@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: The PulseDogecoin
Staking Carnival

Website: https://carn.app

Platform: Ethereum

Language: Solidity

Date: March 27th, 2023

https://carn.app

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 8
Technical QUICK Stats ..o e 9
Code QUANIRY ... e 10
DOoCUMENTAtION ... 10
USE Of DEPENUENCIES ... e e nenaenes 10
ASIS OVEIVIEW ... 11
Severity DefinitioNS ... 15
AUt FINAINGS oo e 16
@70 o T3 1017 T o 21
(@ 0] 1Y/ =1 1 T To [o] 0T) 22
DISCIAIMEIS ... e 24
Appendix
o Code FIoW Diagramououoiiii s 25
o Slither RESUIS LOQ ...uviiiiii i e e e 32
o Solidity Static ANalysSis.o 37
o SOININt LINtEr. . o e 44

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the PulseDogecoin Staking Carnival team to perform the
Security audit of the Staking Carnival smart contracts code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on March 27th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.
Project Background

e The Staking Carnival aims to provide a new staking mechanism that imbues $PLSD
with utility, value and YIELD.

e The Staking Carnival is a decentralized finance (DeFi) platform that allows users to
stake their tokens for 90-day periods. The staking period is standardized, with all
users participating for the same 90 days. The only way to earn rewards is by
staking for the entire 90-day period, which means that you need to stake before the
90-day period starts and end the stake after the 90-day period ends.

e In addition to PLSD staking, there are also "Carnival" lotteries, An ASIC
"Community Miner", WAATCA NFTs, A Buy and Burn contract, a CARN Token
Booth, and PulseBitcoinLock NFT Rewards Contract.

e The Staking Carnival contract inherits the IERC20, SafeERC20, ReentrancyGuard,
ERC721, ERC721URIStorage, ERC721Burnable, Counters, Ownable, ERC20,
ERC20Burnable standard smart contracts from the OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
The Staking Carnival Smart Contracts

Platform Ethereum / Solidity

File 1 CarnTokenBooth.sol

File 1 MD5 Hash

C282C8FD6967AB470ACBB518E238B684

File 2

CommunityCarnivalASICMiner.sol

File 2 MD5 Hash

D9358F0890DD0OBC2F9BBCB9E284C66CF

File 3

PLSDStaker.sol

File 3 MD5 Hash

0CO3EEE9DE96CFFE8D087A766CA89418

File 4

PulseBitcoinLockRewards.sol

File 4 MD5 Hash

97A1A9105586353A853FC3775A86A056

File 5

WaatcaNFT.sol

File 5 MD5 Hash

802747EBOE9237D59A66DE22A5EEAE91

File 6

BuyAndBurn.sol

File 6 MD5 Hash

8320EE174F84C0D4157F2ACD65B3EBOS

File 7

lottery_mainnet.sol

File 7 MD5 Hash

AADS5D4332867D6BE7021E644E24C1AEG

Initial Audit Date

February 25th,2023

Final Audit Date

March 27th,2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 CarnTokenBooth.sol
e Name: Carnival
e Symbol: CARN
e Decimals: 12

e Openzeppelin libraries are used.

YES, This is valid.

File 2 CommunityCarnivalASICMiner.sol
e Mining Period: 30 Days
e Reload Period: 5 Days
e Trapped Pool Target: 100k CARN
e Carn Cost: 10 CARN
e Minimum Asic Deposit: 25 ASIC
e Openzeppelin libraries are used.

YES, This is valid.

File 3 PLSDStaker.sol
e The Staking allows players to stake $PLSD for 90 day
periods, and get rewards in the form of $PLSD, $PLSB

and $ASIC and much more.

YES, This is valid.

File 4 PulseBitcoinLockRewards.sol

e The owner can set a carn address

YES, This is valid.

File 5 WaatcaNFT.sol

e The owner can set a carn address.

Other Specifications:

e WAATCA NFTs allow users to passively benefit from all
rewards generated at the CARNival. Ownership of a
WAATCA NFT is like holding a share in the entire
CARNival.

YES, This is valid.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 6 BuyAndBurn.sol

e 369 CARNSs will be processed on each call.

File 7 lottery_mainnet.sol YES, This is valid.
e PLSD TRANSFER BPS: 20%
e WAATCA TRANSFER BPS: 5%
e Flat cost of 0.1 CARN for each ticket.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

All these issues are resolved in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check Moderate
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderate
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in The Staking Carnival Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the The Staking Carnival Protocol.

The Staking Carnival Protocol team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given the Staking Carnival smart contract code in the form of a private github

repository. The hashes of that code are mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://carn.app which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://carn.app

AS-IS overview

CarnTokenBooth.sol

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered | internal Passed No Issue
6 | burn write Passed No Issue
7 | burnFrom write Passed No Issue
8 [buyCARN write Passed No Issue
9 | decimals read Passed No Issue
10 | getOwner external Passed No Issue
11 | name read Passed No Issue
12 | decimals write Passed No Issue
13 | symbol read Passed No Issue
14 | totalSupply read Passed No Issue
15 | balanceOf read Passed No Issue
16 | transfer write Passed No Issue
17 | allowance write Passed No Issue
18 | approve write Passed No Issue
19 [transferFrom write Passed No Issue
20 | increaseAllowance write Passed No Issue
21 | decreaseAllowance write Passed No Issue
22 | spendAllowance internal Passed No Issue
23 | transfer internal Passed No Issue
24 | mint internal Passed No Issue
25 | burn internal Passed No Issue
26 | approve internal Passed No Issue
27 | afterTokenTransfer internal Passed No Issue
28 | beforeTokenTransfer internal Passed No Issue
CommunityCarnivalASICMiner.sol
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | deposit write Passed No Issue
3 | startMiningSession write Passed No Issue
4 | getMinerStore internal Passed No Issue
5 | startReloadPeriod write Passed No Issue
6 [claimReward external Passed No Issue
7 | depositCARNToTrappedP | external Passed No Issue
ool
8 | releaseASIC internal Same validation Refer Audit
performed Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

9 [releaseCARN internal Same validation Refer Audit
performed Findings
10 | nonReentrant modifier Passed No Issue
11 nonReentrantBefore write Passed No Issue
12 | nonReentrantAfter write Passed No Issue
13 | reentrancyGuardEntered [internal Passed No Issue
PLSDStaker.sol
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | stake write Passed No Issue
3 | startLockedPeriod write Passed No Issue
4 | startLockingPeriod write Passed No Issue
5 | emergencyEnd write Passed No Issue
6 | depositPLSD write Passed No Issue
7 | depositPLSB write Passed No Issue
8 | depositASIC write Passed No Issue
9 [depositHEX write Passed No Issue
10 | claimRewards write Passed No Issue
11 | nonReentrant modifier Passed No Issue
12 | nonReentrantBefore write Passed No Issue
13 | nonReentrantAfter write Passed No Issue
14 | reentrancyGuardEntered [internal Passed No Issue
PulseBitcoinLockRewards.sol
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [setCarnAddress write access only Owner No Issue
3 | withdrawRewards write Spelling mistake Fixed
4 | reqgisterNftForRewards write Passed No Issue
5 [currentDay external Passed No Issue
6 currentDay internal Passed No Issue
7 | owner read Passed No Issue
8 | onlyOwner modifier Passed No Issue
9 | renounceOwnership write access only Owner No Issue
10 [transferOwnership write access only Owner No Issue
WaatcaNFT.sol
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

6 | setCarnAddress write access only Owner No Issue
7 | mintWaatcaNft write Passed No Issue
8 [mint internal Passed No Issue
9 [tokenURI read Passed No Issue
10 | burn internal Passed No Issue
11 | supportsinterface read Passed No Issue
12 | balanceOf read Passed No Issue
13 | ownerOf read Passed No Issue
14 | name read Passed No Issue
15 | symbol read Passed No Issue
16 | tokenURI read Passed No Issue
17 | baseURI internal Passed No Issue
18 | approve write Passed No Issue
19 | getApproved read Passed No Issue
20 | setApprovalForAll write Passed No Issue
21 | isApprovedForAll read Passed No Issue
22 | transferFrom write Passed No Issue
23 | safeTransferFrom write Passed No Issue
24 | safeTransferFrom write Passed No Issue
25 | safeTransfer internal Passed No Issue
26 | ownerOf internal Passed No Issue
27 | exists internal Passed No Issue
28 | isApprovedOrOwner internal Passed No Issue
29 | safeMint internal Passed No Issue
30 | mint internal Passed No Issue
31 burn internal Passed No Issue
32 | transfer internal Passed No Issue
33 | approve internal Passed No Issue
34 | setApprovalForAll internal Passed No Issue
35 | requireMinted internal Passed No Issue
36 | _checkOnERC721Receiv write Passed No Issue
ed
37 | beforeTokenTransfer internal Passed No Issue
38 | afterTokenTransfer internal Passed No Issue
39 | beforeConsecutiveToken | internal Passed No Issue
Transfer
40 | afterConsecutiveTokenT | internal Passed No Issue
ransfer
BuyAndBurn.sol
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered | internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

6 | buyPLSB write Passed No Issue
7 | buyPLSD write Passed No Issue
8 [buyASIC write Passed No Issue
9 [buyHEX write Passed No Issue
10 | totalProcessed read Passed No Issue
11 | processed read Passed No Issue
12 | processable read Passed No Issue
13 | pendingProcessing read Passed No Issue
14 | processCarn external Passed No Issue
15 | addShares write Passed No Issue
lottery_mainnet.sol

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered | internal Passed No Issue
6 | requestRandomness internal Passed No Issue
7 | fulfilRandomWords internal Passed No Issue
8 | rawFulfilRandomWords external Passed No Issue
9 | buyTickets external Same validation Refer to audit

performed, findings

Function input
parameters lack of
check

10 | requestRandomWords internal Passed No Issue
11 | fulfillRandomWords internal Passed No Issue
12 | _pickWinner write Same validation Refer to audit

performed findings
13 | setWinner write Passed No Issue
14 | skipDraw write Passed No Issue
15 | sendRewards external Passed No Issue
16 | getPlayerEntries read Passed No Issue
17 | getWinnerByDrawld read Passed No Issue
18 | getTicketsSold read Passed No Issue
19 [getCurrentDeposits read Passed No Issue
20 | getCurrentDrawld read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Same validation performed: CommunityCarnivalASICMiner.sol
carnAmount)

, _carnAmount

>= TRAPPED POOL TARGET

TRAPPED_P

lant

= TRAPPED POOL TARGET
| lanceOf ((

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

“releaseASIC” and “releaseCARN” are internal functions which are used to execute from
the “depositCARNToTrappedPool” function only when the trappedAsicReleasePool is
greater than or equal to the Trapped pool target. This same validation has been performed

inside both internal functions.

Resolution: We suggest removing the same validation from internal functions to save

some gas fee.

Status: This issue is resolved in revised contract code.

(2) Same validation performed: TheCarnivalLottery.sol

buyTickets(_amount) nonReentrant {
CARN.safeTransferFrom(
.sender,
buyAndBurnContract,
CARN_FEE % _amount
H
paymentToken.safeTransferFrom(
.sender,
(),
_amount x ticketPrice
H

totalDeposits += _amount * ticketPrice;
ticketsSold += _amount;
(i =0; i < _amount; i++) {
players.push(.sender);

TicketsBought(msg.sender, drawId, _amount);

if (.timestamp > lotteryDeadline) _pickWinned(L

_pickWinner() {
(.timestamp > lotteryDeadline, "Deadline not reached yet");
requestRandomWords () ;

“ pickWinner ” is an internal function which is used to execute from the “buyTickets”
function only when the current time is greater than to the lottery deadline. This same

validation has been performed inside the internal functions.

Resolution: We suggest removing the same validation from internal function to save

some gas fee.

Status: This issue is acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Function input parameters lack of check: TheCarnivallLottery.sol

In the buyTickets function, “_amount” is not validated.

Resolution: We suggest using validation like for numerical variables that should be

greater than 0.

Status: This issue is acknowledged

Very Low / Informational / Best practices:

(1) Spelling mistake: PulseBitcoinLockNFTRewards.sol

withdrawRewards (tokenId) {
(

ckNTftContract.owner0Of(tokenId),

Incorrect spelling of received in “withdrawRewards” function.

Resolution: We suggest correcting the spelling.

Status: This issue is resolved in revised contract code.

(2) Unused function, Internal function, private function:
CommunityCarnivalASICMiner.sol

This contract includes the interface PulseBitcoin in which minerList() has been defined
twice with different parameters, the one which is defined with a single parameter is wrong

and unused.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest removing unused functions, private functions, Internal functions.

Status: This issue is resolved in revised contract code.

(3) Multiple pragma: BuyAndBurn.sol

There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

Status: This issue is acknowledged

(4) Variable visibility: TheCarnivallLottery.sol

draw

linkAddress
wrapperAddress

callbackGasLimit = 60P000;
requestConfirmations = 3;
numiWords = 2;

There are some variables that are defined with default visibility.
Variables are:

e callbackGasLimit

e requestConfirmations

e numWords

e linkAddress

e wrapperAddress

e drawld

e ticketsSold

e totalDeposits

Resolution: We suggest defining the variable with the "private" keyword.

Status: This issue is acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) Make variables constant: TheCarnivalLottery.sol

linkAddress
wrapperAddre

callbackGasLimit = 600000;
requestConfirmations = 3;
numiWords = 2;

These variables will be unchanged. So, please make them constant. It will save some gas.

Resolution: Declare those variables as constant. Just put a constant keyword.

Status: This issue is acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

PulseBitcoinLockNFTRewards.sol

e setCarnAddress: The owner can set a carn address.

WaatcaNFT.sol

e setCarnAddress: The owner can set a carn address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github link. And we have used all possible
tests based on given objects as files. We have observed 3 low issues and some
Informational severity issues in the smart contracts. These issues have been
fixed/acknowledged in the revised code. So, it's good to go for the mainnet

deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - The PulseDogecoin Staking Carnival

CarnTokenBooth Diagram

@ CarnTokenBooth

ERC20
ERC208urnable
ReentrancySuard

nSafeERC20 for IERCZ0

O UMINE25E MAK SUPPL Y
O Uint256 currentRate

O Uint256 nextHike

< Lint256 week

2 address pulseBitcoinLockMF TRewarcdPoolfddress

2 address carnivalfddress
o address waatcaAddress
= address USDC

- constructor (]

T buyTARRMN
@ Qdecimals()

"

for IERCZ20

@ ReentrancyGuard

)
i .
d @ ERC20Burnable O UiMt256 _NOT_ENTERED
£ O uirt256 _FRTERED
’ Context .
I ERC20 O uiMt256 _status
n - constructor___ ()
@ i !
@ ::[:I(:)rom() B nonReentrantBefore()
B _nonReentrarmtAfter()
QO _reentrancyGuardEnmtered()

o
(W |

(&) sarecrczo

mAddress for address

“ safeTransfer()

<> safeTransferFromi)

“ safefpprovel)

“ safelncreaseAllowance() |

< safeDecreasefllowance!) [

m _callOptionalReturn) [
T

K
' &) erczo

!

I Context

| TERCZ2Q
Dwnable

I wSafelMath for uint256
A daress for address

O address=>uiM255 _balances
O address=s=mapping address=>uiMt256 _allowances

O w256 _totalSupply

I
] O st o _name
] O string _symbol
O uints _decimals
@ _ _constructor___()
@ SgetOwner()
@ Quname)
@ Quoecimals()
! @ Qsymbol()
@ OitotalSupply()
@ Obalance ()
@ transfer()
@ Sallowance()
K @ approvel)
h @ transferFrom()
@ increaselAllowance()
@ decreaselllowance()

! for address

[

I' @ mint()

K < _transfer()

X < _mint()

N - T _burn) \

! - < _approvel) \

! rd “Z _lurmnFromi) L]

1 - 3 T 0 \

| r 1

“ ! \

:?'o.v wint256 \

<

' . for address
T - |
s i~ L N —
: b . (R sarensatn @& ownavie
(A) Aacgaress (X rerc:z \
N Context i
< AisComtract() @ QUtotalSupply() z &2328
o IRV) SIS < Sumulcy O address _owner
functionCall() @ transfer() < Qv —_—
< functionCallithhalue() @ Qallowance() & ay o < __ constructor__()
< functionStaticCall) @ approvel) =4 Q:Ei‘;(g) = Qowner())
< QuwerifyCallResult() @ transferFromi) o Cusgrt() g {enoincgowner:_hlgo
ransferCwnership

—

(&) context

< QA _msgSender()
< O _msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

CommunityCarnivalASICMiner Diagram

@ CarmnivalCommunityASICMiner

ReentrancyGuard
nSafeERCZ0 for IERC20

uint256 MIN_ASIC DEPOSIT
uint258 CARMN_COST

uint256 MINING _PERICD

uint256 RELOAD_PERIOD

uint258 TRAPPED POOL_TARGET
address CARMN

addresg ASIC

address PLSB

address waatcaPool

address buyAndBurnContract
address plsdStakingContract

@ IERC20

@ FulseBitcain

addresg=>AgicDeposit asicDeposits

uirt 256 total AsicDepositForThePreviousSession
uirt256 total AsicDepositForTheCurrert Session
uirt256 trappedAsicReleasePool

@ QtotalSupply()
@ Qbalancef()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

@ QminerList()

@ minerStart()

@ minerEnd()

@ QcalcPayoutAndFes))

_ constructor__ ()

deposit()

startMiningSession()

O getMinerStore()

startReloadPeriod()

claimReward()

depositCARNToTrappedPool()
< releaseASIC)
 releaseCARM)

¥ T
i

'for IERC20

[

@0 Q9@ @|(00C0C00COC0O0C00000CQ0O000000C0O00
c
=
i3
i3]
@
3
o
a
=4
=
=1
i<
@
o
3
=
3
m

5

@ PLSDStaker

@ depositPLSBE()
@ depostASIC)

I
@ SafeERC20

@ ReentrancyGuard

mAddress for address

< gafeTransfer()

“» gafeTransferFrom()

“ safefpprove()

“* safelncreasefllowancel()
“» safeDecreasellowance()
B _calDptionalReturni)

O wirt256 _MOT_EMTERED
O uirt256 _ENTERED
O uirt236 _status

@ _ constructor__ ()
B _nonReertrantBefore()
B _nonReertrantAfter()

< Q_reentrancyGuardEntered()

:for address
7

y
@ Addiress

< QisContract()

& gendvalue()

& functionCall()

2 functionCallvith ' alus()
& QfunctionStaticCall()
< QuerifyCallResult()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PLSDStaker Diagram

@ PLSDStaker

ReentrancyGuard

mSafeERCE0 for [ERCED

uirt256 lockingPeriod

uint256 lockedPeriod

uirt256 emergencylnlockFesBps
uint256 lockingCost

uirt256 lockingStart

uirt256 lockingEnd

Uint256 plsdRewardPool
uint256 plsdPendingRewards
uint256 plsdRewardPoolTotal
uirt256 plebRewardPool
uirt256 plshPendingRewarcds
uint256 plshBewardPoolTotal

uint256 asicRewarcdPool
uirt256 asicPendingRewarcds

@ IERC20

uint256 asicRewardPoolTotal
uint256 hexRewardPool
uint256 hexPendingRewards
uint256 hexRewardPoolTotal
address CARMN

address PLSD

address PLSEB

@ QitotalSupply()
@ Qbalancedf()
@ transfer()
@ Qallowance()
@ approvel)
@ transferFromi)

address ASIC

address HEX

acddress CARMSplitter
State state
address==5Stake stakes
uint256==uint256 stakePool
uint256 currentStakeld
uint256 unclaimedamournt

__constructor__()
stake()
startLockedPerioc)
startLockingPeriod()
emergencyEndi)
depositPLSD)
depositPLSB)
deposit ASIC
depositHEX()
claimRewards()

Jleoceeo0000@ (000000000000 00000000000000000

for IERC20 '.

> 7
|/ “

|
@ SafeERC20 @ ReentrancyGuard

uint256 _MWOT_EWTERED
uint256 _EMTERED
uint256 _status

mAddress for address

< safeTransfer()
< safeTransferFrom()
< safefpprovel)
< safelncreaselllowance!)
< safeDecreasefllowance()
B _callOptionalReturnd)

T

|

__constructor__ ()
_nonReentrantBefore()
_nonReentrant&fter()

O, _reentrancyGuardEntered()

EE@e|0O0O

:for addrass
7

\/
@ Address

< QisContract()

< sendvalue()

< functionCall{)

2 functionZallvith alue()
< QfunctionStaticCall()
o QuuerifyCallResult()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ JERC20

PulseBitcoinLockRewards Diagram

@ PulseBitcoinLockMFTRewards

o QtotalSupply()
@ QbalanceOf()
@ fransfer()
@ Quallowance()
@ approvel)
@ transferFrom()

@ FulseBitcoinLockNFTinterface

@ Qownerof()
@ QlockTime)
@ QtokenldsToAmaounts()

Ownable

2 address CARN

2 address waatcalddress

< PulseBitcoinLockNF Tinterface pulseBitcoinLockMitContract
o address pulseBitcoinLockMftContractAddress

O uint256==bool tokenldsToRegistered

O Uint256=>uint256 tokenldsToLastWithdrawalDay

2 uint256=>uint2365 tokenldsToDailyRewardAmount

O Uint256=>uint256 tokenldsToEndRewardsDay

O uirt256 LAUNCH_TIME

@ __constructor__()

@ setCarnAddress()

@ withdrawRewards()

@ registerMftForRewards()
@ QeurrentDay()

O 0_currentDay()

!

@ O;vnahle

Context

O address _owner

< __constructor__()
@ Qowner()

@ renouncelwnership()
@ transferOwnership)

!

@ t;nntex't

o O,_msgSender()
© O,_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

"

=

-
' « for uint256
’

< Qcurrert()
O nerement()
< decrement()
< reset()

o for wint256

/ < _afterConsecutiveTokenTransfer()

WaatcaNFT Diagram

(© waatcanFT
ERC721

ERC721URIStorage
ERC7218urnable
Ownabie

s Cownders for Counters. Gounter

Counters Counter _tokenldCounter
[seTokenUSDC
reward TokenPLSD
reward TokenPLSB
reward TokenASIC
reward
reward TokenlSDC
reward TokenCARN

gocooooo000000

__constructor__()
setCarnAddress()

= QrokevURIO)
& _burmi)

.
7 for Counters Counter / |

. W,
; [|

(€) Erc721URISIOrage |

@ rerczo

AtctalSupply ()
S palanceOf(y

eo0o0000
£
:
:

transferF rom()

ERGT21

BAStrings for wint256 o
O uint258=>string _tokenURls | ERC721

| (€)ErcT21Bumable !

& SakenURID = burnd)

< _setTokenlRIC)
< _burndy

@& ercr

Contest

ERC165

JERGCT21

JER CT21Metadata

anAddress for address
BNStrings for LIntE5E

kenApprovals
O address=>mapping address=>boal _operator Approvais

@ __constructor__()
& Qsupportsinterface()
= QbalanceOn)
Sowmnerom)
Suname()
symbcl()
@ rokenlRIC)
< Q_baseURI()
@ approve()
® S getApprove.
& setfipprovalFor Al
@ QisApprovedFor sl
@ transferFromd)
® safeTransferFrom()
< _sateTransfer()
- O _ownerOf()
e < Q_exists()
- O _isApprovedOrOnner ()

< < _safeMint()

A = burn()
& _transfer()
V. < _spprove()
< _setApprovalFor Al
@ Q_requirehinted()
B _checkOnERCT21 Received()
/ < _beforeTokenTransfer()
/ < _amterTokenTransfer()
< _beforeConsecutiveTokenTransfer()

\for address

@ st

O bytes16 _SYMBOLS

O uinte _ADDRESS_LENGTH

@ QuroStringl)
O toHexString()

L

@) rercr21metadata

v v \

(R) adaress

IERC727

< QisContract()

| ® Qsymbol()
\ ® QtckenURIC)

< sendValue()
< functionCal()
© functionCamamhValuer)

(@) rercrz1receve

® onERCT21Recsived)

=
renounceOwnership()
® transferOwnershipl()

N

(€) context

oy _msgSender()
< O, _msgDatai)

= _functionCallvvithalue () |

© Asupponsinterface)
<[Yi /

@ rercrze V4
IERC185

® QbalanceOf() 4
& QownerOf()

@ safeTransferFrom()
@ transferFromi()

@ approve()

set ApprovalF or Ay /
Qgetdpproved() /
@ QisApprovedForAll) i
N v
=~ L

. IERC165

@ QA supportsinter face()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BuyAndBurn Diagram

@© oo

‘ReentrarcyGuard

° Pool
o s ptiRewsrds

o S e
& b mocrssame cam
@ s | (@ @ novenvaroo © s o oSS
= int8 TWAP_NTERVAL
= T eoolmmiohs
P A— i o
Cond frosetors
- NniswaoV3PoolOwnerActions
<o) -
& resim) prosefin

for IERC20

/ y N o

¢) - P
@ wnswovaraoacion: N (= S @ saeercz0
© Qsiot0() o

. Y
< Qe @ Y —— (@ wnswaovsswcamoace] [Tl

pre———

Transtorope]

: < ey
R o o 2 Qa0 § ooty v a0 & stvoniond
o e & vy

s S
© QuaBinp) $ JiSpecke0 SateDecresseowance)
o 5 At iqudtyperTiei) ' “catOptonaetan)

0
© & jeenrme; GuncEriersa)
© Qcbservatons)

Yo addoss

@ rowan @ oweuas @ saress

T @) oo

=Y st 2 canavond,
U160 MN_SORT RATIO >

ummw s | ooy S — tont
|l § > QmuDvRoundngUp() © QgetBlockStartngTickAndLiquidty() © functionCallARhV alue()

GeTEAAS g Fat) © QgeCranedPrice) > Quer

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IERC20

@ CotalSupply()
@ QpalanceOf()
@ transfer()
@ Qallowance()
@ approvel)
@ transferFrom()

lottery mainnet Diagram

@ VRFVZ2Wrapperinterface

@ O lastRequestid()
© QcalculateRequestPrice()
@ CestimateRequestPrice()

@ LinkTokeninterface

@ Qallowance()

@ approve()

@ QbalanceCf()

@ Qeecimals()

D decreaselpproval()
D increasebpproval()
@ Qname()

@ Qsymbol()

@ QtotalSupply()

@ transfer()

@ transferAndCall()
@ transferFrom()

@ TheCarnivalLottery

VRFV2WrapperConsumerBase
ReentrancyGuard

nSafeERC20 for IERC20

< uint32 callbackGasLimit

< Wint16 requestConfirmations

© uint32 numWords

< address linkAddress

© address wrapperAddress

O uint236 randomResult

O uint256 requestid

© address players

O uint236 ticketPrice

O uint256 timeLength

< Uint256 drawild

< uint256 ticketsSold

© UiNt256 totalDeposits

O Uint256 lotteryDeadline

< uint256 CARN_FEE

< yint256 PLSD_TRANSFER_BPS
< Uint256 WAATCA_TRAMSFER_BPS
O address waatcaPool

O address buyAndBurnContract
O address plsdStakingContract
< [ERC20 paymentToken

< [ERC20 CARN

© uirt256==CrawResult drawHistary

@ _ eonstructor_ ()

D buyTickets()

© requestRandomords()
© fulfilRandomWerds()

B _pickWinner()

B setWinner()

B skipDraw()

@ sendRewardsi()

© O getPlayerEntries()

@ QgetwinnerByDrawld()

| ® QgetTicketsSold()

@ QgetCurrertDeposits()
@ QgetCurrentDrawlc()

’_" for IERC20

/

f

;
=

® SafeERC20

© ReentrancyGuard

Address for address

“ safeTransfer()
 safeTransferFrom()

< safelpprove()
 safelncreasedllowance()
© safeDecreaseAllowance()
B _calOptionalReturni)

O uint256 _MOT_EMTERED
O uint256 ENTERED
O uint256 _status

@ __constructor__{)

B _nonReertrartBefore()

B _nonReertrantAfter()

© Q_reertrancyGuardEnterecd()

Ifor address

]
Y7

\/
@ Address

< QiisContract()

< gendvalue()

< functionCall()

< functionCallWith' alue()
© Q. functionStaticCall)
< QuerifyCalResut()

@ VRFV2ZWrapperConsumerBase

< LinkTokenlnterface LINK

< VRFYV2Wrapperinterface YRF_V2_\WRAPPER

@ _ constructor_ ()

< requestRandomness()

< fulfilRandomWeords()

@ rawFulfilRandomords()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> CarnTokenBooth.sol
Cc\|""k| ctor(a 255, 3 255, 255 ,addr nLockNFT dPoo ress (CarnTokenBooth.sol#996)

c 3 ress {CarnTokenBooth.sol#1
CarnTokenBooth.c c (255, 255, s = _: v (ce h.s0l#997) lack
CarnTokenBooth.c (addre ddress, a ess,a

f ss {CarnT
CarnTokenBooth.con
Refere : https

y in CarnTokenBooth.buyCARN{uint256) (CarnTokenBooth.sol#1011-1632):
External calls:
(USDC) .safeTransfe om({msg.se i ress, =) {(CarnTokenBooth.so B18-1
(UsSDC).safeTransfe 0 Z .58 vaatc ress, e / 2) (CarnTokenBooth.sol#1823-1027)
ariables written af :
_mint(msg.ser 3)
amount) (CarnTokenBooth.sol#

th.sol#834)
#reentrancy-vulnerabilities-2
Reentrancy in CarnTokenBooth.buyCARN{uint256) (CarnTokenBooth.sol#1811-163
Exte ||cl calls:

(rans fe m(m
variables itten after the
_mint(msg.sen q (Carn 2
= unt] = _bala = . amount) (CarnTokenBooth.sol#
- _mint(msg.sender,amount) {Carn #103
_totalSupp
Reference: https b.c ic/slithe = vulnerabilities-2

) (CarnTokenBooth.sol#1811-1832) uses timestamp for comparisons

tlr-stcr’| nBooth.so 1-;1
//github cry ar /wik 1/Dete cumentation#block-timestamp
Address.verifyCallResult(s 25 , ing) (CarnToken h.sols 291) uses assembly
- INLINE ASM (CarnT
C gi bly-usage

i - {success,
Reference: https

ol#1011) is not in mixedCase
Cas»

{CommunityCarnivalASICMiner.sol#560-605) uses timestamp for comparisons

!= State.RELOAD (CommunityCarnivalASICMiner.sol#5
state State.RELOAD (CommunityCarnivalASICMiner)
r’r’Lrlt'-,-Carr1'-,-'&1AEICI-‘1.|'»:|‘.s-: 7-636) uses 't'LI"’rS'tc["|3 omparisons

block.timestamp = nextMiningStartTime,Reload peried n 2) {CommunityCarnivalASICMiner.
ASICMiner.startReloadPeriod() (CommunityCarnivalASICMiner.sol#642-671) uses timestamp for comparisons
mparisons:
2(bool,string)(block.timestamp = nextReloadTime,Mining session not e yet) (CommunityCarnivalASICMiner.sol#
SICMiner.claimReward() (CommunityCarnivalASICMiner.sol) uses timestamp for comparisons
3F’|Ié|"‘LSCI’Sl
ck.timestamp > nextReloadTime && e != State.RELOAD (CommunityCarnivalASICMiner.sol#674)
<. timestamp nextMinings T , ate State.RELOAD {CommunityCarnivalASICMiner.sol
ithub.com/crytic/slither/wiki/Detec -Documentation#block-timestamp

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentrancy in CarnivalCommunityASICMiner.startMiningSession{) (CommunityCarnivalASICMiner.s
External calls:
- PulseBitcein(PLSB).minerStart(_asicBalance) {CommunityCarnivalASICMiner.sol#
Event emitted after the call(s):
- MiningSessionStart(msg.sender,currentSessionId - 1,block.timestamp) (CommunityCarnivalASICMiner.sol#631-
Reentrancy in CarnivalCommunityASICMiner.startReloadPeriod() (CommunityCarnivalASICMiner.sol3 -671):
External calls:
PulseBitcoin{PLSE).minerEnd(8, minerId,address{this)) (CommunityCarnivalASICMiner.sol#658)
IERC20(PLSE).approve(plsdStakingContract, plsbToTransfer) (CommunityCar 1ASICMiner.sol#66
PLCECtak9|IplsjctaklngCDntractI.d9p051tPL° (_plsbToTransfer) (CommunityCarnivalASICMiner.s
IERC L5B).safeTransfer{waatcaPool, plsbhToTransfer) (CommunityCarnivalASICMiner.sol#
IERC20(ASIC).approv AlplsjctaklngCDntract asicTo ransT9|l (CommunityCar LASICMiner.sol#664)
PLCDCtak9|IplsjctaklngCDntractl deDSITHCIcl asicToTransfer) (CommunityCarnivalASICMiner.sol#665)
IERC28(ASIC).safeTransfer{waatcaPool, _asicTo Transfer) 'CDWHUHltvCa\Hl alHCICHlHQF sol#666)
vent emitted after the call(s):
ReloadPericdStart(msg.sender,currentSessionId,block.timestamp) (CommunityCarnivalASICMiner.sol#670)
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

rsion”0.8.4 (CommunityCarnivalASICMiner.sol#2) allows old versions
4 is not recommended for deployment)
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

call in Address.sendValue(address,uint256) (CommunityCarnivalASICMiner.sol#

{success) = recipient.call{value: amount (CommunityCar 1H°ICM1n=r sol#13

call in Address.functionCallWithValue{address,bytes,uint256 i 'C)WﬁuhltvCalhl alHCICHlnér sol#19
(success,returndata) = target.call{value: value}(data) (CommunityC

call in Address.functionStaticCall(address,bytes,string) (Commun El

{success,returndata) = target.staticcall{ jata- 'C)WﬁuhltvCalhl' CMiner. 531«‘54-

https: ffglthub com/crytic/slither/wiki/Detector-Documentation# ow-level calls

Parameter ivalCommunityASICMiner.deposit{uint256)._asicAmount (CommunityCarnivalASICMiner.sel#5608) is not in mixedCase

Parameter Ca .alCDWWUHltyHCICHIHQF depos 1tCARNToTr PP%dPDleulﬁt‘EC}._CalhHWDUht ICawwunltvCalnl.a1H°ICM1nnr sol#711) 1is not
in mixedCase

variable car lCommunityASICMiner.CARN (CommunityCarnivalASICMiner.sol#498) is not in mixedCase

variable car 1CommunityASICMiner.ASIC (CommunityCarnivalASICMiner.sol#49 is not in mixedCase

variable CarnivalCommunityASICMiner.PLSB (CommunityCarnivalASICMiner.sol#5 is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

carnivalCommunityASICMiner.slitherConstructorConstantVariables() (CommunityCarnivalASICMiner.sol#488-743) uses literals with t
oo many digits:

- TRAPPED POOL_TARGET = 1 @ * lel2 (CommunityCarnivalASICMiner.sol#495)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
CommunityCarnivalASICMiner.sol analyzed (7 contracts with 84 detectors), 46 result(s) found

Slither log >> PLSDStaker.sol

PLSDStaker.constructor(uint256,uint256,uint256,uint256,uint256,address,address ,address,address,address,address)._CARN (PLSDSta
ker.sol#544) lacks a zero-check on

- CARN = _CARN (PLSDStaker.sol#557)
PLSDStaker.constructDrluintzs@,uintzs@,uint;s[,u1nt156,uint256,address,address,address,address,address,address}._PLSD (PLSDSta
ker.sol#545) lacks a zero-check on

- PLSD = _PLSD (PLSDStaker.sol#558)
PLSDStaker.constructor{uint256,uint256,uint256,uint256,uint256,address,,address ,address,address,address,address)._PLSE (PLSDSta
ker.sol#546) lacks a zero-check on

- PLSB = _PLSB ({PLSDStaker.sol#559)
PLSDStaker.constructor{uint256,uint256,uint256,uint256,uint256,address,,address ,address,address,address,address)._ASIC (PLSDSta
ker.sol#547) lacks a zero-check on

- ASIC = _ASIC (PLSDStaker.sol#560)
PLSDStaker.constructor{uint256,uint256,uint256,uint256 ,uint256,address,,address ,address,address,address,address)._HEX {PLSDStak

sol#548) lacks a zero-check on

- HEX = HEX (PLSDStaker.sol#561)
PLSDStaker.constructor{uint256,uint256,uint256,uint256,uint256,address ,address ,address,address,address,address) ._CARNSplitter
(PLSDStaker.sol#549) lacks a zero-check on

- CARNSplitter = _CARNSplitter (PLSDStaker.sol#562)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Pragma version”8.8.4 (PLSDStaker.sol#2) allows old versions
solc-8.8.4 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low level call in Address.sen-Ualueiadjress,uintES@) (PLSDStaker.sol#131-136):
{success) = recipient.call{value: amount}{) (PLSDStaker.sol#134)
¢ level call in Address.functionCallWithvalue{address,bytes,uint256,string) IPLC Staker.sol#199-2
(success,returndata) = target.call{value: a1U9>|data' 'PLCDCtakQ
call in Address.functionStaticCall({address,bytes,string) 'PLCDCtakQF 501+44
{success,returndata) = target. StathCallldata' (PLSDStaker.sol#235)
https:ffgithub.cowfcryticfslitherfwikifDetectorfDocuwentation#lowflevelfcalls

- PLSDStaker.stake{uint256)._amount (PLSDStaker.sol#566
-.depositPLSD(uint256). amount (PLSDStaker. #636) is not in mixedCase
Parameter 5! r.depositPLSB{uint)._amount (PLSDStaker. : is not in mixedCase
Parameter PLCDCtaknr.jnpasitHCICIuint)._amount (PLSDStaker.sol#712) is not in mixedCase
Parameter PLSDStaker.depositHEX{uint256)._ amount 'PLCDCTakQF sol#726) is not in mixedCase
Variable PLSDStaker.CARN (PLSDStaker.sol i 2
Variable PLSDStaker.PLSD (PLSDStaker.sol is not in mi
Variable PLSDStaker.PLSE (PLSDS r.sol#46 is not in mi
Variable PLSDS .ASIC ({PLSDStaker.sol#464) is not in mixedCase
Variable SDS ar . HEX (PLSDStaker.sol#465) is not in mixedCase
Variable 5 .CARNSplitter (PLSDStaker.sol#467) is not in mixedCase
Reference: https: ffglthub com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Variable PLSDStaker.claimRewards()._plsbReward ({PLSDStaker.sol#7 is too similar to PLSDStaker.claimRewards()._plsdReward (P
L5Dstaker.s

variable PLSDStaker.plsbPendingRewards (PLSDStaker.sol#450) is too similar to PLSDStaker.plsdPendingRewards (PLSDStaker.sol#d4
6)

Variable PLSDStaker.plsbR dPool (PLSDStaker.sol#449) is too similar to PLSDStaker.plsdRewardPool (PLSDStaker.sol#445)
Variable PLSDStaker.plsbRewardPoolTotal (PLSDStaker.sol#451) is too similar to PLSDStaker.plsdRewardPoolTotal (PLSDStaker.sol#
447)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentatio riable-names-too-similar

PLSDStaker.sol analyzed (5 contracts with 84_detectors),_49 result(s) found

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> PulseBitcoinLockRewards.sol

PulseBitcoinLockNFTRewards.constructor(address,address)._waatcaAddress (PulseBitcoinLockRewards.sol#164) lacks a zero-check on

- waatcaAddress = _waatcaAddress (PulseBitcoinLockRewards.sol#165)
PulseBitcoinLockNFTRewards.constructor(address,address)._pulseBitcoinLockNftContractAddress (PulseBitcoinLockRewards.sol#164)
lacks a zero-check on

- pulseBitcoinLockNftContractAddress = _pulseBitcoinLockNftContractAddress (PulseBitcoinLockRewards.sol#166)
PulseBitcoinlLockNFTRewards.setCarnAddress(address). rewardTokenCARN (PulseBitcoinlLockRewards.sol#178) lacks a zero-check on

- CARN = rewardTokenCARN (PulseBitcoinLockRewards.sol#171)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Reentrancy in PulseBitcoinLockNFTRewards.registerNftForRewards(uint256) (PulseBitcoinLockRewards.sol#211-264):

External calls:

e 80) (PulseBitcoinLockRewards. sol#;“S,
(PulseBitcoinLockRewards.sol#25
(msg.sender, tokenIdsToDailyRewardAmount[tokenId]) (PulseBitcoinLockRewards.sol#258)
ARN) .transfer({waatcaAddress,tokenIdsToDailyRewardAmount[tokenId]) (PulseBitcoinLockRewards.sol#259)
= variables written after the call(s):

- tokenIdsToEndRewardsDay[tokenId] = _currentDay() + numDaysLockedUpFromRegistration (PulseBitcoinLockRewards.sol#2

Reference: https:ffgithub.cowfcryticfslithe|f\1k1fDAtactor Documentation#reentr ancy-vulnerabilities-2

PulseBitcoinLockNFTRewards.withdrawRewards{uint256) (PulseBitcoinLockRewards.sol#174-209) uses timestamp for comparisons
Dangerous comparisons:
- reguire(bool, StllhglltDthIjS oLastWithdrawalDay[tokenId] < tokenIdsToEndRewardsDay[tokenId],You have already reciev
ed all possible |a\a\js for this NFT) (PulseBitcoinLockRewards.sol#183-187)
- reguire(bool,string){_currentDay() > tokenIdsToLastWithdrawalDay[tokenId],Cannot withdraw twice on the same day, try
again tomorrow) EPulseBitcoinLockRewards.501#133—191)
- num0fDaysSincelLastWithdrawal = totalDaysOfRewardsLeft (PulseBitcoinLockRewards.sol#197)
PulseBitcoinLockNFTRewards.registerNftForRewards(uint256) (PulseBitcoinLockRewards.sol#211-264) uses timestamp for comparisons
Dangerous comparisons:
- numDaysLockedUpFromRegistration = 8 (PulseBitcoinLockRewards.sol#227)
srence: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

Context. msgData() (PulseBitcoinLockRewards.sol#94-97) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version”8.8.4 (PulseBitcoinLockRewards.sol#2) allows old versions
solc-0.8.4 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Parameter PulseBitcoinLockNFTRewards.setCarnAddress(address)._rewardTokenCARN (PulseBitcoinLockRewards.sol#178) is not in mixe
dCase

Variable PulseBitcoinLockNFTRewards.CARN (PulseBitcoinLockRewards.sol#154) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Redundant expression "this (PulseBitcoinLockRewards.sol#95)" inContext (PulseBitcoinLockRewards.sol#29-98)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

PulseBitcoinLockNFTRewards.pulseBitcoinLockNftContract (PulseBitcoinLockRewards.sol#156) should be immutable
PulseBitcoinLockNFTRewards.pulseBitcoinLockNftContractAddress (PulseBitcoinLockRewards.sol#157) should be immutable
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
PulseBitcoinLockRewards.sol analyzed (5 contracts with 84 detectors), 21 result(s) found

Slither log >> WaatcaNFT.sol

WaatcaNFT.constructor(address,address,address,address,address ,address,address,uint256,string,string)._name (WaatcaNFT.sol#1214
) shadows:

- ERC721._name (WaatcaNFT.sol#537) (state wariable)
WaatcaNFT.constructor(address,address,address,address,address,address,address,uint256,string,string)._symbol (WaatcaNFT.sol#12
15) shadows

- ERC721._symbol (WaatcaNFT.sol#5 (state variable)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#lecal-variable-shadowing

WaatcaNFT.constructer(address,address,address,address,address,address,address,uint256,string,string)._purchaseTokenusDC (Waatc
aNF'.sol+1;lf- lacks a zero-check on

- purchaseTokenusSDC = _purchaseTokenUSDC (WaatcaNFT.sol#1219)
WaatcaNFT.constructor(address,address,address,address,address,address,address ,uint256,string,string)._rewardTokenPLSD (WaatcaN
FT.sol#1207) lacks a zero-check on

- rewardTokenPLSD = _rewardTokenPLSD (WaatcaNFT.sol#1220)
WaatcaNFT.constructor({address,address,address,address, address, =dj|nss address,uint256,string,string)._rewardTokenPLSE (WaatcaN
FT.sol#1208) lacks a zero- chéck on

- rewardTokenPLSE = _rewardTokenPLSE (WaatcaNFT.sol#1221)
WaatcaNFT.constructor(address,address,address,address,address,address,address ,uint256,string,string)._rewardTokenASIC (WaatcaN
FT.sol#1209) lacks a zero-check on :

- rewardTokenASIC = _rewardTokenASIC (WaatcaNFT.sol#1222)
WaatcaNFT.constructor(address,address,address,address,address,address,address ,uint256,string,string)._rewardTokenHEX (WaatcaNF
T.sol#1218) lacks a zero-check on

dTokenHEX = _rewardTokenHEX (WaatcaNFT.sol#1223)
WaatcaNFT c:nstluct)lIajjléss,ajjléss,ajjléss,ajjléss,ajjléss,ajjléss,ajjress,uintZEC,string,string}._reward_okenLSDC {WaatcaN
sol#lAlln lacks a zero-check on :

- rewardTokenUSDC = _rewardTokenUSDC (WaatcaNFT.sol#122
WaatcaNFT.constructor(address,address,address,address,address,address,address ,uint256,string,string)._carnivalAddress (WaatcaN
FT.sol#1212) lacks a zero-check on

- carnivalAddress = _carnivalAddress (WaatcaNFT.sol#122
WaatcaNFT.setCarnAddress(address). rew kenCARN (WaatcaNFT.sol#1228) 1 cks a zero-check on

- rewardTokenCARN = ewardTokenCARN {WaatcaNFT.sol#1229)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Variable WaatcaNFT .c3nst|uct)|lajjlnss,ajjl=ss,ajj|nss,ajjlnss,ajjlnss,ajjlnss,ajjlnss uint256,string,string). rdTokenPLSE
(WaatcaNFT.sol#1282) 1is too similar to WaatcaNFT.constructor({address,address,address, adjlass address, adleSS address,uint256,

string,string). rewardTokenPLSD (WaatcaNFT.sol#1207)

variable WaatcaNFT.rewardTokenPLSE (WaatcaNFT _sol#1178) is too similar to WaatcaNFT.rewardTokenPLSD {WaatcaNFT.sol#1169)

variable WaatcaNFT. burn{uint2 vithdr blePortion0fASIC (WaatcaNFT.sol#1292) is too similar to WaatcaNFT. burn{uint256

thdrawablePortion0fuspc (WaatcaNF)

variable WaatcaNFT. burn{uint256).withc wablePortion0fPLSE (WaatcaNFT.sol#1292) is too similar to WaatcaNFT._burn{uint256).wi

thdrawablePortion0fPLSD (WaatcaMF)

variable wWaatcaNFT._burn{uint256).withc blePortion0fPLSD (WaatcaNFT.sol#1291) is too similar to WaatcaNFT._burn{uint256).wi

thdrawablePortion0fUSDC (WaatcaNF

Reference: https://github. CDW/C|~t1cfsllth=|/\lklfDntnct)r Documentation#variable-names-too-similar

WaatcaNFT.mintDeadline (WaatcaNFT.sol#1187) should be immutable

Reference: https github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared- immutable
WaatcaNFT.sol analyzed (15 contracts with 84 detectors), 60 result(s) found

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

n t r

Slither log >> BuyAndBurn.sol

Slither log >> lottery_mainnet.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

imit {lo
nfirmati

(lotte

not in m

y_mainnet.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

CarnTokenBooth.sol
Security

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 36:19:

Gas & Economy

Gas costs:

Gas requirement of function
CarnTokenBooth.pulseBitcoinLockNFTRewardPoolAddress is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 18:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 58:8:

CommunityCarnivalASICMiner.sol
Security

Block timestamp:

Use of "block.timestamp": "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the blocktimestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 313:40:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function
CarnivalCommunityASICMiner.depositCARNToTrappedPool is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 283:4:

Miscellaneous

No return:

PulseBitcoin.minerList(address,uint256): Defines a return type but never

explicitly returns a value.
Pos: 41:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 310:8:

PLSDStaker.sol
Security

Block timestamp:

Use of "block.timestamp”: "block.timestamp"” can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more
Pos: 319:16:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function PLSDStaker.claimRewards is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops
in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 313:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from
a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more

Pos: 329:12:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the same. If
you want to remove the empty position you need to shift items manually and update
the "length" property.

more

Pos: 247:8:

PulseBitcoinLockRewards.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
PulseBitcoinLockNFTRewards.registerNftForRewards(uint256): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 73:4:

Block timestamp:

Use of "block timestamp": "block.timestamp™ can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 133:16:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function PulseBitcoinLockNFTRewards.currentDay is infinite:
If the gas requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 128:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 78:8:

WaatcaNFT.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
WaatcaNFT._burn(uint256): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 130:4:

Gas & Economy

Gas costs:

Gas requirement of function WaatcaNFT.purchaseTokenUSDC is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 18:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AndBurn.sol
Security

Block timestamp:

Use of "block.timestamp™: "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 845:30:

Gas & Economy

Gas costs:

Gas requirement of function BuyAndBurn.swapRouter is infinite: If the gas
requirement of a function i1s higher than the block gas imit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 6/9:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas imit,
transactions can only consume a certain amount of gas. The number of
riterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 621:12:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

BuyAndBurn._addShares(enum BuyAndBurn.Ops,uint256) : Variables have
very similar names "_shares" and "shares_". Note: Modifiers are currently not
considered by this static analysis.

Pos: 943:20:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 943:12:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold

for division of (only) literal values since those yield rational constants.
Pos: 894:35:

mainnet.sol
Security

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 87:26:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 197:8:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 177:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = O instead of 0.1 since the result is an integer again. This does not hold

for division of (only) literal values since those yield rational constants.
Pos: 181:33:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

CarnTokenBooth.sol

9}

Carnival.sol:2:1: Error: Compiler version 70.8.16 does not satisfy
the r semver requirement

Carnival.sol:16:5: Error: Explicitly mark visibility of state
Carnival.sol:21:30: Error: Variable name must be in mixedCase

Carnival.sol:23:5: Error: Explicitly mark visibility in function (Set

ignoreConstructors to true if using solidity >=0.7.0)
Carnival.sol:27:9: Error: Variable name must be in
mixedCaseCarnival.sol:40:13: Error: Avoid to make time-based
decisions in your business logic

CommunityCarnivalASICMiner.sol

=

CommunityCarnivalASICMiner.so0l:246:13: Error: Avoid
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:274:13: Error: Avoid
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:286:64: Error: Avoid to
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:306:41: Error: Avoid to
time-based decisions in your business logic
CommunityCarnivalASICMiner.sol:313:41: Error: Avoid to
time-based decisions in your business logic

PLSDStaker.sol

PLSDStaker.sol:2:1: Error: Compiler version "0.8.16 does not satisfy
the r semver requirement

PLSDStaker.sol:8:1: Error: Contract has 19 states declarations but
allowed no more than 15

PLSDStaker.s0l:40:30: Error: Variable name must be in mixedCase
PLSDStaker.sol:111:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PLSDStaker.so0l:121:9: Error: Variable name must be in mixedCase
PLSDStaker.so0l:122:9: Error: Variable name must be in mixedCase
PLSDStaker.sol:226:24: Error: Avoid to make time-based decisions
your business logic

PLSDStaker.so0l:231:63: Error: Avoid to make time-based decisions
your business logic

PLSDStaker.so0l:314:13: : Avoid to make time-based decisions
your business logic

PLSDStaker.so0l:319:17: : Avoid to make time-based decisions
your business logic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

PulseBitcoinLockRewards.sol

PulseBitcoinLockRewards.sol:2:1: Error: Compiler version 70.8.0 does
not satisfy the r semver requirement
PulseBitcoinLockRewards.sol:16:20: Error: Variable name must be in
mixedCase

PulseBitcoinLockRewards.sol:18:5: Error: Explicitly mark visibility
of state

PulseBitcoinLockRewards.sol:26:5: Error: Explicitly mark visibility
in function (Set ignoreConstructors to true if using solidity
>=0.7.0)

PulseBitcoinLockRewards.sol:70:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
PulseBitcoinLockRewards.sol:125:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
PulseBitcoinLockRewards.sol:133:17: Error: Avoid to make time-based
decisions in your business logic

WaatcaNFT.sol

WaatcaNFT.sol:2:1: Error: Compiler version 70.8.0 does not satisfy
the r semver requirement

WaatcaNFT.so0l:57:5: Error: Explicitly mark visibility in
WaatcaNFT.sol:164:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

WaatcaNFT.sol:165:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

WaatcaNFT.sol:171:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

WaatcaNFT.sol:171:30: Error: Avoid to make time-based decisions in
your business logic

BuyAndBurn.sol

BuyAndBurn.sol:19:13: : Parse error: mismatched input
expecting {';', '='}

BuyAndBurn.sol:30:12: : Parse error: mismatched input
expecting {';', '='}

BuyAndBurn.sol:41:11: : Parse error: mismatched input
expecting {';', '='}

BuyAndBurn.sol:42:11: : Parse error: mismatched input
expecting {';', '='}

BuyAndBurn.sol:134:18: : Parse : missing ';' at '{'
BuyAndBurn.sol:139:22: : Parse : mismatched input ' ('
expecting {';', '='}

BuyAndBurn.sol:533:18: : Parse : missing ';
BuyAndBurn.sol:890:18: : Parse : missing ';

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

lottery_mainnet.sol

y mainnet.sol:2:1: Error: Compiler version "~0.8.0 does not

y the r semver requirement

y mainnet. Error: Explicitly mark visibility of state
ery mainnet. Error: Explicitly mark visibility of state

ottery mainnet.s Error: Explicitly mark visibility of state

lottery mainnet.: Error: Variable name must be in mixedCase

lottery mainnet.s Error: Explicitly mark visibility of state

8:5: Error: Explicitly mark visibility in

w

o U D W W
> W oY U1 W

lottery mainnet.
function (Set ignoreConstructors to true if using solidity

>=0.7.0) lottery mainnet.so0l:149:45: Error: Avoid to make time-based
decisions in your business logic

lottery mainnet.sol:153:27: Error: Avoid to make

in your business logic

lottery mainnet.sol:164:27: Error: Avoid to make

)

in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

