
Project: The PulseDogecoin
Staking Carnival

Website: https://carn.app
Platform: Ethereum
Language: Solidity
Date: March 27th, 2023

https://carn.app

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 21

Our Methodology ………………………………………………………………………………... 22

Disclaimers ………………………………………………………………………………………. 24

Appendix

● Code Flow Diagram ……………………………………………………………………... 25

● Slither Results Log ………………………………………………………………………. 32

● Solidity Static Analysis…………………………………………………………………... 37

● Solhint Linter…….. ………………………………………………………………………. 44

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the PulseDogecoin Staking Carnival team to perform the
Security audit of the Staking Carnival smart contracts code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on March 27th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The Staking Carnival aims to provide a new staking mechanism that imbues $PLSD

with utility, value and YIELD.

● The Staking Carnival is a decentralized finance (DeFi) platform that allows users to

stake their tokens for 90-day periods. The staking period is standardized, with all

users participating for the same 90 days. The only way to earn rewards is by

staking for the entire 90-day period, which means that you need to stake before the

90-day period starts and end the stake after the 90-day period ends.

● In addition to PLSD staking, there are also "Carnival" lotteries, An ASIC

"Community Miner", WAATCA NFTs, A Buy and Burn contract, a CARN Token

Booth, and PulseBitcoinLock NFT Rewards Contract.

● The Staking Carnival contract inherits the IERC20, SafeERC20, ReentrancyGuard,

ERC721, ERC721URIStorage, ERC721Burnable, Counters, Ownable, ERC20,

ERC20Burnable standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
The Staking Carnival Smart Contracts

Platform Ethereum / Solidity

File 1 CarnTokenBooth.sol

File 1 MD5 Hash C282C8FD6967AB470ACBB518E238B684

File 2 CommunityCarnivalASICMiner.sol

File 2 MD5 Hash D9358F0890DD0BC2F9BBCB9E284C66CF

File 3 PLSDStaker.sol

File 3 MD5 Hash 0C03EEE9DE96CFFE8D087A766CA89418

File 4 PulseBitcoinLockRewards.sol

File 4 MD5 Hash 97A1A9105586353A853FC3775A86A056

File 5 WaatcaNFT.sol

File 5 MD5 Hash 802747EB0E9237D59A66DE22A5EEAE91

File 6 BuyAndBurn.sol

File 6 MD5 Hash 8320EE174F84C0D4157F2ACD65B3EB05

File 7 lottery_mainnet.sol

File 7 MD5 Hash AAD5D4332867D6BE7021E644E24C1AE6

Initial Audit Date February 25th,2023

Final Audit Date March 27th,2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 CarnTokenBooth.sol
● Name: Carnival

● Symbol: CARN

● Decimals: 12

● Openzeppelin libraries are used.

YES, This is valid.

File 2 CommunityCarnivalASICMiner.sol
● Mining Period: 30 Days

● Reload Period: 5 Days

● Trapped Pool Target: 100k CARN

● Carn Cost: 10 CARN

● Minimum Asic Deposit: 25 ASIC

● Openzeppelin libraries are used.

YES, This is valid.

File 3 PLSDStaker.sol
● The Staking allows players to stake $PLSD for 90 day

periods, and get rewards in the form of $PLSD, $PLSB

and $ASIC and much more.

YES, This is valid.

File 4 PulseBitcoinLockRewards.sol
● The owner can set a carn address

YES, This is valid.

File 5 WaatcaNFT.sol
● The owner can set a carn address.

Other Specifications:
● WAATCA NFTs allow users to passively benefit from all

rewards generated at the CARNival. Ownership of a

WAATCA NFT is like holding a share in the entire

CARNival.

YES, This is valid.

YES, This is valid.

File 6 BuyAndBurn.sol
● 369 CARNs will be processed on each call.

File 7 lottery_mainnet.sol
● PLSD TRANSFER BPS: 20%

● WAATCA TRANSFER BPS: 5%

● Flat cost of 0.1 CARN for each ticket.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.
All these issues are resolved in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderate
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderate
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in The Staking Carnival Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the The Staking Carnival Protocol.

The Staking Carnival Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given the Staking Carnival smart contract code in the form of a private github

repository. The hashes of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://carn.app which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://carn.app

AS-IS overview

CarnTokenBooth.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 burn write Passed No Issue
7 burnFrom write Passed No Issue
8 buyCARN write Passed No Issue
9 decimals read Passed No Issue
10 getOwner external Passed No Issue
11 name read Passed No Issue
12 decimals write Passed No Issue
13 symbol read Passed No Issue
14 totalSupply read Passed No Issue
15 balanceOf read Passed No Issue
16 transfer write Passed No Issue
17 allowance write Passed No Issue
18 approve write Passed No Issue
19 transferFrom write Passed No Issue
20 increaseAllowance write Passed No Issue
21 decreaseAllowance write Passed No Issue
22 _spendAllowance internal Passed No Issue
23 _transfer internal Passed No Issue
24 _mint internal Passed No Issue
25 _burn internal Passed No Issue
26 _approve internal Passed No Issue
27 _afterTokenTransfer internal Passed No Issue
28 _beforeTokenTransfer internal Passed No Issue

CommunityCarnivalASICMiner.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 deposit write Passed No Issue
3 startMiningSession write Passed No Issue
4 getMinerStore internal Passed No Issue
5 startReloadPeriod write Passed No Issue
6 claimReward external Passed No Issue
7 depositCARNToTrappedP

ool
external Passed No Issue

8 releaseASIC internal Same validation
performed

Refer Audit
Findings

9 releaseCARN internal Same validation
performed

Refer Audit
Findings

10 nonReentrant modifier Passed No Issue
11 _nonReentrantBefore write Passed No Issue
12 _nonReentrantAfter write Passed No Issue
13 _reentrancyGuardEntered internal Passed No Issue

PLSDStaker.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 stake write Passed No Issue
3 startLockedPeriod write Passed No Issue
4 startLockingPeriod write Passed No Issue
5 emergencyEnd write Passed No Issue
6 depositPLSD write Passed No Issue
7 depositPLSB write Passed No Issue
8 depositASIC write Passed No Issue
9 depositHEX write Passed No Issue
10 claimRewards write Passed No Issue
11 nonReentrant modifier Passed No Issue
12 _nonReentrantBefore write Passed No Issue
13 _nonReentrantAfter write Passed No Issue
14 _reentrancyGuardEntered internal Passed No Issue

PulseBitcoinLockRewards.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setCarnAddress write access only Owner No Issue
3 withdrawRewards write Spelling mistake Fixed
4 registerNftForRewards write Passed No Issue
5 currentDay external Passed No Issue
6 _currentDay internal Passed No Issue
7 owner read Passed No Issue
8 onlyOwner modifier Passed No Issue
9 renounceOwnership write access only Owner No Issue
10 transferOwnership write access only Owner No Issue

WaatcaNFT.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue

6 setCarnAddress write access only Owner No Issue
7 mintWaatcaNft write Passed No Issue
8 mint internal Passed No Issue
9 tokenURI read Passed No Issue
10 _burn internal Passed No Issue
11 supportsInterface read Passed No Issue
12 balanceOf read Passed No Issue
13 ownerOf read Passed No Issue
14 name read Passed No Issue
15 symbol read Passed No Issue
16 tokenURI read Passed No Issue
17 _baseURI internal Passed No Issue
18 approve write Passed No Issue
19 getApproved read Passed No Issue
20 setApprovalForAll write Passed No Issue
21 isApprovedForAll read Passed No Issue
22 transferFrom write Passed No Issue
23 safeTransferFrom write Passed No Issue
24 safeTransferFrom write Passed No Issue
25 _safeTransfer internal Passed No Issue
26 _ownerOf internal Passed No Issue
27 _exists internal Passed No Issue
28 _isApprovedOrOwner internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _mint internal Passed No Issue
31 _burn internal Passed No Issue
32 _transfer internal Passed No Issue
33 _approve internal Passed No Issue
34 _setApprovalForAll internal Passed No Issue
35 _requireMinted internal Passed No Issue
36 _checkOnERC721Receiv

ed
write Passed No Issue

37 _beforeTokenTransfer internal Passed No Issue
38 _afterTokenTransfer internal Passed No Issue
39 _beforeConsecutiveToken

Transfer
internal Passed No Issue

40 _afterConsecutiveTokenT
ransfer

internal Passed No Issue

BuyAndBurn.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue

6 buyPLSB write Passed No Issue
7 buyPLSD write Passed No Issue
8 buyASIC write Passed No Issue
9 buyHEX write Passed No Issue
10 totalProcessed read Passed No Issue
11 processed read Passed No Issue
12 processable read Passed No Issue
13 _pendingProcessing read Passed No Issue
14 processCarn external Passed No Issue
15 _addShares write Passed No Issue

lottery_mainnet.sol
Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 requestRandomness internal Passed No Issue
7 fulfillRandomWords internal Passed No Issue
8 rawFulfillRandomWords external Passed No Issue
9 buyTickets external Same validation

performed,
Function input

parameters lack of
check

Refer to audit
findings

10 requestRandomWords internal Passed No Issue
11 fulfillRandomWords internal Passed No Issue
12 _pickWinner write Same validation

performed
Refer to audit

findings
13 setWinner write Passed No Issue
14 skipDraw write Passed No Issue
15 sendRewards external Passed No Issue
16 getPlayerEntries read Passed No Issue
17 getWinnerByDrawId read Passed No Issue
18 getTicketsSold read Passed No Issue
19 getCurrentDeposits read Passed No Issue
20 getCurrentDrawId read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Same validation performed: CommunityCarnivalASICMiner.sol

“releaseASIC” and “releaseCARN” are internal functions which are used to execute from

the “depositCARNToTrappedPool” function only when the trappedAsicReleasePool is

greater than or equal to the Trapped pool target. This same validation has been performed

inside both internal functions.

Resolution: We suggest removing the same validation from internal functions to save

some gas fee.

Status: This issue is resolved in revised contract code.

(2) Same validation performed: TheCarnivalLottery.sol

“_pickWinner ” is an internal function which is used to execute from the “buyTickets”

function only when the current time is greater than to the lottery deadline. This same

validation has been performed inside the internal functions.

Resolution: We suggest removing the same validation from internal function to save

some gas fee.

Status: This issue is acknowledged

(3) Function input parameters lack of check: TheCarnivalLottery.sol

In the buyTickets function, “_amount” is not validated.

Resolution: We suggest using validation like for numerical variables that should be

greater than 0.

Status: This issue is acknowledged

Very Low / Informational / Best practices:

(1) Spelling mistake: PulseBitcoinLockNFTRewards.sol

Incorrect spelling of received in “withdrawRewards” function.

Resolution: We suggest correcting the spelling.

Status: This issue is resolved in revised contract code.

(2) Unused function, Internal function, private function:

CommunityCarnivalASICMiner.sol

This contract includes the interface PulseBitcoin in which minerList() has been defined

twice with different parameters, the one which is defined with a single parameter is wrong

and unused.

Resolution: We suggest removing unused functions, private functions, Internal functions.

Status: This issue is resolved in revised contract code.

(3) Multiple pragma: BuyAndBurn.sol

There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

Status: This issue is acknowledged

(4) Variable visibility: TheCarnivalLottery.sol

There are some variables that are defined with default visibility.

Variables are:

● callbackGasLimit

● requestConfirmations

● numWords

● linkAddress

● wrapperAddress

● drawId

● ticketsSold

● totalDeposits

Resolution: We suggest defining the variable with the "private" keyword.

Status: This issue is acknowledged

(5) Make variables constant: TheCarnivalLottery.sol

These variables will be unchanged. So, please make them constant. It will save some gas.

Resolution: Declare those variables as constant. Just put a constant keyword.

Status: This issue is acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

PulseBitcoinLockNFTRewards.sol
● setCarnAddress: The owner can set a carn address.

WaatcaNFT.sol
● setCarnAddress: The owner can set a carn address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github link. And we have used all possible

tests based on given objects as files. We have observed 3 low issues and some

Informational severity issues in the smart contracts. These issues have been

fixed/acknowledged in the revised code. So, it’s good to go for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - The PulseDogecoin Staking Carnival

CarnTokenBooth Diagram

CommunityCarnivalASICMiner Diagram

PLSDStaker Diagram

PulseBitcoinLockRewards Diagram

WaatcaNFT Diagram

BuyAndBurn Diagram

lottery_mainnet Diagram

Slither Results Log
Slither log >> CarnTokenBooth.sol

Slither log >> CommunityCarnivalASICMiner.sol

Slither log >> PLSDStaker.sol

Slither log >> PulseBitcoinLockRewards.sol

Slither log >> WaatcaNFT.sol

Slither log >> BuyAndBurn.sol

Slither log >> lottery_mainnet.sol

Solidity Static Analysis
CarnTokenBooth.sol

CommunityCarnivalASICMiner.sol

PLSDStaker.sol

PulseBitcoinLockRewards.sol

WaatcaNFT.sol

BuyAndBurn.sol

lottery_mainnet.sol

Solhint Linter

CarnTokenBooth.sol

Carnival.sol:2:1: Error: Compiler version ^0.8.16 does not satisfy
the r semver requirement
Carnival.sol:16:5: Error: Explicitly mark visibility of state
Carnival.sol:21:30: Error: Variable name must be in mixedCase
Carnival.sol:23:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Carnival.sol:27:9: Error: Variable name must be in
mixedCaseCarnival.sol:40:13: Error: Avoid to make time-based
decisions in your business logic

CommunityCarnivalASICMiner.sol

CommunityCarnivalASICMiner.sol:246:13: Error: Avoid to make
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:274:13: Error: Avoid to make
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:286:64: Error: Avoid to make
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:306:41: Error: Avoid to make
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:313:41: Error: Avoid to make
time-based decisions in your business logic

PLSDStaker.sol

PLSDStaker.sol:2:1: Error: Compiler version ^0.8.16 does not satisfy
the r semver requirement
PLSDStaker.sol:8:1: Error: Contract has 19 states declarations but
allowed no more than 15
PLSDStaker.sol:40:30: Error: Variable name must be in mixedCase
PLSDStaker.sol:111:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PLSDStaker.sol:121:9: Error: Variable name must be in mixedCase
PLSDStaker.sol:122:9: Error: Variable name must be in mixedCase
PLSDStaker.sol:226:24: Error: Avoid to make time-based decisions in
your business logic
PLSDStaker.sol:231:63: Error: Avoid to make time-based decisions in
your business logic
PLSDStaker.sol:314:13: Error: Avoid to make time-based decisions in
your business logic
PLSDStaker.sol:319:17: Error: Avoid to make time-based decisions in
your business logic

PulseBitcoinLockRewards.sol

PulseBitcoinLockRewards.sol:2:1: Error: Compiler version ^0.8.0 does
not satisfy the r semver requirement
PulseBitcoinLockRewards.sol:16:20: Error: Variable name must be in
mixedCase
PulseBitcoinLockRewards.sol:18:5: Error: Explicitly mark visibility
of state
PulseBitcoinLockRewards.sol:26:5: Error: Explicitly mark visibility
in function (Set ignoreConstructors to true if using solidity
>=0.7.0)
PulseBitcoinLockRewards.sol:70:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
PulseBitcoinLockRewards.sol:125:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
PulseBitcoinLockRewards.sol:133:17: Error: Avoid to make time-based
decisions in your business logic

WaatcaNFT.sol

WaatcaNFT.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
WaatcaNFT.sol:57:5: Error: Explicitly mark visibility in
WaatcaNFT.sol:164:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
WaatcaNFT.sol:165:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
WaatcaNFT.sol:171:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
WaatcaNFT.sol:171:30: Error: Avoid to make time-based decisions in
your business logic

BuyAndBurn.sol

BuyAndBurn.sol:19:13: Error: Parse error: mismatched input '('
expecting {';', '='}
BuyAndBurn.sol:30:12: Error: Parse error: mismatched input '('
expecting {';', '='}
BuyAndBurn.sol:41:11: Error: Parse error: mismatched input '('
expecting {';', '='}
BuyAndBurn.sol:42:11: Error: Parse error: mismatched input '('
expecting {';', '='}
BuyAndBurn.sol:134:18: Error: Parse error: missing ';' at '{'
BuyAndBurn.sol:139:22: Error: Parse error: mismatched input '('
expecting {';', '='}
BuyAndBurn.sol:533:18: Error: Parse error: missing ';' at '{'
BuyAndBurn.sol:890:18: Error: Parse error: missing ';' at '{'

lottery_mainnet.sol

lottery_mainnet.sol:2:1: Error: Compiler version ^0.8.0 does not
satisfy the r semver requirement
lottery_mainnet.sol:33:5: Error: Explicitly mark visibility of state
lottery_mainnet.sol:35:5: Error: Explicitly mark visibility of state
lottery_mainnet.sol:36:5: Error: Explicitly mark visibility of state
lottery_mainnet.sol:43:31: Error: Variable name must be in mixedCase
lottery_mainnet.sol:52:5: Error: Explicitly mark visibility of state
lottery_mainnet.sol:68:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity
>=0.7.0)lottery_mainnet.sol:149:45: Error: Avoid to make time-based
decisions in your business logic
lottery_mainnet.sol:153:27: Error: Avoid to make time-based decisions
in your business logic
lottery_mainnet.sol:164:27: Error: Avoid to make time-based decisions
in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

