prior written perm

sol analyzed (18 contracts thh 84

ol#2649)

is not in
is not in

ress[],uint256[])._usedwWeight {Voterv2

ar/wiki/Detector-Documentation#

ki/Detector-Documenta tl
detectors), 524 result(s) found

uint2s56)._to

uint256)._

uint256).

oxylUpgra

le.sol#210-217

mixedCase
is not

is not in

in mixedCase

) is not in mixedCase
mixedCase
is not in

is r“t in

-428) mixedCase

uint256)._ba

nd (VeArtProxyUpgra

value {VeArtProxylpgradeable.sol#514)

conformance-to-solidity-namin

address-validation

mixedCase
) is not in mi Case
548) is not in mixedCase
is not in mixedCase
) is not in mixedCase
is not in mixedCase
dCase

is not in

mi Case
is not in mixedCase
is not in mixe
ot in mixedCase
is not in mixedCase
in mixedCase
is not 1in

is not
i mixedCase

formance-to-solidity-naming-

4-2684)
undant-statements
similar to

2_1.s0l#2365) is too

variable-names-too-similar

unused-sta t»—'crlcll»

a private and confidential document. No part of this document should

Email: audit@EtherAuthority.io

ot in

VoterVz_1.

on of EtherAuthority.

in mixedCas

mixedC

4) is not 1in

is not i

is not in mi

usedwWeights

Slither log >> VotlngEscrow sol

Vot ingEscrow
oken

VotingEscrow.constructo

- artPr
VotingEscrow.setTeam(ad

- team
VotingEscrow.setAr
Vot ingEscrow.
Reference: https ither/wiki/Detector-Documentation#mi ing-ze ddress-validation

g ,uint256,uin ing c tingEsc .DepositT
has external ca ins ide : assert(b)M 20 (from, sslﬁtl'is__

e: https://gi . ytic/slith viki/Detector-Documentatio calls-1inside-a-loop
VotingEscrow.withdraw(uint256) (VotingEscrow.sol#1117-1141):

xternal calls:
css-ltll IIERC 4] I_t ken trc|s‘r-|lr’s- sender,value)) (VotingEscrow.sol#1134)

vulnerabilities-3

checkpoint{uint256,VotingEscrow.LockedBalance,VotingEscrow.LockedBalance) tingEscrow.sol#350) uses timest

.timestamp

-1r’-st.=r“|. > last
- block.timestamp
int.bias < @ {

ockedBalance,VotingEscrow.DepositT) (VotingEscrow.s

w.s0l#1644) is too similar to VotingE

ow.sol#1573) is too similar to Votin

|"L Detector-Documentatio |-rl""lSS'LI'"—-'-;'-3\'125-&-:-:-355—'ICI'TI'Cl

zero-check on

is too similar to Bribe.rewardTokens (BribeFacto

) is too similar to Bribe. rdTokens (Bribe

ewardToken (BribeFactoryv2.sol#2) is too similar to Bribe.rewardToken
5)._rewardToken (BribeFactoryV2.sol#2 is too similar to Bribe.rewardTokens (B

ic/slither/wiki/Detector-Documentation#variable-names-too-similar

declared- immutable

BribeFactoryVv2.sol analyzed (18 contracts with 84 detectors), ‘488 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> PairFactory.so

1,uint

rithmetic

T

(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> PawFactoryUpgradeabIe sol

PairFactory.setF (PairF Upgradeable.sol#219-228) should emit an event for:

.501#1309-1317) should emit an event for:

es5). to ke |l 'Pc'LI
nl {PairFactory

Pair.constructor()
Pair.constructor

PairFactory

Reference:
PairFactory.pa

uses Lliterals with too many digits:

should be immutable
should be immutable

wiki/Detector-Documentation#state-variables-that-could-be-declared- immutable

g IR» cl"‘S[:'LS'tI llLt“r sol#145)

RewardsDistribut
RewardsDistribut
RewardsDistribut

Reference:

C '3F|3EI'iS'3I'S

cursor <

max_user
rdspistributor. ;
) {RewardsDistr 1| ut
ous -.-:r|:.'=|'is-:|'s:
k.timestamp i cursor (Rewa
d i tamp (R
_many({uint256[]) (Reward . 3 420) e imestamp for comparisons
gerous '.'.F'|:EI"LS'.I51
k.timestamp time_cursor (Re
‘t'LF’-S‘th"|. (R

2 int_ () (Rews i i s #53) 1is not in mixedCase
Function = 1 1 i 25C () is not in mixedCase
Function J istri r.check) | "SI:'LSTI'L|L,1: r.sol#55) i

Function C I O\) Distributor

Parameter ing =E)

uration is not in mixedCas

sl:is‘tril:Lt- oiE: i sl:'Lstl 'L|L,‘t r.so 1-r1<
sDistributor. = (RewardsDistril . o le
https i i lither/wiki/De tector-Documentation#state-var iables-that-could-b

ofe declared-immutable
ewardsDistributor.sol analyzed (5 contracts with 24 detectors), 94 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Solidity Static Analysis

Bribes.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Bribe.recoverERC20(address,uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 2378:4:

Gas & Economy

Gas costs:

Gas requirement of function Bribe.getReward is infinite: If the gas requirement
of a function is higher than the block gas Umit, it cannot be executed. Please
avoid loops In your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 2323:4:

(Gas costs:

Gas requirement of function Bribe.earned is infinite: If the gas requirement of a
function is higher than the block gas Limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 2250:4:

Miscellaneous

Constant/View/Pure functions:

SafeERC20._callOptionalReturn(contract IERC20,bytes) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 2012:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 2401:8:

GaugeV2.sol
Security

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a

certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 859:23:

Gas & Economy

Gas costs:

Gas requirement of function GaugeV2.claimFees is infinite: If the gas
requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays Iin storage)

Pos: 963:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 956:8:

import.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Security

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases.
Additionally static analysis modules do not parse inline Assembly, this can lead
to wrong analysis resulis.

more

Pos: b32:8:

Gas & Economy

Gas costs:

Gas requirement of function TransparentUpgradeableProxy.upgradeToAndCall
is infinite: If the gas requirement of a function is higher than the block gas limit,
it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 693:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 71/7:8:

MinterUpgradeable.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
MinterUpgradeable.update_period(): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
mare

Pos: 700:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function MinterUpgradeable._initialize is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas

of storage (this includes clearing or copying arrays in storage)
Pos: 613:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas Limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 622:12:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

Pos: 746:8:

Pair.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Security

Block timestamp:

Use of "block timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 744:28:

Gas & Economy

(Gas costs:

Gas requirement of function Pair.quote is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
Includes clearing or copying arrays in storage)

Pos: 526:4:

(Gas costs:

Gas requirement of function Pair.sample is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays In storage)

Pos: 540:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 762:8:

PairFees.sol

Security

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior If return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 35:44:

Gas & Economy

(Gas costs:

Gas requirement of function PairFees.claimFeesFor is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops In your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 40:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 41:8:

RewardsDistributor.sol

Security

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 414:33:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function RewardsDistributor.checkpoint_token is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas of
storage (this includes clearing or copying arrays in storage)

Pos: 196:4:

Miscellaneous

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

more

Pos: 431:8:

Router.sol

Security

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more
Pos: 215:8:

Gas & Economy

Gas costs:

Gas requirement of function Router.swapExactTokensForETH is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 184:4:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" Iif x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 213:8:

RouterV2.sol
Security

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 94:28:

Gas & Economy

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas Limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

mare

Pos: 159:8:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 156:8:

Gas & Economy

Gas costs:

Gas requirement of function Spoon.mint is infinite: If the gas requirement of a
function is higher than the block gas lmit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this

Includes clearing or copying arrays In storage)
Pos: 88:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.

invalid input or a failing external component.
more

Pos: 89:8:

VeArtProxyUpgradeable.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
AddressUpgradeable.functionCallWithValue(address,bytes,uint256,string):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently
not considered by this static analysis.

more

Pos: 183:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function VeArtProxyUpgradeable._tokenURI is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 514:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 189:8:

VoterV2 1.sol
Gas & Economy

Gas costs:

Gas requirement of function VoterV2_1.reset is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in
your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 2310:4:

Gas costs:

Gas requirement of function VoterV2_1.poke is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in
your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 2345:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
storage values, have to be used carefully. Due to the block gas Limit, transactions can
only consume a certain amount of gas. The number of iterations in a loop can grow
beyond the block gas limit which can cause the complete contract to be stalled at a
certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas
costs. Carefully test how many items at maximum you can pass to such functions to
make it successful.

more

Pos: 2669:8:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from
a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a
failing external component.

more

Pos: 2176:8:

VotingEscrow.sol

Security

Block timestamp:

Use of "block.timestamp™: "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 1713:12:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas Limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas Limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 1643:16:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 1122:8:

BribeFactoryV2.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
BribeFactoryV2.createBribe(address,address,address,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 2849:4:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function BribeFactoryV2.addRewards is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 2873:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded
loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 2879:12:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 2859:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100
= 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 2292:15:

GaueFactoV2.soI

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Block timestamp:

Use of "block timestamp": "block.timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block.timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 1019:23:

Gas & Economy

(Gas costs:

Gas requirement of function GaugeFactoryV2.setDistribution is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 1498:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from
a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a
failing external component.

more
Pos: 1458:8:

PairFactory.sol

Security

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 745:28:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function Pair.sample is infinrte: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays In storage)

Pos: 541:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 802:8:

PairFactoEUiiradeable.sol

Block timestamp:

Use of "block.timestamp”: "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

maore

Pos: 748:28:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function PairFactoryUpgradeable createPair is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 1331:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
storage values, have to be used carefully. Due to the block gas limit, transactions can
only consume a certain amount of gas. The number of iterations in a loop can grow
beyond the block gas limit which can cause the complete contract to be stalled at a
certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas
costs. Carefully test how many items at maximum you can pass to such functions to
make it successful

Pos: b33:8:

Miscellaneous

Data truncated:

Division of integer values yields an integer value again. That means eg. 10/100=0
instead of 0.1 since the result is an integer again. This does not hold for division of
(only) literal values since those yield rational constants.

Pos: 720:19:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any crcumstance (apart from
a bug in your code). Use "require(x}" if x can be false, due to e.g. invalid input or a
failing external component

more

Pos: 1311:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Bribes.sol

Bribes.sol:24:73: Error: Parse error:

Bribes.so0l:1998:18: Error: Parse

GaugeV2.sol

T .

N

oy W

0
@]

Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing
Error: Parse error: missing

> W

)
o ot

T .

0 0
O O
O O
il e
0
Q

T .
r

0)]
O O
[N
O O

0}

R = = o
oo 0o

[@Nee]
0 O

n 0
O O
= = = = == EEE
w S N - O
Q
t ct ct ct ct

0
O
(U

w =N

~J U1
[0))
o+

O
(G2 NOTN O T O R e i

n n
O

(o))

~

Q

ct

.s0l:2:1: Error: Compiler version "~0.8. e s satisfy the r

requirement

.s01:182:51: Error: Avoid using low level calls.

.801:532:9: Error: id using inline assembly. It is
acceptable only in rare E
import.s0l:594:49: Error: Code contains empty blocksimport.sol:725:5:
Error: Explicitly mark vis ity in function (Set ignoreConstructo
to true if using solidity
import.sol:725:122: Error:

MinterUpgradeable.sol

MinterUpgradeable.sol:

Pair.sol

Pair.sol:24:73: Error: Parse error: missing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pair.sol:555:2

PairFees.sol

PairFees.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement

PairFees.so0l:27:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
PairFees.s0l:35:45: Error: Avoid using low level calls.

RewardsDistributor.sol

RewardsDistributor.sol:22:73: Error: Parse error: missing

Router.sol

)

Router.sol:23:73:

RouterV2.sol

RouterV2.sol:7:1: Error: Compiler version 0.8.13 does not satisfy the

r semver V2.s501:40:5: Error: Function name must be
mixedC

:35: Error: Use double quotes for string literals

Error: Contract name must be in CamelCase

Error: Explicitly mark visibility of state

Error: Avoid to make time-based decisions in

(0)}

0

) O 0O I
(IS NG ¢

Use double quotes for string literals
Explicitly mark visibility in function
rue if using solidity
Error: Use double quotes for string
literals
RouterV2.s0l:156:37: Use double quotes for string literals

Spoon.sol

Spoon.sol:60:18: Error: Parse error: missing
Spoon.sol:69:18: Error: Parse error: missing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VeArtProxyUpgradeable.sol

VeArtProxyUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does
not satisfy the r semver requirement

VeArtProxyUpgradeable.sol:485:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
VeArtProxyUpgradeable.sol:485:19: Error: Code contains empty blocks
VeArtProxyUpgradeable.sol:487:39: Error: Visibility modifier must be

first in list of modifiers

VeArtProxyUpgradeable.sol:521:296: Error: Use double quotes for
string literals

VeArtProxyUpgradeable.sol:522:42: Error: Use double quotes for string
literals

VoterV2_1.sol

VoterV2 1.s0l:22:73: Error: Parse error: missing

VotingEscrow.sol

VotingkEscrow.sol:2:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirementVotingEscrow.sol:56:56: Error: Variable name
must be in mixedCase

VotingEscrow.so0l:309:1: Error: Contract has 26 states declarations
but allowed no more than 15VotingEscrow.sol:364:35: Error: Variable
name must be in mixedCase

VotingEscrow.sol:383:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if usi solidity
>=0.7.0)VotingEscrow.s0l:383:37: Error: Variable name must be in
mixedCase

VotingEscrow.so0l:390:31: Error: Avoid to make time-based decisions 1in
your business logic

VotingkEscrow.so0l1:1410:59: Error: Use double quotes for string
literalsVotingEscrow.so0l:1713:13: Error: Avoid to make time-based
decisions in your business logic

BribeFactoryV2.sol

BribeFactoryV2.s0l:24:73: : E rror: missing ';

BribeFactoryV2.s01:1998:18: Error: S : missing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

GaugeFactoryV2.sol

N
w

error: missing
error: missing
error: missing
error: missing

error: missing

error: missing

error: missing

missing

missing

missing

saugeFactoryV2.

(e6)
()

Error:

Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:

GaugeFactoryV2.
GaugeFactoryVv2
GaugeFactoryV2.
GaugeFactoryV2.
ugeFactoryV2.:
augeFactoryV2.
GaugeFactoryV2.
GaugeFactoryV2.s

B n n n
) w ® ® O
® ® O

w S N = O
g
o))
-
0}

> O O

g
Q
=
(0]
D

9
1
01
1
12
22

]
Q
o

g

S 0)]

5 B

0 n n
® D

N
N 3 O
W N

(O
D (

PairFactory.sol

PairFactory.sol:24: : : S : missing
PairFactory.sol: : 3 : e er : missing

error: missing ';' at

1 '

i rFactoryUpgradeable.sol:559:22: : Parse error: missing ';' at

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

