
Project: Catcoin Token
Website: https://catcoin.io
Platform: Binance Smart Chain
Language: Solidity
Date: March 16th, 2023

https://catcoin.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Catcoin team to perform the Security audit of the
Catcoin smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on March 16th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● CatCoin's new contract upgrade provides the ultimate in functionality & security.

● Catcoin is one of the safest contracts ever created in the BSC space. It is thought to

be simple and efficient, yet functional and secure.

● Catcoin is able to securely retain its crucial functions such as multiSendTokens,

swapAndLiquify, setBuy, setSell, etc.

Audit scope

Name Code Review and Security Analysis Report for
Catcoin Token Smart Contract

Platform BSC / Solidity

File Catcoin.sol

Online Code 0x2f0c6e147974bfbf7da557b88643d74c324053a2

File MD5 Hash ABED4AC446FCBE8839E9CA08709A49D2

Audit Date March 16th, 2023

https://bscscan.com/address/0x2f0c6e147974bfbf7da557b88643d74c324053a2#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Catcoin

● Symbol: CATS

● Decimals: 0

● Swap Treshold: 0.2%

● Total Supply: 1 Quadrillion

YES, This is valid.

Ownership Control:
● Multisig addresses can be set by the multisig

owner.

● Swap Threshold value can be set by the

multisig owner.

● Developer wallet address can be updated by

the owner.

● buy taxes, buy marketing taxes, liquidity

taxes, dev taxes can be set by the multisig

owner.

● Swap and Liquify enabled status by the

multisig owner.

● Multi send tokens by the owner.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catcoin Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catcoin Token.

The Catcoin Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Catcoin Token smart contract code in the form of a bscscan web link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://catcoin.io which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://catcoin.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 onlyMultisig modifier Passed No Issue
7 lockTheSwap modifier Passed No Issue
8 name external Passed No Issue
9 symbol external Passed No Issue
10 decimals external Passed No Issue
11 totalSupply external Passed No Issue
12 balanceOf read Passed No Issue
13 setMultisig external Missing-zero-addres

s-validation
Refer to audit

findings
14 transfer external Passed No Issue
15 allowance read Passed No Issue
16 approve external Passed No Issue
17 transferFrom external Passed No Issue
18 increaseAllowance external Passed No Issue
19 decreaseAllowance external Passed No Issue
20 isExcludedFromReward read Passed No Issue
21 totalFees read Passed No Issue
22 setSwapTreshold write access only Multisig No Issue
22 reflectionFromToken read Passed No Issue
23 tokenFromReflection read Passed No Issue
24 updateWithdrawContract external access only Multisig No Issue
25 updateDevWallet external Passed No Issue
26 addBotToBlacklist external access only Multisig No Issue
27 removeBotFromBlacklist external access only Multisig No Issue
28 excludeFromReward external access only Multisig No Issue
29 includeInReward external access only Multisig No Issue
30 excludeFromFee external access only Multisig No Issue
31 includeInFee external access only Multisig No Issue
32 setFees external access only Multisig No Issue
33 excessFundWithdrawal external Centralize risk Refer to audit

findings
34 setSwapAndLiquifyEnabled external access only Multisig No Issue
35 receive external Passed No Issue
36 _reflectFee write Passed No Issue
37 _getTValues read Passed No Issue
38 _getRValues write Passed No Issue
39 _getRate read Passed No Issue

40 _getCurrentSupply read Passed No Issue
41 _takeLiquidity write Passed No Issue
42 _takeWalletFee write Passed No Issue
43 calculateTaxFee read Passed No Issue
44 calculateLiquidityFee read Passed No Issue
45 calculateMarketingFee read Passed No Issue
46 calculateDevFee read Passed No Issue
47 removeAllFee write Passed No Issue
48 setBuy write Passed No Issue
49 setSell write Passed No Issue
50 isExcludedFromFee read Passed No Issue
51 _approve write Passed No Issue
52 openTrading external Missing-zero-addres

s-validation
Refer to audit

findings
53 _transfer write Passed No Issue
54 swapAndLiquify write Passed No Issue
55 swapTokensForEth write Passed No Issue
56 addLiquidity write Centralize risk, Not

handle properly
return value

Refer to audit
findings

57 _tokenTransfer write Passed No Issue
58 _transferStandard write Passed No Issue
59 _transferToExcluded write Passed No Issue
60 _transferFromExcluded write Passed No Issue
61 _transferBothExcluded write Passed No Issue
62 multiSendTokens write access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Centralize risk:

In this contract multisig can drain all the BNB into withdrawcontract wallet.

In addLiquidity function call uniswapV2Router.addLiquidityETH function with the specific

address "withdrawcontract" that acquire all the LP token that is generated by catcoin BNB

pool. If withdrawcontract account will be EOA that can misbehave with LP token.

Resolution: We suggest centralized privileges or roles in the protocol be improved via a

decentralized mechanism and using the contract itself (address.(this)) to make your LP

token decentralized.

Very Low / Informational / Best practices:
(1) Missing-zero-address-validation:

In setMultisig there is zero address validation.

Addresses should be checked before assignment or external call to make sure they are

not zero addresses.

Resolution: We advise adding a zero-check for the passed-in address value to prevent

unexpected errors and adding a required field and check zero address validation in the

setMultisig function.

(2) Decimal is set to 0:

Decimal value is set to 0, there is no provision to change the decimal value. This will not

have any fractional amount of the tokens. Only whole numbers will be there and no

fractional value.

Resolution: We suggest setting appropriate values to the decimal variable.

(3) Use external function instead of public function:

A public function that is never called by the contract could be declared as external.

external functions are more efficient than public functions.

Resolution: Consider using the external attribute for public functions that are never called

within the contract.

(4) Not handle properly return value:

Return value of addLiquidityETH not handled properly.

Resolution: We suggest using variables to receive the return value of the functions and

handle both success and failure cases.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Catcoin.sol
● setMultisig: Multisig address can be set by the multisig owner.

● setSwapTreshold: Swap Threshold value can be set by the multisig owner.

● updateWithdrawContract: Withdraw contract address can be updated by the

multisig owner.

● updateDevWallet: Developer wallet address can be updated by the owner.

● addBotToBlacklist: Bot addresses can be blacklisted by the multisig owner.

● removeBotFromBlacklist: Bot addresses can be removed from blacklisted by the

multisig owner.

● excludeFromReward: The multisig owner can set excluded account status true.

● includeInReward: The multisig owner can set excluded account status false.

● excludeFromFee: The multisig owner can set excluded account fee status true.

● includeInFee: The multisig owner can set excluded account fee status false.

● setFees:buy taxes, buy marketing taxes, liquidity taxes, dev taxes can be set by the

multisig owner.

● excessFundWithdrawal: Excess fund Withdrawal balance by the multisig owner.

● setSwapAndLiquifyEnabled: Swap and Liquify enabled status by the multisig

owner.

● openTrading: Open Trading address executed by the owner.

● multiSendTokens: Multi send tokens by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of bscscan web link. And we have used all

possible tests based on given objects as files. We had observed 1 low issue and some

informational issues in the smart contracts. But those are not critical ones. So, it’s good to
go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Catcoin Token

Slither Results Log
Slither Log >> Catcoin.sol

Solidity Static Analysis

Catcoin.sol

Solhint Linter

Catcoin.sol

Catcoin.sol:5:1: Error: Compiler version =0.8.10 does not satisfy the
r semver requirement
Catcoin.sol:183:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Catcoin.sol:223:5: Error: Function name must be in mixedCase
Catcoin.sol:250:1: Error: Contract has 25 states declarations but
allowed no more than 15
Catcoin.sol:257:28: Error: Constant name must be in capitalized
SNAKE_CASE
Catcoin.sol:269:30: Error: Constant name must be in capitalized
SNAKE_CASE
Catcoin.sol:303:5: Error: Explicitly mark visibility of
stateCatcoin.sol:315:5: Error: Event name must be in CamelCase
Catcoin.sol:316:5: Error: Event name must be in CamelCase
Catcoin.sol:317:5: Error: Event name must be in
CamelCaseCatcoin.sol:325:9: Error: Variable name must be in mixedCase
Catcoin.sol:326:9: Error: Variable name must be in mixedCase
Catcoin.sol:327:9: Error: Variable name must be in mixedCase
Catcoin.sol:328:9: Error: Variable name must be in mixedCase
Catcoin.sol:347:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity
>=0.7.0)Catcoin.sol:553:9: Error: Variable name must be in mixedCase
Catcoin.sol:554:9: Error: Variable name must be in mixedCase
Catcoin.sol:555:9: Error: Variable name must be in mixedCase
Catcoin.sol:593:32: Error: Code contains empty blocks
Catcoin.sol:749:36: Error: Avoid to use tx.origin
Catcoin.sol:831:13: Error: Avoid to make time-based decisions in your
business logic
Catcoin.sol:843:13: Error: Avoid to make time-based decisions in your
business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

