@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Vention

Website: https://vention.app
Platform: Vention Smart Chain

Language: Solidity
Date: February 27th, 2023

https://vention.app

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 6
AUAIt SUMMIAIY ot 9
Technical QUICK Stats ..o e 10
Code QUANIRY ... e 1
DOoCUMENTAtION ... 11
USE Of DEPENUENCIES ... e e nenaenes 11
ASIS OVEIVIEW ... 12
Severity DefinitioNS ... 20
AUt FINAINGS oo e 21
@70 o T3 1017 T o 25
(@ 0] 1Y/ =1 1 T To [o] 0T) 26
DISCIAIMEIS ... e 28
Appendix
o Code FIoW Diagramououoiiii s 29
o Shther RESUIS LOGuiiiiii e 41
o Solidity StatiCc ANalySiS.......oiriii 45
o SOININt LINtEr. . o e 55

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Vention team to perform the Security audit of the The
Vention Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on February 27th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The Vention token (VNT) will run the marketplace and NFT creation platform that
are part of the Vention ecosystem.

e In the Vention ecosystem, Vention tokens are required as payment for using the
ecosystem's services.

e The system smart contracts contribute heavily to the consensus mechanism.

e The system smart contracts performs actions such as Validations, system staking,

punishments, etc.

Audit scope
Name Code Review and Security Analysis Report for
Vention Protocol Smart Contracts
Platform Vention Smart Chain / Solidity
File 1 Proposal.sol
File 2 Punish.sol
File 3 Validators.sol
Github Commit Hash 91cbc324ce35f1f44a3d828ae72daca8067348fc
Audit Date February 27th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/Vention-Smart-Chain/System-Contracts/blob/main/Proposal.sol
https://github.com/Vention-Smart-Chain/System-Contracts/blob/main/Punish.sol
https://github.com/Vention-Smart-Chain/System-Contracts/blob/main/Validators.sol

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Token Specification:
e Name: Vention

e Symbol: VNT
e Decimals: 18

e Total supply: 700 million

File 1 Proposal.sol
Validator Specifications:
e The Owner can vote for proposals.

e The Owner can set validator unpass addresses.

YES, This is valid.

File 2 Punish.sol

Miner Specifications:
e The owner can punish wallet addresses.

e The owner can decrease missed block counter epoch.

Validator Specifications:

e The owner can cleanly punish record wallet addresses.

YES, This is valid.

File 3 Validators.sol
Proposal Specifications:
e : The owner can update the validator address whose

status is Unstaked / Jailed.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in The Vention Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the The Vention Protocol.

The Vention Protocol team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given The Vention Protocol smart contract code in the form of a github weblink.

The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://vention.app which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://vention.app

AS-IS overview

Proposal.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | onlyValidator modifier Passed No Issue
3 | initialize external access only Not No Issue
Initialized
4 | createProposal external Passed No Issue
5 | voteProposal external | access only Validator No Issue
6 | setUnpassed external access only No Issue
Validators Contract
Punish.sol
Functions
Sl. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | onlyNotPunished modifier Passed No Issue
3 | onlyNotDecreased modifier Passed No Issue
4 | initialize external access only Not No Issue
Initialized
5 | punish external access only Miner No Issue
6 | decreaseMissedBlocksCo | external access only Miner No Issue
unter
7 | cleanPunishRecord write access only No Issue
Validators Contract
8 | getPunishValidatorsLen read Passed No Issue
9 | getPunishRecord read Passed No Issue
Validators.sol
Functions
Sl. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | onlyNotRewarded modifier Passed No Issue
3 | onlyNotUpdated modifier Passed No Issue
4 | setContractCreator write Passed No Issue
5 |initialize external access only Not No Issue
Initialized
6 | stake write access only No Issue
Initialized
7 | createOrEditValidator external access only No Issue
Initialized

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 | tryReactive external | access only Proposal No Issue
Contract
9 | unstake external access only No Issue
Initialized
10 [withdrawStakingReward write Passed No Issue
11 | withdrawStaking external Passed No Issue
12 | withdrawProfits external Passed No Issue
13 [distributeBlockReward external access only Miner No Issue
14 | updateActiveValidatorSet write access only Miner No Issue
15 | removeValidator external access only Punish No Issue
Contract
16 | removeValidatorincoming | external access only Punish No Issue
Contract
17 | getValidatorDescription read Passed No Issue
18 | getValidatorinfo read Passed No Issue
19 | getStakingInfo read Passed No Issue
20 | getActiveValidators read Passed No Issue
21 | getTotalStakeOfActiveVali read Passed No Issue
dators
22 | getTotalStakeOfActiveVali read Passed No Issue
datorsExcept
23 | isActiveValidator read Passed No Issue
24 | isTopValidator read Passed No Issue
25 | getTopValidators read Passed No Issue
26 | validateDescription write Passed No Issue
27 | tryAddValidatorToHighest internal Passed No Issue
Set
28 | tryRemoveValidatorincom write Passed No Issue
ing
29 | addProfitsToActiveValidat write Passed No Issue
orsByStakePercentExcept
30 | tryJailValidator write Passed No Issue
31 | tryRemoveValidatorinHigh write Passed No Issue
estSet
32 | viewStakeReward read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) data: Params.sol

data

Resolution: data

Very Low / Informational / Best practices:

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Proposal.sol

e voteProposal: Validators can vote for proposals.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e setUnpassed: Validators can set validator unpass addresses.

Punish.sol
e punish: The Miner owner can punish wallet addresses.
e decreaseMissedBlocksCounter: The Miner owner can decrease missed block
counter epoch.

e cleanPunishRecord: Validators can cleanly punish record wallet addresses.

Validators.sol
e tryReactive: The owner of the proposal contract can update the validator address

whose status is Unstaked / Jailed.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github weblink. And we have used all
possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Vention

Proposal Diagram

@ Validators

© Punish

Params

O uint256 punishThreshold

@ uint256 removeThreshold

O uint256 decreaseRate

< Walidators validators

© address=>PunishRecord punishRecords
O address punish'/glidators

> Lint256==hool punished

< uint256==hool decreased

Params

< address=>Validator validatorinfo

< address=>mapping address=>Stakinginfo staked
O gddress currentValidator Set

© address highest'/alidatorsSet

O uint256 totalStake

O uint256 totalJailedHB

O address=>address cortractCreator

O gddress=>mapping address==uint stakeTime

O address=>uint lastRewardTime

< address=>mapping uint==uint reflectionPercertSum
< Punish punish

& Uint256=>mapping uintd=>hool operationsDone

@ initialize()

@ punishi)

@ decreaseMissedBlocksCounter)
@ cleanPunishRecord()

@ O getPunish'alidatorsLeni)

@ QgetPunishRecord()

@ setContractCreator()

@ inttialize()

@ @stake()

@ @createOrEdit alidator()

@ tryReactive()

@ unstake()

@ withdraw StakingReward()

@ withdraw Staking()

@ withdrawProfits()

@ ddistributeBlockReward()

@ updatebctive'/alidatarSet()

@ remove'alidator)

@ removeValidaterincoming()

© QgetValidatorDescription()

@ QgetValidatorinfol)

@ G getStakinglnfol)

© QgetActiveValidators()

@ O, getTotalStakeOfActiveValidators()
B QgetTotalStakeOfActive ValidatorsExcept()
@ QisActiveValidator()

© QisTopYalickator()

@ QgetTopValidators()

@ QvalidateDescription()

< tryaddvalidator ToHighestSet()

B tryRemove'/alidatorincoming()

B gddProfitsToActive\ValidatorsByStakePercentExcept()
B tryJail'validator()

B tryRemove'/ alicdatorinHighestSet()

@ Proposal

Farams

O uirt256 proposallastingPeriodd

O address==bool pass

O bytes32=>Proposalinfo proposals

2 address==mapping bytes32=>"/otelnfo vates
< alidators validators

@ initialize()

@ createProposal()
@ voteProposal()
@ setlnpassed()

0 QuiewStakeReward()

ba) @ Params I~

hool inttialized

address ValidatorContractAddr
address PunishContract Addr
address Proposal Addr

uint1 & Max"alidators

uintG4 StakinglockPeriod
uint&4 WithdrawProfitPeriod
uint256 MinimalStakingCein

O Uint256 minimum/alidetor Staking
O uint stakerPartPercent

O uint validatorPartPercent

© uint burnPartPercent

O uint contractPartPercent

© uint burnStop Amount

© uint totalBurnt

00000000

T

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Punish Diagram

@ Walidators

@ Funish

Params

O Uint256 punishThreshold

O uint256 removeThreshold

O uint256 decreaseRate

< Walidators validators

“ address=>PunishRecord punishRecords
O address punishalidators

& Lint256=>hool punished

O Lint256==hool decreased

Params

2 address==Validator validatorinfo

“ address==mapping address==Stakinginfo staked
O address currentValidatorSet

< address highestValidatorsSet

O uint256 totalStake

2 uint 256 totalJailedHB

O address==address contractCreator

2 address=rmapping address=-uint stakeTime

2 address==uint lastRewardTime

< address==mapping uint==uint reflectionPercentSum
“* Punish punish

O Lint256=>mapping uirtB==hool operationsDaone

@ initialize)

@ punishi()

@ decreaseMissedBlocksCounter()
@ cleanPunishRecord()

@ QgetPunish alidatorsLen()

@ QgetPunishRecord()

T

@ setContractCreator()

@ initialize()

@ dstake()

@ @createQrEdit'alidator()

@ tryReactive()

@ unstake()

@ withdrawStakingRew:ard()

@ withdrawStaking()

@ withdrawProfits()

@ ddistributeBlockReward()

@ updatefctiveValidatorSet()

@ removeialidator()

@ removeValidatorincoming()

@ QgetValidatorDescription])

@ O get'alidatorinfol)

@ QgetStakinglnfal)

@ QgetActive'alidators()

@ QgetTotalStakeOf ActiveWalidators()
B Q getTotalStakeOfActive'alidatorsExcept()
@ QsActive'Validator()

@ QizTop'alidator()

@ QgetTopValidators()

@ QvalicdateDescription])

2 try Addalidator ToHighestSet()

B tryRemove'alidatorincoming()

B addProftsToActive'ValidatorsBy StakePercentExcept()
B tryJailvalidator)

B tryRemoveValidatorinHighestSet()

@ QviewStakeReward()

[

@ Par:amsl

kool initialized
address ValidatorContract Adcdr

address PunishContract &ddr

address Proposal&ddr

uint1 5 Max*alidators

uintG4 StakingLockPeriod

uirt&4 WithdrawProftPeriod

uint256 MinimalStakingCoin

QoOoOoOQ000000O00000

Uint256 minimum®’ alidatorStaking
wirt stakerPartPercent

uint valicdatorPartPercent

wirt burnPartPercent

uint contractPartPercent

wirt burnStopAmourt

wint totalGurnt

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Validators Diagram

@ validators

Params

 address=>"alidator validatorinfo

“ address=>mapping address==Stakinginfo staked
address currentValidatorSet

address highest'alidatorsSet

uint256 totalStake

uint256 totalJailedHB

addresg==address contractCreator
address==mapping address==uint stakeTime
address==uint lastRewardTime
address=>mapping uint=>uint reflectionPercentSum
* Punish punish

© LiNt256=>mapping uint8==>hool operationsDone

QoOoQOoO0000

@ Punish

setContractCreator()

initialize()

B stake)

é createOrEdit alidator()
tryReactive()

unstakel)
withdrawStakingReward()
withdravwStaking()
withdrawProfits()
adistributeBlockReward()
updateActivealidatorSet()
remove’ alidator()

remove’ alidatorincoming()

@ O getValidatorDescription(y

@ O.getValidatorinfol)

@ QgetStakinglnfol)

@ OgetActiveValidators()

@ O getTotalStakeOfActive'alidators()
B Q getTotalStakeOfActivealidatorsExcept()
@ QizActivealidator()

@ QizTop'validator()

@ 3 getTopValidators()

@ O validateDezcription()

= try Addvalidator ToHighestSet()

B tryRemoveV alidatorincoming()

B gddProfitsToActive'alidatorsBy StakePercentExcept()
B tryJailvalidator()

B tryRemove' alidatorinHighestSet()

@ QviewStakeReward()

doo00O0RO0OOQOQQODOD

Params

O uint256 punishThreshold

O Uint256 removeThreshold

O UiMnt256 decreaseRate

< Validators validators
 address=>PunishRecord punishRecords
< address punish' alidators

2 uint256==hool punished

2 Lint256=>bool decreased

@ initialize()

@ punish()

@ decreaseMissedBlocksCounter()
@ cleanPunishRecord()

@ O getPunish'validatorsLen()

@ G getPunishRecord()

@ Par:amsl

hool inttialized

address Validator ContractAdcr
address PunishContractAddr
address ProposalAddr

uint16 MaxValidators

uintG4d Stakingl ockPeriod
uintE4 WithdrawProfitPeriod
uint256 MinimalStakingCoin

uirt 256 minimum®’ alidatorStaking
uint stakerPartPercent

uint valicdatorPartPercent

uirt burnPartPercent

uint contractPartPercent

uint burnStopAmaount

uirt totalBurnt

QOO OOoO0Q0000000000

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> Validators.sol

it

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Iog >> Punlsh sol

ct-versions-of-solidity

Perers.?' ida C is not in UPPER_CASE_WITH_UNDERSCORES

Params . At \Pu 'LS|' S0 1-r11 12) is not in UPPER_CASE_WITH_UNDERSCORES

Params . a IPu 'LS| sol#132-14) 1is not in UPPER_CASE WITH UNDERSCORES

Params .MaxValida .sol#l is not in UPPER_CASE_WITH_UNDERSCORES

Params . cingLockPer {Punish. : is not in UPPER_CASE_WITH_UNDERSCORES

Params .Withdraw fi riod (Pun ish. #21) is not in UPPER_CASE_WITH_UNDERSCORES

Params .MinimalStakir (1 is not in UPPER_CASE_WITH_UNDERSCORES

rsw 'Ltl'lc\ctck 3 v e dress,uint256,uint256) (Punish.sol#316) is not in CapWords

Parameter 255). ntract (Punish. #338) 1s not in mixedCase
Paramete .d bute ck ress[],uint64[]). to (Punish.sols) is not in mixedCase
Paramete dators.di i = 1 ess[],uint64[] ass (Punish. : J is not in mixedCase
Paramete i rs . views o 255,) ake unish.so 1-.—1! i t in mixedCase
Parameter Validators.vie 255,) all o IPu 15\ "} is not in mixedCase
Referer H pS ;) b.com, / ither/wiki/De ce-to-solidity-naming-conventions

.burnPartPercent (Punish.
Amount {Punish.
ctPartPercent (Pun 'le
.minimumvalidatorStaking (Pun 'LS|
.stakerPartPercent (
.tota 1E~L||t I'PLrlsI' S0 l-r
1

d-be-declared-constant

ws old versions

eanPunishRecord(validator),c

"11-.=t rs. tl yReactiv
after th

vulnerabilities-3
ess,string) (Proposal.sel#1129-1151) uses timestamp for comparisons

als[id].createTime == 0,Pr al alre '»/15‘(5 IPr"“scl sol#114a8)
{Proposal.sol#1153-1

posals[id].creat = (
ck.timestamp < p ateTime p alLastingPeriod, sal expir

lidators Activ idators(). le) (osal.sol#1200-1261)
c/slither/wiki i

allows old versions
/wikif/Detector-Documentation#

Punish.slitherConstructorvariab

istributeB
- _validatorPart : 3
Validators.distributeB \ = ,uinté) (Pr al. # 595) uses 11t rals wi
- _burnPart = re ;
Validators.distributeB < t Z') (Pr al. # 595) uses literals wi

) uses literals wi
= lastRewardHold + (remaining - J/ validatorInfol

vall.

validators.slith ruc iable (al. 3 ; uses literals with
- burnst: (al.sol
Proposal.slither C i () { 4 uses llt erals with too many
- burnste n Z a .5.1«:1_.
https o z ocumentat ion#¥too-many-digits

Parar’s.|:L|'|'Pa|'t|3»:|'-'»:rt

.minimumValidatorStaki
.stakerPartPe
.tota 1E~L||t (P

1

: 1 =rfwik
Proposal sol analyzed (4 contracts with 84 detectors), 55 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Proposal.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 160:37/:

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

more
Pos: 850:53:

Gas & Economy

Gas costs:

Gas requirement of function Proposal.initialize is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage}

Pos: 74:4:

Gas costs:

Gas requirement of function Punish.cleanPunishRecord is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 105:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 87:8:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more
Pos: 678:8:

Punish.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin” is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 160:37:

Gas costs:

Gas requirement of function Punish.punish is infinite: If the gas requirement of a
function is higher than the block gas Limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 48:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 850:53:

Gas & Economy

Gas costs:

Gas requirement of function Punish.punish is infinite: If the gas requirement of a
function is higher than the block gas Limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 48:4:

Gas costs:

Gas requirement of function Punish.decreaseMissedBlocksCounter is infinite: If
the gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 75:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 57:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 90:16:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Validators.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it
for authentication, you usually want to replace it by "msg.sender”, because
otherwise any contract you call can act on your behalf.

more

Pos: 160:37:

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose” the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 241:50:

Gas & Economy

(Gas costs:

Gas requirement of function Validators.initialize is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 164:4:

Gas costs:

Gas requirement of function Validators.isActiveValidator is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 643:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it successful.
more

Pos: 844:16:

Miscellaneous

Similar variable names:

Validators.viewStakeReward(address,address) : Variables have very similar
names "staked" and "_staker". Note: Modifiers are currently not considered by
this static analysis.

Pos: 862:52:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

maore

Pos: 678:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Proposal.sol

Proposal.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement

Proposal.sol:43:5: Error: Explicitly mark visibility of state
Proposal.s0l:94:56: Error: Avoid to make time-based decisions in your
business logic

Proposal.sol:128:44: Error: Avoid to make time-based decisions in
your business logic

Proposal.sol:151:57: Error: Avolid to make time-based decisions in
your business logic

Proposal.so0l:161:59: Error: Avoid to make time-based decisions in
your business logic

Proposal.sol:175:34: Error: Avoid to make time-based decisions in
your business logic

Punish.sol

Punish.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does

satisfy the r semver requirement

Punish.s0l:23:5: Error: Explicitly mark visibility of state
Punish.so0l:24:5: Error: Explicitly mark visibility of state
Punish.so0l:72:38: Error: Avoid to make time-based decisions in your
business logic

Validators.sol

Validators.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement

Validators.sol:10:1: Error: Contract has 19 states declarations but
allowed no more than 15

Validators.sol:92:5: Error: Explicitly mark visibility of
stateValidators.sol:136:9: Error: Variable name must be in mixedCase
Validators.sol:146:5: Error: Event name must be in CamelCase
Validators.sol:171:38: Error: Avoid to use tx.origin
Validators.sol:181:39: Error: Avoid to make time-based decisions in
your business logic

Validators.so0l:262:51: Error: Avoid to make time-based decisions in
your business logic

Validators.so0l:519:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

Validators.sol:523:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

Validators.so0l:535:60: Error: Avoid to make time-based decisions in
your business logic

Validators.sol:566:46: Error: Avoid to make time-based decisions in

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

your business logic
Validators.sol:875:54: Error: Avoid to make time-based decisions in

your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

