
Project: Spoon Exchange
Website: https://spoon.exchange
Platform: Core Chain
Language: Solidity
Date: March 15th, 2023

https://spoon.exchange

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….9

Technical Quick Stats …..……………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 26

Audit Findings …………………………………………………………………………………… 27

Conclusion ………………………………………………………………………………………. 36

Our Methodology ………………………………………………………………………………... 37

Disclaimers ………………………………………………………………………………………. 39

Appendix

● Code Flow Diagram ……………………………………………………………………... 40

● Slither Results Log ………………………………………………………………………. 57

● Solidity Static Analysis…………………………………………………………………... 64

● Solhint Linter…….. ………………………………………………………………………. 80

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Spoon Exchange team to perform the Security audit
of the Spoon Exchange smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on March 15th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Spoon is a decentralized exchange platform derived from Andre Cronje's initial

concept of a perpetual decentralized exchange.

● Spoon is built on Core Chain that offers low-cost token exchanges and reduced

swap fees, using a governance model called the ve(3,3) system and with many

improvements.

Audit scope

Name Code Review and Security Analysis Report for
Spoon Exchange Smart Contracts

Platform Core Chain / Solidity

File 1 Bribes.sol

File 1 MD5 Hash 169EAAA52FA9568549466FEE15D56DAF

File 2 GaugeV2.sol

File 2 MD5 Hash 7A3F2E2A748573CDFB8654A714DCCCF0

File 3 import.sol

File 3 MD5 Hash 9DB89ED56B653E26510B7013EFFE47B0

File 4 MinterUpgradeable.sol

File 4 MD5 Hash CC72DA59047D4EDFC18F63280583D9AD

File 5 Pair.sol

File 5 MD5 Hash A0A52C205D83C869CB6E2F37177C8FCA

File 6 PairFees.sol

File 6 MD5 Hash 6DC3657D376FA99476F3DA48D1537310

File 7 RewardsDistributor.sol

File 7 MD5 Hash 9DE86D1D49D818493DE6850893712ED2

File 8 Router.sol

File 8 MD5 Hash BA37485099CDE5B7CB4156D4E917C468

File 9 RouterV2.sol

File 9 MD5 Hash AF5AFC6498B484220F717769E3505EAB

File 10 Spoon.sol

File 10 MD5 Hash BDA0FDF1411C41BFAA5E138F8994503E

File 11 VeArtProxyUpgradeable.sol

File 11 MD5 Hash FB4D2E453E58F8266B3295BDB1DE09F5

File 12 VoterV2_1.sol

File 12 MD5 Hash 48DB1D3D8035DA9F46A657243830FAD0

File 13 VotingEscrow.sol

File 13 MD5 Hash E5CC7D7617C2AC7C80FEA6F69E6D66A3

File 14 BribeFactoryV2.sol

File 14 MD5 Hash 11AE5E800B94E9650FD617985B91BAC9

File 15 GaugeFactoryV2.sol

File 15 MD5 Hash 10ef53c0d003b7cd9b16e94e981edd80

File 16 PairFactory.sol

File 16 MD5 Hash 988D0EE6054E78F7D8C37B85207BA4E2

File 17 PairFactoryUpgradeable.sol

File 17 MD5 Hash 5119B35B5C61F5EFF047D36D72F91B4C

Audit Date March 15th,2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Bribes.sol
● Rewards are released over 7 days

Ownership Control:
● Owner can recover the ERC20 token address with the

amount.

● Voter address can be set by the Owner.

● Reward address can be set by the Owner.

● Minter address can be set by the Owner.

● Reward token addresses can be added by the Owner.

● A new owner address can be set by the current Owner.

YES, This is valid.

File 2 GaugeV2.sol
Ownership Control:

● Distribution address can be set by the Owner.

● Gauge rewarder address can be set by the Owner.

● Extra rewarder pid can be set by the Owner.

YES, This is valid.

File 3 import.sol
● Import contract can inherit the

TransparentUpgradeableProxy contract.

YES, This is valid.

File 4 MinterUpgradeable.sol
● MinterUpgradeable is used to codify the minting rules as

per ve(3,3), abstracted from the token to support any

token that allows minting.

● Maximum Team rate: 5%

● Allows minting once per week.

Ownership Control:
● Emission rate can be set by the Owner.

YES, This is valid.

● Team rate value can be set by the Owner.

File 5 Pair.sol
● Pools that are either stable or volatile, as the base pair.

● Decimals: 18

YES, This is valid.

File 6 PairFees.sol
● Pair Fees contract is used as a 1:1 pair relationship to

split out fees, this ensures that the curve does not need

to be modified for LP shares.

Other Specifications:
● claimFeesFor us allow the pair to transfer fees to users.

YES, This is valid.

File 7 RewardsDistributor.sol
● The Depositor can be set by the Owner.

● A new owner address can be set by the current Owner.

● Owner can withdraw ERC20 tokens from the contract.

YES, This is valid.

File 8 Router.sol
● Minimum Liquidity: 1000

YES, This is valid.

File 9 RouterV2.sol
● RouterV2 : Support for Fee-on-Transfer Tokens.

● Only accept ETH via fallback from the WETH contract.

YES, This is valid.

File 10 Spoon.sol
● Name: Spoon Token

● Symbol: POON

● Decimals: 18

YES, This is valid.

File 11 VeArtProxyUpgradeable.sol
● VeArtProxyUpgradeable contract can inherit

OwnableUpgradeable contract.

YES, This is valid.

File 12 VoterV2_1.sol YES, This is valid.

● Rewards are released over 7 days

File 13 VotingEscrow.sol
● Name: veSpoon

● Symbol: vePOON

● Decimals: 18

● version: 1.0.0

YES, This is valid.

File 14 BribeFactoryV2.sol
Ownership Control:

● Voter owners can create a new Bribe.

● Voter address can be set by Owner.

● Owner can add a new reward address

YES, This is valid.

File 15 GaugeFactoryV2.sol
Ownership Control:

● Distribution address can be set by Owner.

YES, This is valid.

File 16 PairFactory.sol
● Maximum Referral Fee: 12%

● Maximum Fee: 0.25%

● Stable Fee: 0.04%

● Volatile Fee: 0.18%

YES, This is valid.

File 17 PairFactoryUpgradeable
● Maximum Referral Fee: 12%

● Maximum Fee: 0.25%

● Stable Fee: 0.04%

● Volatile Fee: 0.18%

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 2 low and some very low level issues.
Medium severity issue has been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Spoon Exchange are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Spoon Exchange.

The Spoon Exchange team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Spoon Exchange smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://spoon.exchange which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://spoon.exchange

AS-IS overview

Bribes.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 onlyOwner modifier Passed No Issue
7 getEpochStart read Passed No Issue
8 getNextEpochStart read Passed No Issue
9 addReward write Passed No Issue
10 rewardsListLength external Passed No Issue
11 totalSupply external Passed No Issue
12 totalSupplyAt external Passed No Issue
13 balanceOfAt read Passed No Issue
14 balanceOf read Passed No Issue
15 earned read Passed No Issue
16 _earned internal Passed No Issue
17 rewardPerToken read Passed No Issue
18 _deposit external Passed No Issue
19 _withdraw write Passed No Issue
20 getReward external Passed No Issue
21 getRewardForOwner write Passed No Issue
22 notifyRewardAmount external Passed No Issue
23 recoverERC20 external Owner drain all

tokens
Refer to audit

findings
24 setVoter external access only Owner No Issue
25 setMinter external access only Owner No Issue
26 addRewardToken external access only Owner No Issue
27 setOwner external access only Owner No Issue

GaugeV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 onlyOwner modifier Passed No Issue
7 owner read Passed No Issue

8 _checkOwner internal Passed No Issue
9 renounceOwnership write access only Owner No Issue
10 transferOwnership write access only Owner No Issue
11 _transferOwnership internal Passed No Issue
12 updateReward modifier Passed No Issue
13 onlyDistribution modifier Passed No Issue
14 setDistribution external access only Owner No Issue
15 setGaugeRewarder external access only Owner No Issue
16 setRewarderPid external access only Owner No Issue
17 totalSupply read Passed No Issue
18 balanceOf external Passed No Issue
19 lastTimeRewardApplicable read Passed No Issue
20 rewardPerToken read Passed No Issue
21 earned read Passed No Issue
22 rewardForDuration external Passed No Issue
23 depositAll external Passed No Issue
24 deposit external Passed No Issue
25 _deposit internal Passed No Issue
26 withdrawAll external Passed No Issue
27 withdraw external Passed No Issue
28 _withdraw internal Passed No Issue
29 withdrawAllAndHarvest external Passed No Issue
30 getReward write Passed No Issue
31 _periodFinish external Passed No Issue
32 notifyRewardAmount external access only

Distribution
No Issue

33 claimFees external Passed No Issue
34 _claimFees internal Passed No Issue

import.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ifAdmin modifier Passed No Issue
3 admin external access if Admin No Issue
4 implementation external access if Admin No Issue
5 changeAdmin external access if Admin No Issue
6 upgradeTo external access if Admin No Issue
7 upgradeToAndCall external access if Admin No Issue
8 _admin internal Passed No Issue
9 _beforeFallback internal Passed No Issue
10 _requireZeroValue write Passed No Issue

MinterUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write initializer No Issue
11 _initialize external Passed No Issue
12 setTeam external Passed No Issue
13 acceptTeam external Passed No Issue
14 setVoter external Passed No Issue
15 setTeamRate external Passed No Issue
16 setEmission external Passed No Issue
17 setRebase external Passed No Issue
18 circulating_supply read Passed No Issue
19 calculate_emission read Passed No Issue
20 weekly_emission read Passed No Issue
21 circulating_emission read Passed No Issue
22 calculate_rebate read Passed No Issue
23 update_period external Passed No Issue
24 check external Passed No Issue
25 period external Passed No Issue
26 setRewardDistributor external Passed No Issue

Pair.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lock modifier Passed No Issue
3 observationLength external Passed No Issue
4 lastObservation read Passed No Issue
5 metadata external Passed No Issue
6 tokens external Passed No Issue
7 isStable external Passed No Issue
8 claimFees external Passed No Issue
9 _update0 internal Passed No Issue

10 _update1 internal Passed No Issue
11 _updateFor internal Passed No Issue
12 getReserves read Passed No Issue
13 _update internal Passed No Issue
14 currentCumulativePrices read Passed No Issue
15 current external Passed No Issue
16 quote external Passed No Issue
17 prices external Passed No Issue
18 sample read Passed No Issue
19 mint external Passed No Issue
20 burn external Passed No Issue
21 swap external Passed No Issue
22 skim external Passed No Issue
23 sync external Passed No Issue
24 _f internal Passed No Issue
25 _d internal Passed No Issue
26 _get_y internal Passed No Issue
27 getAmountOut external Passed No Issue
28 _getAmountOut internal Passed No Issue
29 _k internal Passed No Issue
30 _mint internal Passed No Issue
31 _burn internal Passed No Issue
32 approve external Passed No Issue
33 permit external Passed No Issue
34 transfer external Passed No Issue
35 transferFrom external Passed No Issue
36 _transferTokens internal Passed No Issue
37 _safeTransfer internal Passed No Issue
38 _safeApprove internal Passed No Issue

PairFees.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _safeTransfer internal Passed No Issue
3 claimFeesFor external Passed No Issue

RewardsDistributor.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 timestamp external Passed No Issue
3 _checkpoint_token internal Passed No Issue

4 checkpoint_token external Passed No Issue
5 _find_timestamp_epoch internal Passed No Issue
6 _find_timestamp_user_epoch internal Passed No Issue
7 ve_for_at external Passed No Issue
8 _checkpoint_total_supply internal Passed No Issue
9 checkpoint_total_supply external Passed No Issue
10 _claim internal Passed No Issue
11 _claimable internal Passed No Issue
12 claimable external Passed No Issue
13 claim external Passed No Issue
14 claim_many external Passed No Issue
15 setDepositor external Passed No Issue
16 setOwner external Passed No Issue
17 withdrawERC20 external Passed No Issue

Router.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 sortTokens write Passed No Issue
5 pairFor read Passed No Issue
6 quoteLiquidity internal Passed No Issue
7 getReserves read Passed No Issue
8 getAmountOut external Passed No Issue
9 getAmountsOut read Passed No Issue
10 isPair external Passed No Issue
11 quoteAddLiquidity external Passed No Issue
12 _addLiquidity internal Passed No Issue
13 quoteRemoveLiquidity external Passed No Issue
14 addLiquidity external Passed No Issue
15 addLiquidityETH external Passed No Issue
16 removeLiquidity write Passed No Issue
17 removeLiquidityETH write Passed No Issue
18 removeLiquidityWithPermit external Passed No Issue
19 removeLiquidityETHWithPer

mit
external Passed No Issue

20 _swap internal Passed No Issue
21 swapExactTokensForTokens

Simple
external Passed No Issue

22 swapExactTokensForTokens external Passed No Issue
23 swapExactETHForTokens external Passed No Issue
24 swapExactTokensForETH external Passed No Issue
25 _safeTransferETH internal Passed No Issue
26 _safeTransfer internal Passed No Issue

27 _safeTransferFrom internal Passed No Issue

RouterV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 sortTokens write Passed No Issue
5 pairFor read Passed No Issue
6 quoteLiquidity internal Passed No Issue
7 getReserves read Passed No Issue
8 getAmountOut read Passed No Issue
9 getAmountsOut read Passed No Issue
10 isPair external Passed No Issue
11 quoteAddLiquidity external Passed No Issue
12 quoteRemoveLiquidity external Passed No Issue
13 _addLiquidity internal Passed No Issue
14 addLiquidity external Passed No Issue
15 addLiquidityETH external Passed No Issue
16 removeLiquidity write Passed No Issue
17 removeLiquidityETH write Passed No Issue
18 removeLiquidityWithPermit internal Passed No Issue
19 removeLiquidityETHWithPermit internal Passed No Issue
20 _swap internal Passed No Issue
21 swapExactTokensForTokensSi

mple
external Passed No Issue

22 swapExactTokensForTokens external Passed No Issue
23 swapExactETHForTokens external Passed No Issue
24 swapExactTokensForETH external Passed No Issue
25 UNSAFE_swapExactTokensFo

rTokens
external Passed No Issue

26 _safeTransferETH internal Passed No Issue
27 _safeTransfer internal Passed No Issue
28 _safeTransferFrom internal Passed No Issue
29 removeLiquidityETHSupporting

FeeOnTransferTokens
write Passed No Issue

30 removeLiquidityETHWithPermit
SupportingFeeOnTransferToke
ns

external Passed No Issue

31 _swapSupportingFeeOnTransf
erTokens

internal Passed No Issue

32 swapExactTokensForTokensSu
pportingFeeOnTransferTokens

external Passed No Issue

33 swapExactETHForTokensSupp
ortingFeeOnTransferTokens

external Passed No Issue

34 swapExactTokensForETHSupp
ortingFeeOnTransferTokens

external Passed No Issue

Spoon.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setMinter external Passed No Issue
3 initialMint external Passed No Issue
4 approve external Passed No Issue
5 _mint internal Passed No Issue
6 _transfer internal Passed No Issue
7 transfer external Passed No Issue
8 transferFrom external Passed No Issue
9 mint external Passed No Issue

VeArtProxyUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write initializer No Issue
11 toString internal Passed No Issue
12 _tokenURI external Passed No Issue

VotingEscrow.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonreentrant modifier Passed No Issue
3 setTeam external Passed No Issue
4 setArtProxy external Passed No Issue

5 tokenURI external Passed No Issue
6 ownerOf read Passed No Issue
7 _balance internal Passed No Issue
8 balanceOf external Passed No Issue
9 getApproved external Passed No Issue
10 isApprovedForAll external Passed No Issue
11 approve write Passed No Issue
12 setApprovalForAll external Passed No Issue
13 _clearApproval internal Passed No Issue
14 _isApprovedOrOwner internal Passed No Issue
15 isApprovedOrOwner external Passed No Issue
16 _transferFrom internal Passed No Issue
17 transferFrom external Passed No Issue
18 safeTransferFrom external Passed No Issue
19 _isContract internal Passed No Issue
20 safeTransferFrom write Passed No Issue
21 supportsInterface external Passed No Issue
22 tokenOfOwnerByIndex external Passed No Issue
23 _addTokenToOwnerList internal Passed No Issue
24 _addTokenTo internal Passed No Issue
25 _mint internal Passed No Issue
26 _removeTokenFromOwnerLi

st
internal Passed No Issue

27 _removeTokenFrom internal Passed No Issue
28 _burn internal Passed No Issue
29 get_last_user_slope external Passed No Issue
30 user_point_history__ts external Passed No Issue
31 locked__end external Passed No Issue
32 _checkpoint internal Passed No Issue
33 _deposit_for internal Passed No Issue
34 block_number external Passed No Issue
35 checkpoint external Passed No Issue
36 deposit_for external Passed No Issue
37 _create_lock internal Passed No Issue
38 create_lock external Passed No Issue
39 create_lock_for external Passed No Issue
40 increase_amount external Passed No Issue
41 increase_unlock_time external Passed No Issue
42 withdraw external Passed No Issue
43 _find_block_epoch internal Passed No Issue
44 _balanceOfNFT internal Passed No Issue
45 balanceOfNFT external Passed No Issue
46 balanceOfNFTAt external Passed No Issue
47 _balanceOfAtNFT internal Passed No Issue
48 balanceOfAtNFT external Passed No Issue
49 totalSupplyAt external Passed No Issue
50 _supply_at internal Passed No Issue
51 totalSupply external Passed No Issue

52 totalSupplyAtT read Passed No Issue
53 setVoter external Passed No Issue
54 voting external Passed No Issue
55 abstain external Passed No Issue
56 attach external Passed No Issue
57 detach external Passed No Issue
58 merge external Passed No Issue
59 split external Passed No Issue
60 delegates read Passed No Issue
61 getVotes external Passed No Issue
62 getPastVotesIndex read Passed No Issue
63 getPastVotes read Passed No Issue
64 getPastTotalSupply external Passed No Issue
65 _moveTokenDelegates internal Passed No Issue
66 _findWhatCheckpointToWrite internal Passed No Issue
67 _moveAllDelegates internal Passed No Issue
68 _delegate internal Passed No Issue
69 delegate write Passed No Issue
70 delegateBySig write Passed No Issue

VoterV2_1.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only Initializing No Issue
3 __Ownable_init_unchained internal access only Initializing No Issue
4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 __ReentrancyGuard_init internal access only Initializing No Issue
11 __ReentrancyGuard_init_u

nchained
internal access only Initializing No Issue

12 nonReentrant modifier Passed No Issue
13 _nonReentrantBefore write Passed No Issue
14 _nonReentrantAfter write Passed No Issue
15 _reentrancyGuardEntered internal Passed No Issue
16 initialize write Anyone can initialize

contract
Refer to audit

findings
17 _initialize external Missing Error

Message, Infinite loop
Refer to audit

findings
18 setMinter external Missing Error Message Refer to audit

findings

19 setGovernor write Missing Error Message Refer to audit
findings

20 setEmergencyCouncil write Missing Error Message Refer to audit
findings

21 reset external Missing Error Message Refer to audit
findings

22 _reset internal Infinite loop Refer to audit
findings

23 poke external Missing Error
Message, Infinite loop

Refer to audit
findings

24 _vote internal Infinite loop Refer to audit
findings

25 vote external Missing Error Message Refer to audit
findings

26 whitelist write Missing Error Message Refer to audit
findings

27 _whitelist internal Missing Error Message Refer to audit
findings

28 createGauge external Ambiguous Error
Message

Refer to audit
findings

29 killGauge external Passed No Issue
30 reviveGauge external Passed No Issue
31 attachTokenToGauge external Missing Error Message Refer to audit

findings
32 emitDeposit external Missing Error

Message, Unused
functions

Refer to audit
findings

33 detachTokenFromGauge external Missing Error Message Refer to audit
findings

34 emitWithdraw external Missing Error
Message, Unused

functions

Refer to audit
findings

35 length external Passed No Issue
36 poolVoteLength external Passed No Issue
37 notifyRewardAmount external Passed No Issue
38 updateFor external Passed No Issue
39 updateForRange write Infinite loop Refer to audit

findings
40 updateAll external Passed No Issue
41 updateGauge external Passed No Issue
42 _updateFor internal Passed No Issue
43 claimRewards external Removed -
44 claimBribes external Missing Error

Message, Infinite loop
Refer to audit

findings
45 claimFees external Infinite loop Refer to audit

findings
46 distributeFees external Infinite loop Refer to audit

findings
47 distribute write Passed No Issue

48 distributeAll external Passed No Issue
49 distribute write Passed No Issue
50 distribute write Passed No Issue
51 _safeTransferFrom internal Missing Error Message Refer to audit

findings
52 setBribeFactory external Passed No Issue
53 setGaugeFactory external Missing Error Message Refer to audit

findings
54 setPairFactory external Missing Error Message Refer to audit

findings
55 killGaugeTotally external Passed No Issue
56 whitelist write Passed No Issue
57 initGauges write Missing Error

Message, Anyone can
initGauges, Infinite loop

Refer to audit
findings

58 increaseGaugeApprovals external Missing Error Message Refer to audit
findings

59 setNewBribe external Missing Error Message Refer to audit
findings

VotingEscrow.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonreentrant modifier Passed No Issue
3 setTeam external Passed No Issue
4 setArtProxy external Passed No Issue
5 tokenURI external Passed No Issue
6 ownerOf read Passed No Issue
7 _balance internal Passed No Issue
8 balanceOf external Passed No Issue
9 getApproved external Passed No Issue
10 isApprovedForAll external Passed No Issue
11 approve write Passed No Issue
12 setApprovalForAll external Passed No Issue
13 _clearApproval internal Passed No Issue
14 _isApprovedOrOwner internal Passed No Issue
15 isApprovedOrOwner external Passed No Issue
16 _transferFrom internal Passed No Issue
17 transferFrom external Passed No Issue
18 safeTransferFrom external Passed No Issue
19 _isContract internal Passed No Issue
20 safeTransferFrom write Passed No Issue
21 supportsInterface external Passed No Issue
22 tokenOfOwnerByIndex external Passed No Issue
23 _addTokenToOwnerList internal Passed No Issue

24 _addTokenTo internal Passed No Issue
25 _mint internal Passed No Issue
26 _removeTokenFromOwnerLi

sti
internal Passed No Issue

27 _removeTokenFrom internal Passed No Issue
28 _burn internal Passed No Issue
29 get_last_user_slope external Passed No Issue
30 user_point_history__ts external Passed No Issue
31 locked__end external Passed No Issue
32 _checkpoint write Passed No Issue
33 _deposit_for internal Passed No Issue
34 block_number external Passed No Issue
35 checkpoint external Passed No Issue
36 deposit_for external Passed No Issue
37 _create_lock internal Passed No Issue
38 create_lock external Passed No Issue
39 create_lock_for external Passed No Issue
40 increase_amount external Passed No Issue
41 increase_unlock_time external Passed No Issue
42 withdraw external Passed No Issue
43 _find_block_epoch internal Passed No Issue
44 _balanceOfNFT internal Passed No Issue
45 balanceOfNFT external Passed No Issue
46 balanceOfNFTAt external Passed No Issue
47 _balanceOfAtNFT internal Passed No Issue
48 balanceOfAtNFT external Passed No Issue
49 totalSupplyAt external Passed No Issue
50 _supply_at internal Passed No Issue
51 totalSupply external Passed No Issue
52 totalSupplyAtT read Passed No Issue
53 setVoter external Passed No Issue
54 voting external Passed No Issue
55 abstain external Passed No Issue
56 attach external Passed No Issue
57 detach external Passed No Issue
58 merge external Passed No Issue
59 split external Passed No Issue
60 delegates read Passed No Issue
61 getVotes external Passed No Issue
62 getPastVotesIndex read Passed No Issue
63 getPastVotes read Passed No Issue
64 getPastTotalSupply external Passed No Issue
65 _moveTokenDelegates internal Passed No Issue
66 _findWhatCheckpointToWrite internal Passed No Issue
67 _moveAllDelegates internal Passed No Issue
68 _delegate internal Passed No Issue
69 delegate write Passed No Issue
70 delegateBySig write Passed No Issue

BribeFactoryV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write Passed No Issue
11 createBribe external Passed No Issue
12 setVoter external Passed No Issue
13 addReward external Passed No Issue
14 addRewards external Passed No Issue

GaugeFactoryV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write Passed No Issue
11 createGaugeV2 external Passed No Issue
12 setDistribution external access only Owner No Issue

PairFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue

3 pairs external Passed No Issue
4 setPauser external Passed No Issue
5 acceptPauser external Passed No Issue
6 setPause external Passed No Issue
7 setFeeManager external Passed No Issue
8 acceptFeeManager external Passed No Issue
9 setDibs external Passed No Issue
10 setReferralFee external Passed No Issue
11 setFee external Passed No Issue
12 getFee read Passed No Issue
13 pairCodeHash external Passed No Issue
14 getInitializable external Passed No Issue
15 createPair external Passed No Issue

PairFactoryUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 onlyManager modifier Passed No Issue
11 initialize write Passed No Issue
12 allPairsLength external Passed No Issue
13 pairs external Passed No Issue
14 setPause external Passed No Issue
15 setFeeManager external access only

Manager
No Issue

16 acceptFeeManager external Passed No Issue
17 address _dibs external access only

Manager
No Issue

18 setReferralFee external access only
Manager

No Issue

19 setFee external access only
Manager

No Issue

20 getFee read Passed No Issue
21 pairCodeHash external Passed No Issue
22 getInitializable external Passed No Issue
23 createPair external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

(1) ClaimRewards function is not working: VoterV2_1.sol

The claimRewards function calls Gauge's getReward function with arguments. But

Gauge's getReward function doesn’t not have any parameters.

Resolution: We suggest removing parameters from claimRewards's getReward.

Status: Fixed. This function has been removed in the revised code.

Low

(1) Owner can drain all tokens: Bribes.sol, RewardsDistributor.sol
The owner can drain all tokens. This would create trust issues in the users.

Resolution: If this is a desired feature, then please disregard this issue.

(2) Missing Error Message: VoterV2_1.sol

A require is without error messages in these functions:

● reset

● setMinter

● _initialize

● setEmergencyCouncil

● setGovernor

● poke

● vote

● whitelist

● _whitelist

● attachTokenToGauge

● emitDeposit

● detachTokenFromGauge

● emitWithdraw

● claimBribes

● _safeTransferFrom

● setGaugeFactory

● setPairFactory

● initGauges

● increaseGaugeApprovals

● setNewBribe

Resolution: We advise writing appropriate error messages.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract: VoterV2_1.sol
The initialize function is public and accessible to anyone. operator is not set during

contract deployment,So any user can become an operator

Resolution: We suggest to always make sure that contract should be initialized by owner

(2) Anyone can initGauges : VoterV2_1.sol
The initGauges is a public function, emergencyCouncil can execute this unlimited times.

This might lead to losing vote data.

Resolution: We suggest to re-check the logic and usage limit for this function.

(3) Infinite loop: VoterV2_1.sol
In below functions ,for loops do not have upper length limit , which costs more gas:

● claimBribes

● claimFees

● distributeFees

● initGauges

● updateForRange

● _vote

● poke

● _reset

● _initialize

Resolution: Upper bound poolInfo.length should have a certain limit in for loops.

(4) Unused functions, variables:

Unused variables: GaugeV2.sol
_VE , external_bribe are public variables which are not used anywhere in the contract.

Unused functions: VoterV2_1.sol

The emitDeposit , emitWithdraw functions only require and emit statements. No code logic

is written.

Resolution: We suggest removing these unused functions and variables.

(5) Ambiguous Error Message: VoterV2_1.sol

The mentioned error message does not explain exactly the error of the operation.

Resolution: As error messages are intended to notify users about failing conditions, they

should provide enough information so that appropriate corrections can be made to interact

with the system.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Bribes.sol
● addReward: Owner can add a new reward address.

● recoverERC20: Owner can recover the ERC20 token address with the amount

● setVoter: Voter address can be set by the Owner.

● setMinter: Minter address can be set by the Owner.

● addRewardToken: Reward token address can be added by the Owner.

● setOwner: A new owner address can be set by the Owner.

GaugeV2.sol
● setDistribution: Distribution address can be set by the Owner.

● setGaugeRewarder: Gauge rewarder address can be set by the Owner.

● setRewarderPid: Extra rewarder pid can be set by the Owner.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

MinterUpgradeable.sol
● setTeam: Team address can be set by the Owner.

● acceptTeam: Owner can accept the team.

● setVoter: Voter address can be set by the Owner.

● setTeamRate: Team rate value can be set by the Owner.

● setEmission: Emission rate can be set by the Owner.

● setRebase: Rebase rate can be set by the Owner.

● setRewardDistributor: Reward Distributor address can be set by the Owner.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

RewardsDistributor.sol
● setDepositor: The Depositor can be set by the Owner.

● setOwner: A new owner address can be set by the current Owner.

● withdrawERC20: Owner can withdraw ERC20 tokens from the contract.

Spoon.sol
● setMinter: Owner can set the minter address.

● initialMint: Owner can initial mint recipient address.

● mint: Owner can mint a token from the address.

VoterV2_1.sol
● _initialize: Minter owner or EmergencyCouncil owner can initialize token addresses.

● setMinter: EmergencyCouncil owner can set minter address.

● setGovernor: Owner can set a new governor address.

● setEmergencyCouncil: Owner can set a new emergencyCouncil address.

● whitelist: Owner can add token address in whitelist.

● killGauge: Owner can kill gauge address.

● reviveGauge: Owner can revive gauge address.

● setBribeFactory: Owner can set a bribe factory address.

● setGaugeFactory: Owner can set a gauge factory address.

● setPairFactory: Owner can set a pair factory address.

● killGaugeTotally: Owner can kill gauge addresses.

● whitelist: Owner can add token address in whitelist.

● initGauges: Owner can initialize gauges addresses.

● increaseGaugeApprovals: Owners can increase gauge approval addresses.

● setNewBribe: Owners can set new bribe addresses.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

VotingEscrow.sol
● setTeam: Team address can be set by the Owner.

● setArtProxy: Proxy address can be set by the Owner.

● setVoter: Voter address can be set by the team Owner.

● voting: Voting tokenId can be set by the Voter Owner.

● abstain: Abstain tokenId can be set by the Voter Owner.

● attach: Attach tokenId can be set by the Voter Owner.

● detach: Detach tokenId can be set by the Voter Owner.

BribeFactoryV2.sol
● createBribe: Voter owners can create a new Bribe.

● setVoter: Voter address can be set by the Owner.

● addReward: Owner can add a new reward address.

● addRewards: Owner can add multiple new reward addresses.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

GaugeFactoryV2.sol
● setDistribution: Distribution address can be set by Owner.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

PairFactory.sol
● setPauser: Pauser address can be set by Owner.

● acceptPauser: Owner can accept Pauser address.

● setPause:Owner can set pause state.

● setFeeManager: Manager Owner can set a Fee Manager address.

● acceptFeeManager: Manager Owner can accept fee manager.

● setDibs: Manager Owner can set dibs address.

● setReferralFee: Manager Owner can set referral fee.

● setFee: Manager Owner can set a fee.

PairFactoryUpgradeable.sol
● setPause: Pauser address can be set by the Owner.

● setFeeManager: Manager Owner can set a Fee Manager address.

● acceptFeeManager: Manager Owner can accept fee manager.

● setDibs: Manager Owner can set dibs address.

● setReferralFee: Manager Owner can set referral fee.

● setFee: Manager Owner can set a fee.

● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

VeArtProxyUpgradeable.sol
● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

Import.sol
● admin: Admin can return the current admin address.

● implementation: Admin can return the current implementation.

● changeAdmin: Admin can change the admin of the proxy.

● upgradeTo: Admin can upgrade the implementation of the proxy.

● upgradeToAndCall: Admin can upgrade the implementation of the proxy, and then

call a function from the new implementation as specified data.

PairFees.sol
● claimFeesFor: Owner can allow the pair to transfer fees to users.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed 1 medium severity issue, 2 low severity

issues and some informational severity issues in the token smart contract. Medium

severity issue has been resolved in the revised code and the rest are not critical issues.

So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Spoon Exchange

Bribes Diagram

GaugeV2 Diagram

import Diagram

MinterUpgradeable Diagram

Pair Diagram

PairFees Diagram

Spoon Diagram

RewardsDistributor Diagram

Router Diagram

RouterV2 Diagram

Spoon Diagram

VeArtProxyUpgradeable Diagram

VoterV2_1 Diagram

VotingEscrow Diagram

BribeFactoryV2 Diagram

GaugeFactoryV2 Diagram

PairFactory Diagram

PairFactoryUpgradeable Diagram

Slither Results Log

Slither log >> Bribes.sol

Slither log >> GaugeV2.sol

Slither log >> import.sol

Slither log >> MinterUpgradeable.sol

Slither log >> Pair.sol

Slither log >> PairFees.sol

Slither log >> Router.sol

Slither log >> RouterV2.sol

Slither log >> Spoon.sol

Slither log >> VeArtProxyUpgradeable.sol

Slither log >> VoterV2_1.sol

Slither log >> VotingEscrow.sol

Slither log >> BribeFactoryV2.sol

Slither log >> GaugeFactoryV2.sol

Slither log >> PairFactory.sol

Slither log >> PairFactoryUpgradeable.sol

Slither log >> RewardsDistributor.sol

Solidity Static Analysis
Bribes.sol

GaugeV2.sol

import.sol

MinterUpgradeable.sol

Pair.sol

PairFees.sol

RewardsDistributor.sol

Router.sol

RouterV2.sol

Spoon.sol

VeArtProxyUpgradeable.sol

VoterV2_1.sol

VotingEscrow.sol

BribeFactoryV2.sol

GaugeFactoryV2.sol

PairFactory.sol

PairFactoryUpgradeable.sol

Solhint Linter

Bribes.sol

Bribes.sol:24:73: Error: Parse error: missing ';' at '{'
Bribes.sol:1998:18: Error: Parse error: missing ';' at '{'

GaugeV2.sol

GaugeV2.sol:23:73: Error: Parse error: missing ';' at '{'
GaugeV2.sol:86:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:99:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:111:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:128:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:140:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:232:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:251:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:273:18: Error: Parse error: missing ';' at '{'
GaugeV2.sol:567:18: Error: Parse error: missing ';' at '{'

import.sol

import.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy the r
semver requirement
import.sol:182:51: Error: Avoid using low level calls.
import.sol:532:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
import.sol:594:49: Error: Code contains empty blocksimport.sol:725:5:
Error: Explicitly mark visibility in function (Set ignoreConstructors
to true if using solidity >=0.7.0)
import.sol:725:122: Error: Code contains empty blocks

MinterUpgradeable.sol

MinterUpgradeable.sol:22:73: Error: Parse error: missing ';' at '{'

Pair.sol

Pair.sol:24:73: Error: Parse error: missing ';' at '{'

Pair.sol:555:22: Error: Parse error: missing ';' at '{'

PairFees.sol

PairFees.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement
PairFees.sol:27:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
PairFees.sol:35:45: Error: Avoid using low level calls.

RewardsDistributor.sol

RewardsDistributor.sol:22:73: Error: Parse error: missing ';' at '{'

Router.sol

Router.sol:23:73: Error: Parse error: missing ';' at '{'

RouterV2.sol

RouterV2.sol:7:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirementRouterV2.sol:40:5: Error: Function name must be
in mixedCase
RouterV2.sol:61:35: Error: Use double quotes for string literals
RouterV2.sol:78:5: Error: Contract name must be in CamelCase
RouterV2.sol:87:5: Error: Explicitly mark visibility of state
RouterV2.sol:94:29: Error: Avoid to make time-based decisions in your
business logic
RouterV2.sol:94:46: Error: Use double quotes for string literals
RouterV2.sol:98:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity
>=0.7.0)RouterV2.sol:128:47: Error: Use double quotes for string
literals
RouterV2.sol:156:37: Error: Use double quotes for string literals

Spoon.sol

Spoon.sol:60:18: Error: Parse error: missing ';' at '{'
Spoon.sol:69:18: Error: Parse error: missing ';' at '{'

VeArtProxyUpgradeable.sol

VeArtProxyUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does
not satisfy the r semver requirement
VeArtProxyUpgradeable.sol:485:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
VeArtProxyUpgradeable.sol:485:19: Error: Code contains empty blocks
VeArtProxyUpgradeable.sol:487:39: Error: Visibility modifier must be
first in list of modifiers
VeArtProxyUpgradeable.sol:521:296: Error: Use double quotes for
string literals
VeArtProxyUpgradeable.sol:522:42: Error: Use double quotes for string
literals

VoterV2_1.sol

VoterV2_1.sol:22:73: Error: Parse error: missing ';' at '{'

VotingEscrow.sol

VotingEscrow.sol:2:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirementVotingEscrow.sol:56:56: Error: Variable name
must be in mixedCase
VotingEscrow.sol:309:1: Error: Contract has 26 states declarations
but allowed no more than 15VotingEscrow.sol:364:35: Error: Variable
name must be in mixedCase
VotingEscrow.sol:383:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity
>=0.7.0)VotingEscrow.sol:383:37: Error: Variable name must be in
mixedCase
VotingEscrow.sol:390:31: Error: Avoid to make time-based decisions in
your business logic
VotingEscrow.sol:1410:59: Error: Use double quotes for string
literalsVotingEscrow.sol:1713:13: Error: Avoid to make time-based
decisions in your business logic

BribeFactoryV2.sol

BribeFactoryV2.sol:24:73: Error: Parse error: missing ';' at '{'
BribeFactoryV2.sol:1998:18: Error: Parse error: missing ';' at '{'

GaugeFactoryV2.sol

GaugeFactoryV2.sol:23:73: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:86:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:99:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:111:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:128:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:140:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:232:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:251:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:273:18: Error: Parse error: missing ';' at '{'
GaugeFactoryV2.sol:627:18: Error: Parse error: missing ';' at '{'

PairFactory.sol

PairFactory.sol:24:73: Error: Parse error: missing ';' at '{'
PairFactory.sol:556:22: Error: Parse error: missing ';' at '{'

PairFactoryUpgradeable.sol

PairFactoryUpgradeable.sol:24:73: Error: Parse error: missing ';' at
'{'
PairFactoryUpgradeable.sol:559:22: Error: Parse error: missing ';' at
'{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

