@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Catcoin Token
Website: https://catcoin.io
Platform: Binance Smart Chain
Language: Solidity

Date: March 16th, 2023

https://catcoin.io

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 17
(@ 0] 1Y/ =1 1 T To [o] 0T) 18
DISCIAIMEIS ... e 20
Appendix
o Code FIoW Diagramououoiiii s 21
o Shther RESUIS LOGuiiiiii e 22
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Catcoin team to perform the Security audit of the
Catcoin smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on March 16th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e CatCoin's new contract upgrade provides the ultimate in functionality & security.

e Catcoin is one of the safest contracts ever created in the BSC space. It is thought to
be simple and efficient, yet functional and secure.

e Catcoin is able to securely retain its crucial functions such as multiSendTokens,

swapAndLiquify, setBuy, setSell, etc.

Audit scope

Name Code Review and Security Analysis Report for
Catcoin Token Smart Contract

Platform BSC / Solidity
File Catcoin.sol
Online Code 0x2f0c6e147974bfbf7da557b88643d74c324053a2
File MD5 Hash ABED4AC446FCBES8839E9CA08709A49D2
Audit Date March 16th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x2f0c6e147974bfbf7da557b88643d74c324053a2#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Catcoin
e Symbol: CATS
e Decimals: 0
e Swap Treshold: 0.2%
e Total Supply: 1 Quadrillion

Ownership Control: YES, This is valid.

e Multisig addresses can be set by the multisig
owner.

e Swap Threshold value can be set by the
multisig owner.

e Developer wallet address can be updated by
the owner.

e buy taxes, buy marketing taxes, liquidity
taxes, dev taxes can be set by the multisig
owner.

e Swap and Liquify enabled status by the
multisig owner.

e Multi send tokens by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catcoin Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catcoin Token.

The Catcoin Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Catcoin Token smart contract code in the form of a bscscan web link.

The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://catcoin.io which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://catcoin.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 [onlyMultisig modifier Passed No Issue
7 | lockTheSwap modifier Passed No Issue
8 [name external Passed No Issue
9 | symbol external Passed No Issue
10 | decimals external Passed No Issue
11 | totalSupply external Passed No Issue
12 | balanceOf read Passed No Issue
13 | setMultisig external

14 | transfer external Passed No Issue
15 | allowance read Passed No Issue
16 | approve external Passed No Issue
17 | transferFrom external Passed No Issue
18 | increaseAllowance external Passed No Issue
19 | decreaseAllowance external Passed No Issue
20 | isExcludedFromReward read Passed No Issue
21 | totalFees read Passed No Issue
22 | setSwapTreshold write access only Multisig No Issue
22 | reflectionFromToken read Passed No Issue
23 | tokenFromReflection read Passed No Issue
24 | updateWithdrawContract external | access only Multisig No Issue
25 | updateDevWallet external Passed No Issue
26 | addBotToBlacklist external | access only Multisig No Issue
27 | removeBotFromBlacklist external | access only Multisig No Issue
28 | excludeFromReward external | access only Multisig No Issue
29 | includelnReward external | access only Multisig No Issue
30 | excludeFromFee external | access only Multisig No Issue
31 [includelnFee external | access only Multisig No Issue
32 | setFees external | access only Multisig No Issue
33 | excessFundWithdrawal external

34 | setSwapAndLiquifyEnabled external | access only Multisig No Issue
35 | receive external Passed No Issue
36 | reflectFee write Passed No Issue
37 | getTValues read Passed No Issue
38 | getRValues write Passed No Issue
39 | getRate read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

40 | getCurrentSupply read Passed No Issue
41 | takeLiquidity write Passed No Issue
42 | takeWalletFee write Passed No Issue
43 | calculateTaxFee read Passed No Issue
44 | calculateLiquidityFee read Passed No Issue
45 | calculateMarketingFee read Passed No Issue
46 | calculateDevFee read Passed No Issue
47 | removeAllFee write Passed No Issue
48 | setBuy write Passed No Issue
49 | setSell write Passed No Issue
50 [isExcludedFromFee read Passed No Issue
51 | approve write Passed No Issue
52 | openTrading external | Missing-zero-addres | Refer to audit
s-validation findings
53 | transfer write Passed No Issue
54 | swapAndLiquify write Passed No Issue
55 | swapTokensForEth write Passed No Issue
56 | addLiquidity write Centralize risk, Not | Refer to audit
handle properly findings
return value
57 | tokenTransfer write Passed No Issue
58 | transferStandard write Passed No Issue
59 | transferToExcluded write Passed No Issue
60 | transferFromExcluded write Passed No Issue
61 | transferBothExcluded write Passed No Issue
62 | multiSendTokens write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Centralize risk:

excessFundWithdrawal () onlyMultisig {
if (().balance > @){
amountBNB = () .balance;

ntract).transfer(amountBNB);
RecoverFunds();

In this contract multisig can drain all the BNB into withdrawcontract wallet.

addLiquidity(tokenAmount, ethAmount)
_approve(() (uniswapV2Router), tokenAmount);
uniswapV2Router.addLiquidityETH{value: ethAmount}(
(this),
tokenAmount,
a,

a,
withdrawcontract,
.time stamp|

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

In addLiquidity function call uniswapV2Router.addLiquidityETH function with the specific
address "withdrawcontract" that acquire all the LP token that is generated by catcoin BNB

pool. If withdrawcontract account will be EOA that can misbehave with LP token.

Resolution: We suggest centralized privileges or roles in the protocol be improved via a
decentralized mechanism and using the contract itself (address.(this)) to make your LP

token decentralized.

Very Low / Informational / Best practices:

(1) Missing-zero-address-validation:

setMultisig(_multisig) onlyMultisig {
multisig = multisig;
Mul

tisigupdate(multisig);

In setMultisig there is zero address validation.

openTrading(onlyowner {
(!tradingOpen,“trading is already g
buyFee.tax = 2;
buyFee.liquidity
buyFee.marketing
buyFee.dev = 0;
sellFee.tax = 2;

sellFee.liquidity

sellFee.marketing

sellFee.dev = 1;

tradingopen g

withdrawcontract = withdrawcontract;
OpenTrading();

Addresses should be checked before assignment or external call to make sure they are

not zero addresses.

Resolution: We advise adding a zero-check for the passed-in address value to prevent
unexpected errors and adding a required field and check zero address validation in the

setMultisig function.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Decimal is set to O:

_decimals = 0;

Decimal value is set to 0, there is no provision to change the decimal value. This will not
have any fractional amount of the tokens. Only whole numbers will be there and no

fractional value.

Resolution: We suggest setting appropriate values to the decimal variable.

(3) Use external function instead of public function:

A public function that is never called by the contract could be declared as external.

external functions are more efficient than public functions.

Resolution: Consider using the external attribute for public functions that are never called

within the contract.

(4) Not handle properly return value:

addLiquidity(tokenAmount, ethAmount)
_approve(() (uniswapV2Router), tokenAmount);
uniswapV2Router.addLiquidityETH{value: ethAmount}(

(this),

tokenAmount,

withdrawcontract,
.timestamp

Return value of addLiquidityETH not handled properly.

Resolution: We suggest using variables to receive the return value of the functions and

handle both success and failure cases.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Catcoin.sol

e setMultisig: Multisig address can be set by the multisig owner.

e setSwapTreshold: Swap Threshold value can be set by the multisig owner.

e updateWithdrawContract: Withdraw contract address can be updated by the
multisig owner.

e updateDevWallet: Developer wallet address can be updated by the owner.

e addBotToBlacklist: Bot addresses can be blacklisted by the multisig owner.

e removeBotFromBlacklist: Bot addresses can be removed from blacklisted by the
multisig owner.

e excludeFromReward: The multisig owner can set excluded account status true.

e includelnReward: The multisig owner can set excluded account status false.

e excludeFromFee: The multisig owner can set excluded account fee status true.

e includelnFee: The multisig owner can set excluded account fee status false.

e setFees:buy taxes, buy marketing taxes, liquidity taxes, dev taxes can be set by the
multisig owner.

e excessFundWithdrawal: Excess fund Withdrawal balance by the multisig owner.

e setSwapAndLiquifyEnabled: Swap and Liquify enabled status by the multisig
owner.

e openTrading: Open Trading address executed by the owner.

e multiSendTokens: Multi send tokens by the owner.

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of bscscan web link. And we have used all
possible tests based on given objects as files. We had observed 1 low issue and some
informational issues in the smart contracts. But those are not critical ones. So, it’s good to

go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Catcoin Token

@ Catcoin

CENENEENNENONCEENEENEEENENEENEEQOQCQQOQOCQOOQOOQQOQOQQOQCQOCO0QOQQCFQCOCFOQFOQEOQFOQ®EOETOEEOE|0OQCOOODONOQOOQODOCOODOODOODOQOODODODDO

Context
IERC20
Cwnable

wvSafeMath for wint256
mAddress for address

string _name

string _symbol

uints _decimals

address==>uint256 _rOwned
address=>=uint256 tOwned
address==mapping address=>uint256 _allowances
address=>bool _isExcludedFromFee
address==hool _isExcluded
address _excluded

address=>bool _isBlackListedSot
address _blacklListedBots

Nt 256 WM&

uint256 _tTotal

uint258 _rTotal

256 _tFeeTotal

Lint swapTreshold

address _devwallet

address withdrawcontract

address multisig

BuyFee buyFee

SellFee selFee

int16 _taxFee

uint16 _liguidityFee

uint16 _marketingFee

uint16 _devFee
IUniswap'/'2Router02 uniswap'/2Router
address uniswapv2Pair

bool inSwapAndLiguify

kool swapAndLiguifyEnabled

bool tradingOpen

& __constructor__ ()
Sname()

Qsymbol()
Qelecimals()
QtotalSupply()

QbalanceOf()
sethiutisigl) @ 1Uniswapv2Factor, @ 1wniswapvzrouteroz

transfer()
Quallowance() WiniswapVZRouter01

approve() @ createPair()

@ swapExactTokensForETHSupportingFeeOnTransfer Tokens()

transferFrom(y
increaseAllowance()
decreaseAllowance()
QisExcludedFromReward()
QtotalFees()
setSwapTreshold()
QreflectionFromToken()
QtokenFromReflection)
updateWWithdraw Contract()
updateDeviVallet()
addBot ToBlacklist()
removeBotFromBlacklist()
excludeFromReward()
includeinReward()
excludeFromFee()
includeinFeel)

setFees()
excessFundWithdrawal()
setSwapAndLiguifyEnabled()
_reflectFee()

T _getT'Values()
a_getRvalues()
o_getRate()

. _getCurrertSupply()
_takeliguidity()
_takewWalletFee()
QcalculateTaxFee()
QealculateLiquidityFee()
QcalculateMarketinaFee()
QealculateDevFes()
removeAllFee()

setBuy()

setSell()
QiisExcludedFromFees()
_approve()
openTrading()
_transfer(}
swapAndLiguify ()
swapTokensForEth()
addLiquidity()
_tokenTransfer()
_transferStandard()
_transferToExcluded()
_transferFromExcluded()
“transferBothExcluded()
muttiSendTokens()

T T T \

I \ N

i \ ™,

[for wint256 Jfor address .
.

P -.II | _'F @ Ownahle
@ ierczo (@) safetsatn (@) address Context :
| @ U niswapV 2Router01
g C\thotlalsuxaglg() < Qadd() < QsContract() O address _owner
° SbalanceOf() & Qusubl) & sendvalue() O address _previousOwner ® Qfactory()
- tcl'tarhsfer() < amul() < functionCall() O Lint256 _lockTime @ QUVETH()
° a;:’:\r:(?ce() < Qv | © functisnCall/ithi/alue() S o @ @addLiguidityETHO)
e et [< amod() B _functionCallyith\alue() O Eoormid =
® renounceOwnership()
| _-| ® transferOwnership()

@ (.:ontext

< Q_msgSender()
< &_msgDatai)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Catcoin.a
Catcoin._ ([Ca . =) shadows:
Refere : https i y = .' etec -Documentation#local -variable-shadowing

Catcoin.setMultisig(add)._| :) lacks a zero-check on
- multisti .)
Catcoin.openTrading(ad). _withdraw act { in.sol# ac : check on

"#r’issir-;—z-:r:—a-:-:r-:ss—'-,-'ali-:ati-:r
de a loop: path[1] = uniswapV2Router .WETH() (Ca
uter .swapExactTokensForET

5) |'e-’;'»:xt‘"'1 calls inside 1 3 15\ ’Route ddLigquidityETH{
ntract,bl .timestamp) (Catcoi :
as external 11s inside a loop: = ess{withdrawcontract).transfer(mar

) (Catcoin.sol#771-817) has external calls inside a 1 H ess(_ vallet).transfer(d
tic/slither/wiki/Detector-Documentation/#calls-inside-a-

Reentrancy in Catcoin._tran sfer(address,address,uint256) (Catcoin.sol#742-769):
External calls:
- swapAndL iguify
i ethamount}{address{this),tokenAmount,®,8,withd ntract,block.times
tamp) (Catcoin
OnTransferTokens(tokenAmount, @ s ess(this),block.ti
mestamp) (Catcoin.so 1+..
External calls se eth:
- swapAndL iguify ntractTokenBalance) (Catcoin.sol#761)
i r.addLiquidityETH{value: ethAmount}{address(this),tokenAmount,®,@,withdrawcontract,block.times
tamp) (Catcoin.sol#83

Address._functionCallWithvalue(address,bytes,uint256,string) {Catcoin.sol#151-173) uses assembly
Reference: https: ytic/sli - wiki/Detector-Documentation#assembly
Catcoin.re a ess) (Catcoin. 11) has costly ation nside a lo
Catcoin. inc (in. :) has costly operations inside a loop:
Catcoin. T p() 3 in. .I 5-340) = y operations inside a
Catcoin.lockT () (ca c 3] y operations inside a loop:
Catcoin.re 2 = (coin. #6 as -.-.;tl-; perations inside a
Catcoin.re A1 Fee (in costly operations inside
Catcoin. - 2 -Z coin. costly operations inside
Catcoin & 2 (in as costly operations inside
Catcoin.seTBu (in. . y operations inside a
Catcoin.setBu (coin.sol 2-7 1 ! erati inside a
Catcoin.
Catcoin.se (i I‘ erati inside a
Catcoin.
Catcoin.setsell() (Catcoin.sol#769-714)] ions inside

- _liguidi \ :)
Catcoin.se tc-lll) . #709-714 c erat inside

= #

Catcoin.setS 11_ (.sol3 4) inside

Catcoin. reflectFee(int2 6,uin _. (Catc .5014) has costly

Catcoin.setSell{) (Catcoin.sols 714) C) =r ns inside

Catcoin.setSe (Ca n. 7 -‘1 r éirsi-:»:

Catcoin._re . (uint256, (. :) has costly rations inside a

Catcoin. _re (Uint256,ui 5) (C . :) CO rations inside

versions
lltl er/wiki/Detector-Documentation#incorrect-versions-of-solidity
.50l#181-111):
.501#106)
.bytes,uint . ing) {Catcoin.sol#151-173
,clL-'ﬂ'-ctc, (Catc in.sol#158-160)
w-level-calls

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Catcoin.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it for
authentication, you usually want to replace it by "msg.sender", because otherwise
any contract you call can act on your behalf.

more

Pos: 749:35:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Catcoin.swapTokensForEth(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 819:4:

Gas & Economy

Gas costs:

Gas requirement of function Catcoin.-removeBotFromBlacklist is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 498:4:

(Gas costs:

Gas requirement of function Catcoin.includelnReward is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 523:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend
on storage values, have to be used carefully. Due to the block gas limit, transactions
can only consume a certain amount of gas. The number of iterations in a loop can
grow beyond the block gas limit which can cause the complete contract to be stalled
at a certain point. Additionally, using unbounded loops incurs in a lot of avoidable
gas costs. Carefully test how many items at maximum you can pass to such
functions to make it successful.

more

Pos: 970:8:

Miscellaneous

Constant/View/Pure functions:

I[UniswapV2Router02.swapExactTokensForETHSupportingFeeOnTransferTokens(uint256,u
: Potentially should be constant/view/pure but is not. Note: Modifiers are currently
not considered by this static analysis.

more
Pos: 241:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or
a failing external component.

more
Pos: 971:12:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/100=0
instead of 0.1 since the result is an integer again. This does not hold for division of
(only) literal values since those yield rational constants.

Pos: 788:30:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Catcoin.sol

Catcoin.sol:5:1: Error: Compiler version =0.8.10 does not satisfy the
r semver requirement
Catcoin.so0l:183:5: Error: Explicitly mark visibility in function
ors to true if using solidity >=0.7.0)
Error: Function name must be in mixedCase
Error: Contract has 25 states declarations but
an 15
‘ Error: Constant name must be in capitalized

ignoreConstrt
Catcoin.sol:
Catcoin.sol:
allowed
Catcoin.s

(E_CAS

<
N Q

N
O W f

D
(@)]

sy
O MO O O
e

=)
) N O
(o)} (G}
Vo) ~J D

Error: Constant name must be in capitalized

0 0

(@)
J
d =

N

W
O
w

5: Error: Explicitly mark visibility of

:315:5: Error: Event name must be in CamelCase

Error: Event name must be in CamelCase

Error: Event name must be in

in.so0l:325:9: Error: Variable name must be in mixedCase
Error: Variable name must be in mixedCase

Error: Variable name must be in mixedCase

Error: Variable name must be in mixedCase

Error: Explicitly mark visibility in function (Set
tors to true if using solidity

.s01:553:9: Error: Variable name must be in mixedCase
:9: Error: Variable name must be in mixedCase

:9: Error: Variable name must be in mixedCase

Error: Code contains empty blocks

Error: Avoid to use tx.origin

Error: Avoid to make time-based decisions

i
o)
- Q ke
Q5
t .
o)
S
w W -)
— e

Q Q
O O
oy O
ol

QO n QO
)
ot o
w
=P

~J
(@)

P B
S5 3
n n Q

Q
DO Q

O O O
()
)
Q) O

Cam
Catc
Catcoin.s
Catcoin.
Catcoin.

o =
@)

as
1n.so

w
N DN

w W W
N DN
oo I

Q
~J

QB n n ®n
O O W m O O O
o S I S S TR S R R o
Q H se ss ss se (f e ee
© Q)
O
o H

O
ey My

(0}
U1 o1 -
(3

0)]

1N

)

n n n

O
o J U1 o1 U1 O
w O (-
O W O s

-

ogic
Catcoin.so0l:843:13: Error: Avoid to make time-based decisions in
business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

