@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: = Sugar Swap Protocol
Website: Sugar Swap
Platform: zkSync era Network
Language: Solidity

Date: April 26th, 2023

https://sugarswap.exchange/sugar-daddy

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 7
AUAIt SUMMIAIY ot 11
Technical QUICK Stats ..o e 12
Code QUANIRY ... e 13
DOoCUMENTAtION ... 13
USE Of DEPENUENCIES ... e e nenaenes 13
ASIS OVEIVIEW ... 14
Severity DefinitioNS ... 24
AUt FINAINGS oo e 25
@70 o T3 1017 T o 30
(@ 0] 1Y/ =1 1 T To [o] 0T) 31
DISCIAIMEIS ... e 33
Appendix
o Code FIOW Diagram ..o 34
o Shther RESUIS LOGuiiiiii e 48
e Solidity staticanalysis ... 55
® SOININt LiNtEr oo 72

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by SugarSwap to perform the Security audit of the Sugar
Swap Protocol smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 26th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e SugarSwap is a decentralized exchange (DEX) that is specifically designed to cater
to the needs of crypto-native users who want to trade, earn rewards, and participate
in gaming activities.

e As a DEX, SugarSwap operates on the zkSync era network, which offers faster
transaction times and lower fees compared to the Ethereum mainnet.

e SugarSwap Contracts handle multiple contracts, and all contracts have different
functions.

o SyrupBar: SyrupBar used for SUGAR staking.

o MasterChef: MasterChef is the master of Sugar, which will be transferred to a
governance smart contract once distributed.

o SugarStakingToken: SugarStakingToken is the place where sugar's live to
create xXSUGAR. This contract handles swapping to and from xSUGAR,
SugarSwap's staking token.

o Multicall: Aggregate results from multiple read-only function calls.

e Sugar Swap Contracts have functions like add a new pair and LPs, withdraw,

deposit, convert, mint, burn, leave, swap, skim, enter, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Sugar Swap Protocol Smart Contracts

Platform zkSync era Network / Solidity

File 1 Greeter.sol

File 1 MD5 Hash

C60AF4A99CE474FCC4797277C4F95E88

File 2

MasterChef.sol

File 2 MD5 Hash

3181D61377A7B522A69239AB890DBOED

File 3

NFTController.sol

File 3 MD5 Hash

6AAES550160948A4C6E4028309D9CCIODA

File 4

SmartChef.sol

File 4 MD5 Hash

9DC1FE3609527A0398A2FB4563F306EC

File 5

SwapMining.sol

File 5 MD5 Hash

AB50C6C5A21D581F67D19ECC45103176

File 6

SyrupBar.sol

File 6 MD5 Hash

690BF6A147D29EBO300E4CEAE99DEYF3

File 7

SugarswapFactory.sol

File 7 MD5 Hash

1A6FCCO3EBGOE423A55F62A488D88851

File 8

SugarswapPair.sol

File 8 MD5 Hash

0B300D596064EB7DF2886FBA7A058B54

File 9

SugarswapRouter.sol

File 9 MD5 Hash

7685E7074F58D33B6DD8B535361AF48C

File 10

SugarToken.sol

File 10 MD5 Hash

13920529702545E1CABF7BE3021BEC7F

File 11

SugarStakingToken.sol

File 11 MD5 Hash

8ABF25872B916B11159F17A869279B36

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 12

IDO.sol

File 12 MD5 Hash

9300A16BA156F1AC011E0B574C54C58B

File 13

LakeOfSugar.sol

File 13 MD5 Hash

A547B3F3732D52D549FFB51A9494F5C9

File 14

Multicall.sol

File 14 MD5 Hash

B31A5401C236F10109672BC3D903C9DA

File 15

WETH9.sol

File 15 MD5 Hash

93741B992586D0B856AE852DDB678B38

File 16

ERC20.sol

File 16 MD5 Hash

3E9E55F05CF95A414E0CE704EF99EGF1

File 17

Oracle.sol

File 17 MD5 Hash

D7FF8878125A049FBF8B4D86DCS5FOEBS

Audit Date

April 26th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 Greeter.sol

Set a greeting string memory.

YES, This is valid.

File 2 MasterChef.sol

Bonus multiplier: 1
The SUGAR token max total supply 28,382,400.
NFT Boost Rate: 1%

MasterChef is the master of Sugar.

Owner has control over following functions:

her

Set a multiplier number.

Add a new Ip to the pool.

Update the given pool's SUGAR allocation point.
Changes cake token reward per second.

Set a NftBoost rate value.

Update trademining contract address.

ifications:
MasterChef is the master of Sugar, which is
ownable and has tremendous power. It will be
transferred to a governance smart contract once
SUGAR it is sufficiently distributed and the

community can govern itself.

YES, This is valid.

File 3 NFTController.sol

Owner has control over following functions:

Set a Whitelisted address value.
Set a Default Boost rate value.

Set a Boost rate value.

YES, This is valid.

File 4 Oracle.sol

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Cycle: 1800

e Oracle can update token addresses.

File 5 SmartChef.sol YES, This is valid.
Owner has control over following functions:
e :Set a stop reward time.
e \Withdraw DepositFee to buy back and burn.
e \Withdraw emergency reward.
e Rescues random funds stuck.

e Rescues random BNB funds stuck.

File 6 SwapMining.sol YES, This is valid.

Owner has control over following functions:
e Add a Pair address.

e Update a Pair address.

Set the number of sugar produced by each
second.

e Only tokens in the whitelist can be mined MDX.
e Remove whitelisted addresses.

e Set a halving period.

e Set a router address.

e Set an oracle address.

e Add a Blacklist address

e Remove a Blacklist address.

File 7 SyrupBar.sol YES, This is valid.
e Name: SugarSwapBar Token
e Symbol: SYRUP
e SyrupBar used for SUGAR staking.

Owner has control over following functions:
e Creates ' _amount’ token to *_to" by the owner

(MasterChef).

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Burn Token By The Owner.

e Safe cake transfer.

File 8 Factory.sol YES, This is valid.

Owner has control over following functions:
e Set afee address.

e Set a Fee to the setter address.

File 9 Pair.sol YES, This is valid.
e Minimum Liquidity: 1000

Owner has control over following functions:
e Initialize once by the factory at time of deployment

by the owner.

File 10 Router.sol YES, This is valid.

Owner has control over following functions:
e Set a swap mining address.

File 11 ERC20.sol YES, This is valid.
e Decimals: 18

Owner has control over following functions:
e Owner can create "amount’ tokens and assign

them to Owner, increasing the total supply.

File 12 SugarToken.sol YES, This is valid.
e Name: SugarSwap Token
e Symbol: SUGAR
e Decimals: 18
e SugarToken with Governance.
Owner has control over following functions:
e Owner can create "amount’ tokens and assign

them to Owner, increasing the total supply.

File 13 SugarStakingToken.sol YES, This is valid.
e Name: Sugar Staking Token
e Symbol: xXSUGAR

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Decimals: 18

Other Specifications:

e SugarStakingToken is the place where sugar's live
to create xSUGAR.

e This contract handles swapping to and from
xSUGAR, SugarSwap's staking token.

Owner has control over following functions:

e Set a delay to withdraw time.

e Update admin address by the previous admin.

File 14 IDO.sol
Owner has control over following functions:
e Set an offering amount.
e Set a raising amount.
e Set a deposit limit per wallet.
e User addresses included in the whitelist.

e Final amount withdrawal.

YES, This is valid.

File 15 LakeOfSugar.sol
Owner has control over following functions:
e Add an auth address.
e Revoke an auth address.
e Set a Bridge address.
e Set a developer address.

e Set a developer cut amount.

YES, This is valid.

File 16 Multicall.sol
e Multicall - Aggregate results from multiple

read-only function calls.

YES, This is valid.

File 17 WETH9.sol
e Name: Wrapped Ether
e Symbol: WETH

e Decimals: 18

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 17 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Sugar Swap Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Sugar Swap Protocol.

The Sugar Swap team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Sugar Swap Protocol smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website:

https://defillama.com/protocol/sugar-swap which provided rich information about the

project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://defillama.com/protocol/sugar-swap

AS-IS overview

Greeter.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | greet read Passed No Issue
3 | setGreeting write Passed No Issue
MasterChef.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | getBoost read Passed No Issue
7 | getSlots read Passed No Issue
8 | getTokenlds read Passed No Issue
9 | updateMultiplier write access only Owner No Issue
10 | poolLength external Passed No Issue
11 | nonDuplicatedLP modifier Passed No Issue
12 | add write Critical operation Refer Audit
lacks event log Findings
13 | set write Critical operation Refer Audit
lacks event log Findings
14 | depositNFT write Passed No Issue
15 | withdrawNFT write Passed No Issue
16 | getMultiplier read Passed No Issue
17 | pendingCake external Passed No Issue
18 | massUpdatePools write Passed No Issue
19 | updatePool write Critical operation Refer Audit
lacks event log Findings
20 | deposit write Passed No Issue
21 | withdraw write Passed No Issue
22 | emergencyWithdraw write Passed No Issue
23 | safeCakeTransfer internal Passed No Issue
24 | setCakePerSecond external access only Owner No Issue
25 | setNftController write access only Owner No Issue
26 | setNftBoostRate write access only Owner No Issue
27 | setDevaddr write Passed No Issue
28 | setReserveaddr write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

[29 | setMiningaddr external | access only Owner | No Issue

NFTController.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | getBoostRate external Passed No Issue
7 | setWhitelist external access only Owner No Issue
8 | setDefaultBoostRate external access only Owner No Issue
9 [setBoostRate external access only Owner No Issue

Oracle.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | update external Passed No Issue
3 | computeAmountOut write Passed No Issue
4 | consult external Passed No Issue

SmartChef.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | stopReward write access only Owner No Issue
7 | getMultiplier read Passed No Issue
8 | pendingReward external Passed No Issue
9 | updatePool write Passed No Issue
10 | massUpdatePools write Passed No Issue
11 | deposit write Passed No Issue
12 | withdraw write Passed No Issue
13 | emergencyWithdraw write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

14 | emergencyRewardWithdr write access only Owner No Issue
aw
15 | withdrawDepositFee write access only Owner No Issue
16 | inCaseTokensGetStuck external access only Owner No Issue
17 | inCaseBNBGetStuck external access only Owner No Issue
SwapMining.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 | poolLength read Passed No Issue
7 | addPair write Critical operation Refer Audit
lacks event log Findings
8 | setPair write Critical operation Refer Audit
lacks event log Findings
9 | setSugarswapPerSecond write access only Owner No Issue
10 | addWhitelist write access only Owner No Issue
11 | delWhitelist write access only Owner No Issue
12 | getWhitelistLength read Passed No Issue
13 | isWhitelist read Passed No Issue
14 | getWhitelist read Passed No Issue
15 | setHalvingPeriod write access only Owner No Issue
16 | setRouter write access only Owner No Issue
17 | setOracle write access only Owner No Issue
18 | phase read Passed No Issue
19 | phase read Passed No Issue
20 | reward read Passed No Issue
21 [reward read Passed No Issue
22 | getSugarReward read Passed No Issue
23 | massMintPools write Passed No Issue
24 | mint write Critical operation Refer Audit
lacks event log Findings
25 | onlyRouter modifier Passed No Issue
26 | swap write access only Router No Issue
27 | getQuantity read Passed No Issue
28 | takerWithdraw write Critical operation Refer Audit
lacks event log Findings
29 | getUserReward read Passed No Issue
30 | getTotalUserReward read Passed No Issue
31 | getPoollnfo read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

32 | ownerWithdraw write Critical operation Refer Audit
lacks event log Findings
33 [addBlacklist external access only Owner No Issue
34 | removeBlacklist external access only Owner No Issue
35 [safeSugarTransfer internal Passed No Issue
SyrupBar.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getOwner external Passed No Issue
3 | name read Passed No Issue
4 | decimals read Passed No Issue
5 [symbol read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 | allowance read Passed No Issue
10 [approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 | mint write access only Owner No Issue
21 | burn write access only Owner No Issue
22 | safeCakeTransfer write access only Owner No Issue
23 | delegates external Passed No Issue
24 | delegate external Passed No Issue
25 | delegateBySig external Passed No Issue
26 | getCurrentVotes external Passed No Issue
27 | getPriorVotes external Passed No Issue
28 | delegate internal Passed No Issue
29 | moveDelegates internal Passed No Issue
30 [writeCheckpoint internal Passed No Issue
31 [safe32 internal Passed No Issue
32 | getChainld internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SugarswapFactory.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | allPairsLength external Passed No Issue
3 | expectPairFor read Passed No Issue
4 | createPair external Passed No Issue
5 | setFeeTo external Passed No Issue
6 | setFeeToSetter external Passed No Issue

SugarswapPair.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 mint internal Passed No Issue
3 burn internal Passed No Issue
4 approve write Passed No Issue
5 transfer write Passed No Issue
6 | approve external Passed No Issue
7 | transfer external Passed No Issue
8 | transferFrom external Passed No Issue
9 | permit external Passed No Issue
10 | lock modifier Passed No Issue
11 | getReserves read Passed No Issue
12 | safeTransfer write Passed No Issue
13 | initialize external Passed No Issue
14 | update write Passed No Issue
15 | mintFee write Passed No Issue
16 | mint external lock No Issue
17 | burn external lock No Issue
18 | swap external lock No Issue
19 | skim external lock No Issue
20 | sync external lock No Issue

SugarswapRouter.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

5 [transferOwnership write access only Owner No Issue
6 | ensure modifier Passed No Issue
7 | setSwapMining write access only Owner No Issue
8 | receive external Passed No Issue
9 addLiquidity internal Passed No Issue
10 | addLiquidity external Passed No Issue
11 | addLiquidityETH external Passed No Issue
12 | removelLiquidity write Passed No Issue
13 [removeLiquidityETH write Passed No Issue
14 | removeliquidityWithPermit external Passed No Issue
15 | removelLiquidityETHWithPer | external Passed No Issue
mit
16 | removeLiquidityETHSupporti write Passed No Issue
ngFeeOnTransferTokens
17 | removeLiquidityETHWithPer | external Passed No Issue
mitSupportingFeeOnTransfe
rfokens
18 [swap internal Passed No Issue
19 | swapExactTokensForTokens | external Passed No Issue
20 | swapTokensForExactTokens | external Passed No Issue
21 | swapExactETHForTokens external Passed No Issue
22 | swapTokensForExactETH external Passed No Issue
23 | swapExactTokensForETH external Passed No Issue
24 | swapETHForExactTokens external Passed No Issue
25 | _swapSupportingFeeOnTran | internal Passed No Issue
sferTokens
26 | swapExactTokensForTokens | external Passed No Issue
SupportingFeeOnTransferTo
kens
27 | swapExactETHForTokensSu | external Passed No Issue
pportingFeeOnTransferToke
ns
28 | quote write Passed No Issue
29 | getAmountOut write Passed No Issue
30 [getAmountin write Passed No Issue
31 | getAmountsOut read Passed No Issue
32 | getAmountsin read Passed No Issue
ERC20.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | getOwner external Passed No Issue
3 | name read Passed No Issue
4 | decimals read Passed No Issue
5 | symbol read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 [allowance read Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 | owner read Passed No Issue
21 | onlyOwner modifier Passed No Issue
22 | renounceOwnership write access only Owner No Issue
23 | transferOwnership write access only Owner No Issue
SugarToken.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getOwner external Passed No Issue
3 [name read Passed No Issue
4 | decimals read Passed No Issue
5 | symbol read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 [allowance read Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 | mintFor write access only Owner No Issue
21 | mint write access only Owner No Issue
22 | delegates external Passed No Issue
23 | delegate external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

24 | delegateBySig external Passed No Issue
25 | getCurrentVotes external Passed No Issue
26 | getPriorVotes external Passed No Issue
27 | delegate internal Passed No Issue
28 | moveDelegates internal Passed No Issue
29 | writeCheckpoint internal Passed No Issue
30 [safe32 internal Passed No Issue
31 | getChainld internal Passed No Issue
SugarStakingToken.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getOwner external Passed No Issue
3 | name read Passed No Issue
4 | decimals read Passed No Issue
5 | symbol read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 [allowance read Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write access only Owner No Issue
15 | transfer internal Passed No Issue
16 | mint internal Passed No Issue
17 | burn internal Passed No Issue
18 | approve internal Passed No Issue
19 | burnFrom internal Passed No Issue
20 | stakedTime read Passed No Issue
21 | canWithdraw read Passed No Issue
22 | setDelayToWithdraw external Passed No Issue
23 | enter write Critical operation Refer Audit
lacks event log Findings
24 | leave write Critical operation Refer Audit
lacks event log Findings
25 | SUGARBalance external Passed No Issue
26 | xSUGARForSUGAR external Passed No Issue
27 | SUGARForxSUGAR external Passed No Issue
28 [burn write Passed No Issue
29 | mint write Passed No Issue
30 [transferFrom write Passed No Issue
31 [transfer write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

32 | initDelegates internal Passed No Issue
33 [delegates external Passed No Issue
34 | delegate external Passed No Issue
35 | delegateBySig external Passed No Issue
36 | getCurrentVotes external Passed No Issue
37 | getPriorVotes external Passed No Issue
38 | delegate internal Passed No Issue
39 | moveDelegates internal Passed No Issue
40 | writeCheckpoint internal Passed No Issue
41 | safe32 internal Passed No Issue
42 | getChainld internal Passed No Issue
43 | setAdmin write Passed No Issue

IDO.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonReentrant modifier Passed No Issue
3 | onlyAdmin modifier Passed No Issue
4 | setOfferingAmount write access only Admin No Issue
5 | setRaisingAmount write access only Admin No Issue
6 | setDepositLimitPer\Wallet write access only Admin No Issue
7 | deposit write Passed No Issue
8 | harvest write Passed No Issue
9 | hasHarvest external Passed No Issue
10 | getUserAllocation read Passed No Issue
11 | getOfferingAmount read Passed No Issue
12 | getRefundingAmount read Passed No Issue
13 | isWhitelisted read Passed No Issue
14 | getAddressListLength external Passed No Issue
15 | includeToWhiteL.ist write access only Admin No Issue
16 | finalWithdraw write access only Admin No Issue
17 | setLiquiditylsCreated write access only Admin No Issue

LakeOfSugar.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 [onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

6 | onlyAuth external Passed No Issue
7 | revokeAuth external access only Owner No Issue
8 [addAuth external access only Owner No Issue
9 [setAnyAuth external access only Owner No Issue
10 | setBridge external access only Owner No Issue
11 | setDevCut external access only Owner No Issue
12 | setDevAddr external access only Owner No Issue
13 | bridgeFor read Passed No Issue
14 | onlyEOA modifier Passed No Issue
15 | convert write access only Auth No Issue
16 | convertMultiple external access only Auth No Issue
17 | convert internal Passed No Issue
18 | convertStep internal Passed No Issue
19 | swap internal Passed No Issue
20 | toSUGAR internal Passed No Issue
21 | getAmountOut internal Passed No Issue

Multicall.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | aggregate write Passed No Issue
3 | getEthBalance read Passed No Issue
4 | getBlockHash read Passed No Issue
5 | getLastBlockHash read Passed No Issue
6 | getCurrentBlockTimesta read Passed No Issue

mp

7 | getCurrentBlockDifficulty read Passed No Issue
8 [getCurrentBlockGasLimit read Passed No Issue
9 | getCurrentBlockCoinbase read Passed No Issue

WETH9.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | deposit write Passed No Issue
3 | withdraw write Passed No Issue
4 | totalSupply read Passed No Issue
5 | approve write Passed No Issue
6 | transfer write Passed No Issue
7 | transferFrom write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:
Missing event log for:
MasterChef.sol

e add

o set

e updatePool

SugarStakingToken.sol
e enter.

e |eave

SwapMining.sol
e addPair
e setPair
e mint
e ownerWithdraw
o takerWithdraw

Resolution: Write an event log for listed events.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Use the latest solidity version: - NFTController.sol, SwapMining.sol, xSUGAR.sol,
WETH9.sol, LakeOfSugar.sol, IDO.sol, Ownable.sol, EnumerableSet.sol, Context.sol,
IERC721.sol

Using the latest solidity will prevent any compiler-level bugs.

Resolution: We suggest using the latest solidity version.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

MasterChef.sol

e updateMultiplier: Multiplier number can be updated by the owner.

e add: Add a new Ip to the pool by the owner.

e set: Update the given pool's SUGAR allocation point by the owner.

e setCakePerSecond: Changes cake token reward per second by the owner.
e setNftController: NftController address can be set by the owner.

e setNftBoostRate: NftBoost rate can be set by the owner.

e setDevaddr: Update dev address by the previous dev address.

e setReserveaddr: Update reserve address by the previous reserve address.

e setMiningaddr: Update trademining contract address can be set by the owner.

NFTController.sol

o setWhitelist: Whitelisted address values can be set by the owner.
e setDefaultBoostRate: Default Boost rate value can be set by the owner.

e setBoostRate: Boost rate value can be set by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SmartChef.sol

e stopReward: Stop reward time can be set by the owner.

e emergencyRewardWithdraw: Withdraw emergency reward by the owner.

e withdrawDepositFee: Withdraw DepositFee to buy back and burn by the owner.
e inCaseTokensGetStuck: Rescues random funds stuck by the owner.

e inCaseBNBGetStuck: Rescues random BNB funds stuck by the owner.

SwapMining.sol

e addPair: Add a Pair address by the owner.

e setPair: Update a Pair address by the owner.

e setSugarswapPerSecond: Set the number of sugar produced by each second by
the owner.

e addWhitelist: Only tokens in the whitelist can be mined MDX by the owner.

e delWhitelist: Remove whitelisted addresses by the owner.

e setHalvingPeriod: Halving Period can be set by the owner.

e setRouter: Router address can be set by the owner.

e setOracle: Oracle address can be set by the owner.

e swap: Swap mining by the router owner.

e ownerWithdraw: Withdraw tokens by the owner.

e addBlacklist: Add a Blacklist address by the owner.

e removeBlacklist: Remove a Blacklist address by the owner.

SyrupBar.sol

e mint: Creates ~_amount’ token to *_to’ by the owner (MasterChef).
e burn: burn token by the owner.

e safeCakeTransfer: Safe cake transfer by the owner.

Factory.sol

e setFeeTo: Fees to address can be set by the owner.

o setFeeToSetter: Fee to setter address can be set by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pair.sol

e initialize: Initialize once by the factory at time of deployment by the owner.

Router.sol

e setSwapMining: Swap mining address can be set by the owner.

ERC20.sol

e mint: Owner can create "amount’ tokens and assign them to Owner, increasing the

total supply.

SugarToken.sol

e mintFor: Owner can create "amount’ tokens and assign them to Owner, increasing
the total supply.
e mint: Owner can create "amount’ tokens and assign them to Owner, increasing the

total supply.

xSUGAR:.sol

e setDelayToWithdraw: Delay to withdraw time can be set by the owner.

e setAdmin: Update admin address by the previous admin.

IDO.sol

e setOfferingAmount: Offering amount can be set by the admin.

e setRaisingAmount: Raising amount can be set by the admin.

e setDepositLimitPerWallet: Deposit limit per wallet can be set by the admin.
e includeToWhiteList: User addresses included in whitelist by the admin.

e finalWithdraw: Final withdrawal by the admin.

LakeOfSugar.sol

e addAuth: Add an auth address by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

revokeAuth: Revoke an auth address by the owner.

setAnyAuth: Setting anyAuth to true allows anyone to call functions protected by
only Auth.

setBridge: Bridge address can be set by the owner.

setDevCut: Developer cut amount can be set by the owner.

setDevAddr: Developer address can be set by the owner.

convert: The onlyEOA modifier prevents this being done with a flash loan.
convertMultiple: The onlyEOA modifier prevents this being done with a flash loan

multiple.

Ownable.sol

renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We have not observed any major issues in the smart

contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Sugar Swap Protocol

Greeter Diagram

@ Greeter

O string greeting

@ _ _constructor__()
© Cgreet()
@ setGreeting()

Multicall Diagram

@ Multicall

@ aggregate()

@ O getBthBalance()

@ O getBlockHash()

@ O, getlastBlockHashi)

@ QgetCurrentBlack Timestamp()
@ QgetCurrentBlackDifficutty()
o O getCurrentBlockGasLimit()
@ QgetCurrentBlackCoinbase()

WETH9 Diagram

(©) weTHg
© string name

2 string symibal

O uintd decimals

2 address==uint halanceQf

2 address==mapping address==uint allowance

@ Goepost()

@ withdraw()

@ GtotalSupply()
@ approve()

@ trangfer()

@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ rercrzr

© QbalanceOf()
© QownerOf()

© @safeTransferFrom()

© @transferFrom()

© dapprove()

© setApprovalForAll()

o QgetApproved()

@ QisApprovedForAll()

@ QokenURI)

@ AtotalSupply()

@ QokenByindex()

@ QokenOfOwnerByindex()
® burn()

MasterChef Diagram

@ MasterChef

Ownable

WSafeMath for wint256
WSafeERC20 for JERC20

O SugarToken cake

O SyrupBar syrup

© address devaddr

© address reserveaddr

© address miningaddr

© uint256 cakePerSecond

© uint256 maxCakePerSecond
© uint256 BONUS_MULTIPLIER
© Poolinfo poolinfo

© uint 256 total AllocPoirt
O uint256 startTime
O uint256 sugarMaxSupply

© uint256=>mapping address==Userinfo userinfo

@ SugarToken

@ SyrupBar

FTSlat i T

ERC20
@nSafeMath for uint?56

< address=>address _delegates
© address=>maj

O address=>mapping uint258==N|
O INFTCortraller cortroller

@ rereres

O wint nftBoostRate

© bytes32 DOMAIN_TYPEHASH

© bytes32 DELEGATION_TYPEHASH

© address=>uint nonces

ing uint32=>Checkpoint checkpoints
© gddress=>uint32 numCheckpoints

ERCZ20

© SugarToken cake

< address=>address _dslegates

© address=>mapping uint32=>Checkpoint checkpoirts
© gddress=>uint32 numCheckpoints

O bytes32 DOMAIN_TYPEHASH
O bytes32 DELEGATION_TYPEHASH

O address=>uint256 nonces

(@) merconoter

© QgetBoostRate()
© QisvihitslistedNFT()

© |[ERC20=>hool poolExistence
@ Qsupportsinterface() g E:;gz:’:t’gmfo : z:x;ﬂm
o QgetSlots() @ Qelegates()
© delegate()

@ QgetTokenlds()
@ updateMultiplier()

@ Qpoolength()

@ add()

© set()

© deposithNFT()

@ withdrawNFT()

o Qgethiutiplier()

© QpencingCake()

© massUpdatePools()
@ updatePool()

@ depositf)

© withdraw()

® emergencyWithdraw()
 safeCakeTransfer()
© setCakePerSecond()
® sethftContraller()

© sethftBoostRate()
@ setDevaddr()

@ setReserveaddr()

© sethMiningaddr()
T

© delegateBySig()
® QgetCurrertVotes()
® QgetPriorVotes()
< _delegate()

< _moveDelegates()
< _wrteCheckpoint()
< Qsafe32()

< QgetChainid()

(®) sareerczo

mSafeMath for wint?56
mnAddress for address

1 for wint256

< safeTransfer()

< safeTransferFrom()

< safeApprove()

< safelncreaseAllowance()
< safeDecreaseAllowance()
B _callOptionalReturn()

i for wint256

T T
1 \

-7 -
.
. fo

- ~

P
’

v

@ Address

© QsContract()

© sendValue()

© functionCal()

© functionCallWithValue()
B _functionCallith\/alue()

© mint()

@ burn()

@ __constructor__()
© safeCakeTransfer()
© Qeelegates()

@ delegats()

@ delegatsBySig()

© QgetCurrent'/otes{)
® QgetPrior'otes()
< _delegate()

< _moveDelegates()
< _writeCheckpoirt()
< Qsafe3z()

< QgetChainid()

Context
IERC20
Ownable

\ mSafeMath for uint256

nAddress

| O addres:

\ Lint256 _balances

| O addres: mapping address=>uint256 _allowances
| O uint256 _totalSupply

| O string _name

O string _symbol

O uint8 _decimals

for address

@ Qname()

@ transfer()

@ approve()

@ mint()

< mint()
< Toum()

@ __constructor__()
@ Qgetowner()

@ Qdecimals()
@ Qsymbol{)

o QotalSupply()
@ QpalanceOf()

@ Qalowance()

@ transferFrom()

@ increaseAllowance()
@ decreaseAlowance()
& _transfer()

& _approve()
< _burnFrom()

ruint256 ° for addrass , for address

© Ownable

(@ rercz2o \

Context

O gddress _owner

@ QotalSupply()
© Qecimals()

@ Qsymbolf) |
® Qname() f
© QgetOwner() |

© _constructor__()
@ Qowner()

@ renounceOwnership()

© transferOwnership()

@ QbalanceOf() {
® transfer()
@ Qallowance()
@ approve()
@ transferFrom()

@ Context

< Q_msgSender()
< Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

NFTController Diagram

@ NFTController

INFTControlfer
Ownable

2 address==bool isWhitelistedMFT

2 address==uint256 defauttBoostRate

o address==mapping uint256=>uint256 boostRate
@ _ constructor__ ()

@ QgetBoostRate()

@ setWhitelist()

@ setDefaultBoostRate()

D zetBoostRate()

© Ownahle J

@ INETControlier

O address _owner
—— @ O,getBoostRatel)

< __constructor_{) @ QisWhitelistedMFT()
@ Qowner()

@ renounceOwnershipl)
@ transferCwnership()

!

@ l:;unteﬂ

o O,_msgSender()
<8, msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

|' for uint256

i

Y

@ SafeMath

< Qadd()
< Qsubl)
< gmully
< Gdivi)

< Gmod()
< gming)
< Qsgrt()

&

SmartChef Diagram

© SmartChef

Ownable

inSafelath for wint236
Safe BERP2D for IBERP2D

< |BEPZ0 rewardToken

O uint256 rewardPerSecond
O Poolinfo poolinfo

O address=>Userinfo userinfo
O uint256 totalAllocPoint

O uint256 startTime

O Uint256 bonusEndTime

O Uint256 depositFeePercent
O uint256 accDepositFes

@ _ _constructor__{)

@ stopReward()

@ Qgethiuttiplier()

G pendingReward()
updatePool()
masslpdatePools)
depositi)

withelraw()
emergencyWWithdraw()
emergencyRewardWithdraw)
withdrawDepositFees()
inCaseTokensGetStuck()
inCaseBMBGetStuck()

[N N N N N NN N N

-

/ ffor uint 256

|
|
for IBEP20
7
y
(B) sarecr20

nSafeMath for wint256
mAddress for address

< safeTransfer()
< safeTransferFrom()
< safelpprovel)
< safelncreasefllowance()
< safeDecreaseflowance()
B _callOptionalReturn)
7 T
4 I
! |
Ifor address
I

|
LW

\/
@ Address

o QisContract()

< sendvaluel)

< functionCall(y

< functionCallWith'/alue()
B _functionCall\ith aluel)

@) 18eP20

@ StotalSupply()
@ G decimals()
@ Qeymbol()

@ Q.name()

@ QgetOwner()
@ G balancedf()
@ transfer()

@ Qallowance()
2 approvel)

@ transferFrom()

@ Cwnahle

Context

O address _owner

< __constructor__()
@ Qowner()

@ renouncelwnership()
2 transferOwnership()
< _transferOwnership()

@ (;nntext

< constructor__[)
< 0,_msgSender()

< Q,_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ console

< address CONSOLE_ADDRESS

B Q_sendLogPayload()
< Qlog()

© Qlogint()

< QlogUint()

© QogString()

< QlogBoal()

< QlogAddress()
© QlogBytes()

< QogBytes1()
© QogBytes2()
“ QlogBytes3()
< QlogBytes4()
< QogBytess()
© QogBytest()
© QogBytes7()
< QlogBytesa()
© QlogBytesa()
< QlogBytes100)
< QlogBytes11()
© QlogBytes1 2()
< QlogBytes13()
© QlogBytes14()
© QogBytes15()
< QlogBytes16()
© QlogBytes1 7()
< QlogBytes18()
© QlogBytes19()
< QogBytes20()
@ QlogBytes21()
< QlogBytes22()
< QlogBytes23()
© QlogBytes24()
@ QlogBytes25()
© QogBytes26()
< QogBytes27()
 QlogBytes26()
@ QlogBytes29()
@ QlogBytes30()
© QogBytes31()
< QogBytes32()

SwapMining Diagram

@ ISugarswapFaclory

o QfeeTo()
® QfeeToSetter()
@ QgetPair()

© QexpectPairFor()

® QlPairs()

@ QallPairsLength()

@ createPair()
© setFeeTol)

© setfeeToSetter()

@ ISugarswapPair

@ Qname()

@ Qsymbol()

@ Qelecimals()

@ QtotalSupply()

® QbalanceOf()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

© QDOMAIN_SEPARATOR()
@ QPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

& QMIMIMUM_LIGUIDITY()
® Qfactory()

@ QtokenO()

@ Qiokent()

@ QgetReserves()

@ Qprice0Cumulativel ast()
® Qprice1CumulativeL ast()
@ QkLast))

© mint(}

@ burn()

@ swap()

@ skim()

@ sync()

® initiglize()

@ [Oracle

@ update()
@ Qconsult()

@ SwapMining

Ownable

inSafeMath for uint256

" for,

O EnumerableSet AddressSet _whitelist
© uint256 sugarPerSecond

O uint256 startTime

© uint258 halvingPeriod

© uint258 totalAllocPoirnt

© |Oracle oracle

© address router

© BugarswapFactory factory
© SugarToken sugarToken

© address targetToken

© address=>uirt256 pairOfPid
© address=>bool isBlacklist
© Poolinfo poolinfo

O uint258=>mapping address==Userinfo userinfo

© _ construetor_ ()

@ QpoolLength()

@ addPair()

® setPair()

© setSugarswapPerSecond()

o addWhitelist()

@ defAhitelist()

@ QgetWhitelistLength()

© QisWhitelist(y

© QgetWhitelist()

® setHalvingPeriod()

o setRouter()

© setOracle()

© Qphase()

© Qreward()

@ QgetSugarReward()

© massMintPools()

@ mint()

© swap()

© QgetQuartity()

@ takerWithdraw()

© QgetUserReward()

@ QgetTotallserReward()

@ QgetPoolinfa()

@ ownerWithdraw()

© addBlackiist()

@ removeBlacklist()

© safeSugarTransfer()
T

:!or EnumerableSet AddressSet
\vi

@ Enumerableset|

B _add()

B _remove()
Q_contains()

B Q_length()

B Q_at()

< addf)

< remave()

< Qeontains()

© Qength()

© Q)

@ SugarToken

© addres:

ERC20
nSafeMath for wint256

< address==address _delegates
>mapping Lint32=>Checkpoint checkpoints

© address=>uint32 numCheckpoints

© bytes32 DOMAIN_TYPEHASH
© bytes32 DELEGATION_TYPEHASH

© address=>uint nonces

@ mintFor()

@ mint()

® Quelegates()

@ delegate()

@ delegateBySig()

& QgetCurrent\otes()
@ QgetPriorvotes()
< _delegate()

© _moveDelegates()
< _writeCheckpoint()
@ Qsafeaz()

< QugetChainid{)

@ SugarswapLibrary]
W SafelMath for uint

© QsortTokens()

< QpairFor()

< QgetReserves()

< Qguote()

© QgetAmountOut()

< QgetAmourtingy

@ QgetAmountsOut()

© QgetAmountsing)
T

© Ownable

Context

O address _owner

< __constructor_()
@ Qowner()

@ renounceCwnership()
@ transferOwnership()

Tl _for uint256 \.fo! wint .

for wint256

(@© erex

Context
IERC20
Ownable

i SafeMath for uint256
nAddress for address

O address=>uint256 _balances

O address=>mapping address=>uint256 _allowances
O uint256 _totalSupply

O string _name

O string _symbol

O uinis _decimals

@ __constructor__()
©® QgetOwner()

® Qname()

@ Quecimals()

@ Qsymbol()

@ QotalSupply()

© QbalanceOf()

© transfer()

® Qallowance()

® approve()

@ transferFrom()

® increaseAllowance()
® decreaseAllowance()
© mint()

< _transfer()

< _mirt()

“ _burn()

< _approve()

< _hurnFrom()

1
1
|
| S) |
|) | \
: +for uint256 !for address |
| s . Ayl
iy a4 !
Y | V4 @ IERC20
@ @ Address ® QtotalSupply()
© Qelecimals()
© Qadd()
© Qsubf) < QsContract() 2 &:::2?)'"
< amui() < sendValue() © Qgetowner()
© Qeliv() © functionCall) o Qg e
< Qmod() & functionCallVith alus() o manes 0
< amin) B _functionCallithValus() o c’f;:’;’gmeo
< Qsgri() © approve()
@ transferFrom()

© Caontext

& & _msgSender()
@ @_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SyrupBar Diagram

@ SyrupBar

© SugarToken
ERC20
ERC20
v SafeMath for wint258 < SugarToken cake
< address=>address _delegates
“* address==address _delegates < address=;=mapping wint32=+Checkpoint checkpoints
2 address=>mapping uirnt32=>Checkpoint checkpoints O address=>uinMt32 numCheckpoints
< address==uint32 numChechkpoints @ bytes32 DOMAIMN_TYPEHASH
< bytes32 DOMAIN_TYPEHASH @ bytes32 DELEGATION_TYPEHASH
O bytes32 DELEGATION_TYPEHASH 2 address==uirnt256 nonces
© address=>uint nonces ® mint()
@ mintFor() @ burn)
@ mint() @ _ constructor_ ()
o Qdelegates() @ safeCakeTransfer()
@ delegate() © Qudelegates()
@ delegateBySigl) @ delegate)
@ QgetCurrent’/otes() @ delegateBySigl)
@ QgetPriorvotes() @ QgetCurrent'votes()
< _delegate() @ G getPriorotes()
<+ _moveDelegates() < _delegate()
< _writeCheckpoint() < _moveDelegates()
o Qeafed() < _writeCheckpoint()
< QgetChainlad() < Queafe3z2)

for uint256

s
s

e

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Lwri

N
(@) satematn

< Qadd()
< Qusub()
< Qumul(y
< Queliv()
& Oumocl()
< auming)
< Qusgrt)

, For uint256

03 @ QgetChainld()

© I;RCEU

Contesxt
IERC20
Ownable

mSafeMath for wint256
mAddress for address

address=>uint256 _balances

address=>mapping address=>uiM256 _allowances

uint256 _totalSupply

string _name
string _symbol
uints _decimals

__constructor__{)
QgetOwner()
A name()
Qdecimals()
Qzymbol()
AtotalSupply ()
A balanceOf()
transfer()
Qallowance()
approvel)
transferFrom()
increaselllowance()
decreasefllowance()
rririt{y
A < _transfer()
S _mintl)
7 < _burni)

s < _approve()

s “ _burnFrom(})

godooooooee@eee | 00O0D0DOO

L
."I
,for address

i
r

I

v @ réRC?G

@ Address

@ QtotalSupply()
@ Qelecimals()

@ Qsymbol()

@ Qname()

@ QgetOwner()
@ Qbalancef()
@ transfer()

© Quallowance()

< QsContract()

< sendvalus()

< functionCall{)

< functionCallvithalue()
B _functionCallithalue()

@ approve)
@ transferFrom)

© Ownable

Context

O address _owner

< _ constructor__()
@ Qowwner()

@ renouncelwnershipd)
@ transferOwnership()

@ Context

< Q,_megSender()
< a,_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

®Mam

© Qming)
© Qsqrt()

SugarswapFactory Diagram

@) 1susarswanFactory @) ierezo
© QfesTo() © Qnamef)

© QfesToSetter() © Qsymbolf)

© Qetpair() © Qaecimals()
© QexpectPairFor() © QotalSupply()
© QallPairs() © Qpalancef()
© QalPairsLength() © Qalowance()
© createPair() @ approve()

© setFeeTa() © transfer()

@ seiFeeToSetter() © transferfrom()

@ 1SugarswapCallee

© sugarswapCall)

@ 1SugarswapPair

© Qname()

© Qsymbol()

@ Qaecimals()
© QotalSupply()
© Qalancefi)
@ Qallowance()
@ approve()

© transfer()

© transferFrom()

© QUPERMT_TYPEHASH()
© Qonces()

© permit()

© QUUMINIMUM_LIGUIDITY()
® Qfactory()

© Qokend()

© Qgokent()

® QgelReserves()

@ Qprice0Cumulativelast()
© Qprice’ CumulativeLast()
© Qklast()

@ mintt)

@ burn()

© swap()

@ skim()

@ sync()

 initialize()

© QDOMAIN_SEPARATOR()

© SugarswapPair

® QgetReserves()

SugarswapERC20

nSafeMath for wint
WUQ2x112 for uint224

© wint MINIMUM_LIQUIDITY
O bytesd SELECTOR

© address factory

© address tokend

© address tokent

O wint112 reserved

O wint112 reservet

O wint32 blockTimestampLast
© uint price0CumuiativeL ast
© uint pricet CumuiativeLast
© it kLast

O it uniocked

m _safeTransfer()
© __constructor_() .

® initialize() N

B _update()
B mintFee()
© mint()

© burnf)

© swap()

© skin()

® sync()

(©) sugarswapErc20

ISugarswapERC20

@ SugarswapFactory

© bytes32 INIT_CODE_PAR_HASH
© address feeTo

G address feeToSetter

o i oetPair
© address alParrs

© _constructor_()
© QualPairsLength()
© QexpectPairFor()
© createPair()

© setfesTo()

© sefFesToSetter()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

for uint

© string name
© string symbol

© it decimals

© uit totalSupply

© address=>uint balancef

© address=>mapping address=>uirt allowance
© bytes32 DOMAIN_SEPARATOR

© bytes32 PERMT_TYPEHASH

© address=>uint nonces
© _constructor_()
© Tmint()

© Thun()

= approve()
B _transfer()

© approve()

© transfer()

© transferFrom()
@ permiti)

@ SugarswapLibrary|

N

© Ownable

Context

0 address _owner

© __econstruetor_()

® Qowner()
© renounceOwnership()
© transferOwnership()

for wint

for uint

© QsortTokens()
< QpairFor()

< QgetReserves()
© Qquote()

< QgetAmourtOut()
©

(®)varizarz

< uint224 Q112

© Qencode()
© Quaedivg)

)
< QgetAmourtsOL()
& QgetAmourtsin()

'

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! /
! ‘for uint
| /

|

|

|

N for uint
| |
\
@ iSugarswapERC20 noo
|

® Qname()
© Qsymbol() ®Sa’wam
© Qdecimals() —
@ QotalSupply() Qadd()
@ QbalanceOf() © Qsub()
@ Qallowance() @ Qmulf)
© approve() & Qiv)
@ transfer() < Qumod()
@ transferFrom() @ Qmin()
© QDOMAIN_SEPARATOR() < Qsart()

© QPERMIT_TYPEHASH()
© Qnonces()
© permi()

'
i

Email: audit@EtherAuthority.io

© Context

© Q_msgSender()
< @_msgData()

@ Math

< amin()
© Qsart()

@ 1SugarswapFactory|

o QfeeTol)

@ QfeeToSetter()
@ QgetPair()

@ QexpectPairFor()
@ QuallPairs()

@ QallPairsLength()
@ createPair()

@ setFeeTol)

@ setFeeToSetter()

@ rerco

@ Qname()

@ Qsymbol()

@ Qdecimals()
o QtotalSupply()
@ QbalanceOf()
@ Qallowance()
@ approve()

@ transfer()

@ transferFrom()

@ 1SugarswapCallee

@ sugarswapCall()

SugarswapPair Diagram

© SugarswapPair

SugarswapERC20

nSafeMath for uint
WUQT1 2112 for wint224

< wirt MINIMUIN_LIGUIDITY
O bytes4 SELECTOR

< address factory

© address tokend

© address tokent

O wint112 reservel

O uint112 reservel

O uint32 blockTimestamplLast
@ uint price0CumulativeLast
© uint pricel CumulativeLast
© uint kLast

O wint unlocked

@ QgetReserves()
m _safeTransfer()
@ __constructor__{)
< | @ inttialize()
/ B _update()
4 B _mintFee()
@ mint()
@ burn(}
@ swapl()
@ skim()
@ sync() \

© SugarswapERC20

for uint

ISugarswapERC20

inSafeMath for wint

© Ownable

Context

O address _owner

< __constructor__()
@ Qowner()

@ renouncedwnership()
@ transferCwnership()

© string name !
© string symbol Qj A

© uintd decimals

© vint totalSupply @ =

O address==uint balanceOf VBRI © Context
© address==mapping address==uint allowance & uint224 Q112

O bytes32 DOMAIN_SEPARATOR =2 e
© hytes32 PERMIT_TYPEHASH < Qencode() & C_ gDat

< address==uint nonces < Qugdiv() _msaData()

@ __constructor__{)

< _mint()

< _burn()

B _approve()

B _transfer()

@ approve()

@ transfer()

@ transferFrom()
@ permit()

!
/
v P
@ Safelath

< Qadd()
< Qsub()
< aumulf)

© Qdiv()

< Qumocl()
< amin()
@ Qsgrt()

I

!
Jfor uint
!
!

@ 1SugarswapERC20

@ Qname()

@ Qeymbol()

@ Qcecimalz()

@ QiotalSupply()

@ QbalanceOf()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

© QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SugarswapRouter Diagram

@ SugarswapRouter

ISugarswapRouter02
Ownable
@ ISugarswapPair
nSafeMath for uint
g &:azz(u)l() © address factory
. n.dy h © address WETH
° Qt;:gj:ﬁm © address swaphining
® Qbalanceof() @ setSwaphining()
@ Qallowance() @ @__constructor__()
@ approve() @ < _addLiquidity()
@fsugarswep.f»‘actoy ® transferf) SugarswapLibrary| e
@ transferFrom() @ @addLiquidityETH()
® QfesTo() © QDOMAIN_SEPARATORY) @ TransferHelper o Safe Ml logwal © removeLiquidity()
@ QfeeToSetter() © QPERMIT_TYPEHASH() © QsortTekens() @ removeLiguidityETH()
@ QgetPair() @ Qnonces() O LT © QpairFor() @ removeLiguidityWithPermit()
® QexpectPairFor() ® permit() ps safeTrpapnsferg < QgetReserves() @ removeLiguidityETHWIthPermit()
@ QallPairs() @ QMINIMUM_LIQUIDITY () & safelranslert © Qguote() @ removeLiquidityETHSupportingFeeOnTransfer Tokens()
® QallPairsLength() ® Qfactory() SarelEms erame < QgetAmountOut() @ removeLiquidityETHWIthPermitSupportingF eeOnTransfer Tokens()
@ createPair() ® Qtoken0() < safeTransferETH() < QgetAmourting) & _swap()
@ setFeeTo() ® Qokent() © QgetAmountsOLR() @ swapExactTokensForTokens()
@ setFeeToSetter() © QgetReserves() < GgetAmountsin() @ swapTokensForExactTokens()
® QpricedCumulativel ast() T @ @swapExactETHForTokens()
@ Qpricel CumulativeLast() I @ swapTokensForExactETH()
® QkLast() @ swapExactTokensForETH()
@ mirt() | @ @swapETHForExactTokens()
® burn() | _swapSupportingFeeCnTransferTokens()
® swap() | @ swapExactTokensFor TokensSupportingFeeOnTransfer Tokens()
® skim() | ® @swapExactETHF or TokensSupportingFeeOnTransferTokens()
@ synci) | @ swapExactTokensForETHSupportingFeeOnTransferTokens()
@ inftialize() | @ Qouote()

| @ QgetAmountOut()
I @ Q.getAmountin)

© QgetAmountsOut()
| @ QgetAmountsing)

’
¢

‘fﬂ(wint sfor wint |
’

/
@ zre @ sarevat (©) ownabis
@ ssugarswaprouteroz
@ Qname() @ Context
@ Qsymbol() @ I - (Lot g Qadd() [SugarswapRouterd1
2 &ﬁ;::gﬁ;}%n ® Bdepost) PS &;ti()} ® removeLiquidityETHSupportingFeeCnTransfer Tokens() O address _owner
® Qpalancedf() @ swap() @ transfer() Qiv(y @ removeLiguidityETHWithPermitSupportingFeeOnTransferTokens() —_—
O P DUy & amod() @ swapExactTokensForTokensSupportingFeeOnTransfer Tokens() © __constructor__()
© approve) & Qmin) @ dswapExactETHForTokensSupportingFeeCnTransferTokens() @ Qowner())
@ transfer() © Qsqrt) @ swapExactTokensForETHSupportingFeeOnTransferTokens() ® renounceOwnership()
@ transferOwnership()
@ transferFrom()

@ 1SugarswapRouter01

@ Qfactory()
QWETH()
addLiguidity()
SaddLigquidityETH() .
removeLiguicity() \ /
remavel iquidityETH() -
removeLiguicity\WithPermit() @ Context
removeLiguidity ETHWithPermit()
swapExactTokensFor Tokens()

swapTokensForExactTokens() g &’zzggztnaﬁm
dswapExactETHForTokens() t
swapTokensForExactETH()
swapExactTokensForETH()
&swapETHForExact Tokens()
Qquote()

@ QgetAmountOut()

@ QgetAmounting)

@ QgetAmountsOut()

@ QgetAmountsin)

o000 O0QRQ0QQ®QOQ

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SugarToken Diagram

@ SugarToken

ERC20
nSafeMath for wint256

< address==address _cdelegates

address==mapping uint 32==Checkpoint checkpoints

address=>uint32 numCheckpaoints
bytes32 DOMAIN_TYPEHASH
bytes32 DELEGATION _TYPEHASH
address==uint nonces

mirtFaor)

mirt ()
Qolelegates()

@ delegate()

@ delegateBySigl)

@ QgetCurrertotes()
@ QgetPrior/otes()
< _delegate()

< _moveDelegates()
< _writeCheckpoirt()
< Qusafe32()

& QgetChainld()

@e@|(00OCOO0Q

: for wint256

I
VAR,
(®) safenatn

< Qadd()
< Queub()
O gumul()
O Queiv()
< Qumod()
O auming)
< Qusgrt()

o

@ ERC20

Context
IERCZ20
Ownabile

SafeMath for wint256
mAddress for address

address==uint256 _balances

uint256 _totalSupply
string _name

string _symbol

uint® _decimals

address=>mapping address=>uiM256 _allowances

__constructor_ ()
QgetOwner()
S name()
S decimals()
Qsymbol()
AtotalSupply()
S halanceOf()
transfer()
Qallowance()
approve()
transferFrom()
increaseAllowance()
decreasebllowance()
mint()
< _transfer()
2 _mirt()
< _hurni)

s | & _approvel)
I “* _burnFram()

eodcoooooooeooee|0DOOODO

/
4]

i

for address \
/! 7
!

s
. “for uint256

rl/j,’» @ .JERC;_’G

(@) Adgaress ® QyotalSupply()
@ Cucecimals()
< QuisContract() 2 &:;22?]:()
@ sendvalue() @ QgetOwner()
< functionCall() @ QbalanceOf()

< functionCalvithalue()

B _functionCallWith'/alue() @ transfer()

@ Qallowance()
D approve()
@ transferFrom()

@ Cwnable

Context

O address _owner

< _ constructor__()

\ @ Quowner()

@ renounceCwnershipl)
\ @ transferOwnershipl)

\ I

W

(©) context

< &, _msgSender()
& Q_mesgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SugarStakingToken Diagram

@ SugarStakingToken

ERC20
nSafeMath for nint256

o [ERCZ20 sugar
< address admin

O wint256 delay ToWithdraw

O address=>uiM256 _stakedTime

“ address=>address _delegates
O address==mapping Wit 32==Checkpoint checkpoints

2 address==Uirt32 numCheckpoirts
2 bytes32 DOMAIN_TYPEHASH

< bytes32 DELEGATION_TYPEHASH

2 address=>uint nonces

@ _ econstructor__ ()
@ QstakedTime()

@ Qeanithdraw ()

D setDelay ToWWithdraw ()
@ enter()

D leave()

@ QSUGARBalance()

@ AuSUSARForSUGAR)
@ QSUGARForxSUGAR)
B burnd)

B omirt)

@ transferFrom)

@ transfter()

< _initDelegates()

@ Qudelegates()

D delegate()

@ delegateBySigl)

@ QugetCurrent otes()
@ QgetPriorotes()

< _delegate()

< _moweDelegates()

2 _writeCheckpoint()

O A safeld2()

o CgetChainld()

@ gsetidming)

@ ERC20

Context
IERC20Q

mnSafeMath for wint256
mAddress for address

address==uiMt255 _balances

address=>mapping address=>uiM255 _allowances
uint256 _totalSupply

string _name

string _symbol

uints _cdecimals

_ _constructor__ ()
Aname)

D symbol()
oecimals()
CtotalSupply()
QbalanceOf()
transfer()
Qallowance()
approve()
transferFromil
increaseAllowance()
decreasebllowance()
_transfer()

00000000 0@0O|000O0O

< :appro\.re()
< _setupDecimals()

< _heforeTokenTransfer()

v for wint256

T T -

¥ i L9

] hY
, for address ~ for
i ™
' ,

[' kY]

) Conte.)'tt

-,

wint256 |
1

=7
Y

k'
<y @ Safeldath

O _msgSender()
< O,_msgDatal)

< QisContract()

< sendvaluel)

< functionCall()

< functionCallithvalus()
B _functionCallAith alue()

@ QtotalSupply()
@ QbalanceOf()
@ transfer()
@ Qallovwance()
D approve)
@ transferFromi)

< Qadd()
O Qsub)
O aumul)
O Rdivi)
< Cumod()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

| for wint256

(®) satenath

L

< Qadd()
< Qusubi)
< Cmul)

< Oudiv)

O Qumod()
< guming)
< Qusgri()

/

IDO Diagram

@ Do

ReentrancyGuard

nSafelMath for wint256
inSafeBEP2O for IBEP2Q

address adminAddress
IBEP20 IpToken

IBEF20 offeringToken
Uint256 startTime

uint256 total&mount
address=>Userinfo userinfo
address addressList

hool liquiditylsCreated
Uint256 depositLimitPerallet
address==hool _whiteList
kool isFCFS

kool isPrivateSale

@ IBEFZ20

_constructor__ ()
setOffering Amount()
setRaisingAmount()
setDepositLimitPeryWallet()
@ deposit])

@ harvest()

@ QhasHarvest()

@ O getUserAllocation)

@ QgetOfferingAmourt()

@ QgetRefundingAmount()
@ QigWwhitelisted()

@ QugetAddressListLength()
@ includeToWhiteList()

@ finalithdraw)

@ getliguiditylsCreated()

0@ @®|CO00C0CO0OOQ0Q0OQO0000O0

o QtotalSupply()
@ Qdecimals()
@ Qsymbol()

@ S namel)

@ QgetOwner()
@ Qbalancedf()
@ transfer()

@ Qallowance()
@ approvel)

@ transferFrom()

for IBEP20
')

\/
@ SafeBEFZ0

mSafeMath for wint2 56
ndddress for address

“ safeTransfer()

“ safeTransferFrom()

< safelpprovel)

< safelncreaseflowance)
<+ safeDecreaselllowance()

B _callOptionalReturni)

. for wint256

- |
-

|
&
:for address

|
W)
\/
@ Address

< QisContract()

& gendvalue()

& functionCall))

& functionCallWithalue))
B _functionCallwith'aluel)

< |
|

@ ReentrancyGuard

O wint256 _MOT_ENTERED
O uint256 _EMTERED
O uint256 _status

< __constructor__()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IERC20

@ GtotalSupply()
@ QbalanceOf()
@ transfer()
© Qallowance()
@ approve()
@ transferFrom()

LakeOfSugar Diagram

@ LakeOfSugar

Cwnable

inSafeMath for wint256
nSafeERC20 for [ERC20

O |Uniswap' 2Factory factory

@ IUniswapV2ERC20

@ Gname()

@ Qsymbol()

@ Qdecimals()

@ QtotalSupplyi)

@ Qhalancef()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

@ QDOMAIN_SEPARATOR()
@ QPERMIT_TYPEHASH()
@ Qnonces()

@ IUniswapV 2Pair

@ Qname()

@ Qsymbol()

@ Qeecimals()

@ QtotalSupply()

@ QbalanceOf()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

@ QDOMAIN_SEPARATOR()
©® QPERMIT_TYPEHASH)
@ Qnonces()

@ permit()

© GMINIMUN_LIQUIDITY ()
@ C factory()

@ Qioken0()

@ Qtokenl()

© QgetReserves()

@ QpricedCumulativel ast()
@ Qprice1 CumulativeLast()
© QkLast()

@ mint()

@ hurni)

@ swap()

@ skim()

@ sync()

@ initialize()

O address xsugar

O address sugar

O address weth

O uint devCut

O address devAdedr

O address==bool isfAuth

O address authorized

O hool anyAuth

< address=raddress _bridges

@ _ _constructor__()
@ addAuth()

@ revokeduth()

@ setAnyAuth()

@ setBridge()

@ setDeviCut])

© permt() ® setDevAddr()
© QhridgeFor()
@ convert()
@ convertMuttiple()
< _convert()
© _convertStep()
© _swap()
< _oSUGARD)
< QgetAmourtOut()
, T
! |
I-ffor IERC20 |
J' |
; |
| [
| |
1 |
1 |
|
v |
|
@IUm’swapV?Facforf ® SafeERC20 |
inSafeMath for wint256 |
@ QfeeTol) v ey
© QfesToSetter)) inAddress for address |
® QgetPair() < safeTransfer() ' for uint256
@ QallPairs() < safeTransferFrom() !
@ QalPairsLength() < safelpprove() !
@ createPair() © safelncreaseAllowance() !
@ setFeeTol) < safeDecreaseAlowance() |
D setFeeToSetter() B _callOptionalReturn() |
! \ |
i] I
f \ l
I | !
; . |
| |
i [
[|
| I
I I
1 A |
for address * for uint256 I'
|
V eV
(B) Address (B) satemsatn
o QisCortract() © Qade)
< sendValue() © Qsub()
< functionCall() < Qmul()
© functionCallitht alue() < Qv
B _functionCallvith'alue() & Qumod()

O address _owner

< __constructor__()
@ Qowner()

@ renouncewnership()
@ transferOwnership()

© C;onteﬁ

<+ 0,_msgSender()
© Q_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ERC20 Diagram

Context

(© Erca

IERCZ0
Ownable

iSafeMath for wint256
nAddress for address

O address==uint256 _balances

O uirnt256 _totalSupply
O string _name
O string _symbaol

O uints _decimals

O address==mapping address=>uint226 _allowances

@ _ constructor__()

@ QgetOwner()
@ G namel)

]
]
@

QL decimals()
Qsymbol()
QtatalSupply()

@ O halanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()
@ increaseAllowance()
@ decreasedllowance()

® mint()
, < _transfer()

VO _mintg)

< _hurn()
< _approvel)
s

. ‘for uint256

!

< _hurnFrom()
s

!
; for address
s

!
£

) ! 'lllr
P

(®) safensath

< Qadd()
< Qsub)
< gmull)
< Qiv()
< Qmod()
< Gminf)
< Qg

(T I;RCEG

@ Address

@ QtotalSupply()

< QisContract()

< sendValue()
 functionCall)
 functionCallith aluel)
B _functionCallvith'aluel)

@ Qdecimals()
@ Seymbal()
@ O name()

@ QgetOwner()
@ Qbhalancedf()

@ transfer()
@ Qallowance()
@ approvel)
@ transferFromi)

O address _owner

“ __constructor__()
@ Qowner()

@ renounceOwnershipl)
@ transferOwnership)

\ |
© Context

< O,_msgSender()

< 0,_msgDatal)

This is a private and confidential document. No part of this document should

be disclosed to third party without prior written permission of EtherAuthority
Email: audit@EtherAuthority.io

Slither Results Log

Sllther log >> Greeter. soI

Detector-Documentation#incorrect-versions-of-solidity

Parameter Greeter.setGreeting(i seting (Greeter.sol#15) is not in mixedCase
Reference: http i 0. / N ki/Detector-Documentation#conformance-to-solidity-naming-conventions

MasterChef.updateMultiplier{uint256) rChef.sol#1816-1018) should emit an event for:
BO Lc MULTIPLIER = rthlrll \LLF| (f
uint256,IERC20 {Masterch
A cPoint.
fasterChef.set(uint ,uint2 1) {(MasterChef. 3
- totalAllocPoi q A . (c cPoint). 8 C) (MasterChef.sol#1859-1061)
MasterChef.setCakePerSecond(uint256) (MasterChef.sol#1248-125¢ :
- cakePers ake \Icst-\cl 3
Refere : https:/, .com/cry ! er/wiki/De t»-t r-o umentation#missing-events-arithmetic

garToken,SyrupBar ,address,address,address,uint256,uint256)._devadd g erChef.sol#979)

Chef - Sug a 255, s ess,uint256,uint256)._rese r {MasterChef.sol#9

zero-check
MasterChef.c gils (Sug cen,Syr , 8 255, 255, 8 o s ,uint256,uint256)._miningaddr (Masterchef.sol#9

gaddr (Masterchef.s
fasterChef.setDeva (= r {MasterChef.sol#1
(Masterchef.sol#12
MasterChef.setRe) - IVast-|d

MasterChef
Reference: https://gi b feryti ; ither, ¢i/Detector-Documentation#missing-zero-address-validation

MasterChef.updatePool{uint256) (MasterChef.sol#1156-1182) has external calls inside a loop: LlpSupply = pool.lpToken.balanceof|
add »SSItlls- (MasterChef.sol#1161)
‘ast»\cl Ltiplier(uint256,uint256) (MasterChef.sol#1114-1124) has external calls inside a loop: cake.totalSupply
(MasterChef.sol#1119)
atePool{uint {MasterChef.sol#1156-1182) has external calls inside a loop:
(Masterchef.sol)
i (MasterChef.sol#1156-1182) has external calls inside a loop: cake.mintFor(reser

(MasterChef.sol#1156-1182) has external calls inside a loop: c ce.mintFor{miningad
) has external calls inside a loop: cake.mintFor{address{syrup)
alls-inside-a-loop
(Masterchef.sol#1025-1828) c e a boolean constant:

nj pli Duplicat LPToken) {MasterChef.sol#162
/Detector-Documentati ean-equality

Redundant »/rrcss'“r_“tlls I3astergk‘f s0 1*104““_irCcrtext (MasterChef.sol#188-197)

MasterChef.cake (MasterChef.sol#
MasterChe Stc|t ime (MasterChef. SF“LI" be irrLtable
f.syrup IVast»|CF‘ . 0. d be immutable
ake Ilcst-lcl 8 immutable
https://¢ ol ithe ki/Detector \ c declared- immutable

11 r.sol#10-
ytic/ sllt

e.constructor). fact (Oracle.sols) ck ero-check on
/Detector-Documentation#missing-zero-address-validation
y.currentCumulativePrices{address) (Oracle.sol#396-414) uses timestamp for comparisons
comparisons:
.k'iresterchst ! ckTimestamp (Oracle.sol#485))
ess) (Oracle.sol#438-451) uses timestamp for comparisons

'ItireElapsec >= CYCLE,MDEXOracle: PERIOD_NOT_ELAPSED) (Oracle.sol#446)
rytic/slith iki/Detector-Documentation#block-timestamp

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

tation#
found

martChef.sol

int |

r 11 D) m

contracts with 84 detectors), 57 result(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

) uses timestamp compar 1sons

) uses timestamp for comparisons
.1 lastRewardTime (SwapMining.sol#3175

[SwapMining.sol#3196-3233) uses timestamp for comparisons
p for comparisons

) uses timestamp for comparisons
Not find this pool) {SwapMining.sol#3282)

) uses timestamp for comparisons

) uses timestamp for comparisens

sapMining: L-:t fir-: this pool) (SwapMining.sol#3319)
#block-timestamp

inContext (SwapMining.s 438)
ki/Detector-Documentat dundant-statements

d-immutable

SugarToken 2 2 2532) (SyrupBar.sol#856-897) 25 timestamp ompar isons

l|31-3-:|‘..‘t1|”-35‘t&|”|3 = expi 2 Sig: signature expired) (SyrupBar.sol#895)

,uint256,uint256,uints, = ,byte (SyrupBar.sol#1119-1158) es timestamp for comparisons
Sig: signature expired) (SyrupBar.sol#1156)
#block-timestamp

-g) uses assembly
MLINE ASM]
SyrupBar.getChain (SyrupBar.s) uses assembly
- INLINE
iki/Detector-Documentation#assembly-usa

etector-Documentation#incorrect-versions-of-solidity

""L,|"E~c| sol#

ddress,uint256) Z yrupBar.sol#783) is not in mixedCase
1s not in mixedCase

r“t in mixedCase
is not in mixedCase
is not in mi

is r“t in r’l/-‘-:Ccs»
42) is not in mi Case
ase

ki/De t—- tor- B“'Lr’—‘r‘teti-:l'.#-:-:rf-:|'re|'-::—t-:—s-:l1'.-:it*,-'—rer’ir-;—-:-:r',':'

rrupBar . sol#)" inContext (SyrupBar.)
rytic/slither/wiki/Detector-Documenta t1-.r;re-:u'-:art—stat-:r’erts

immutable
Jwiki/Detector-Documentation#state-variables-that-could-be-declared- immutable

Sugarswa
- to
SugarswapPair. initial

SugarswapF

Sugarswa

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

) uses timestamp for

wapERC20
€ '3F|3EI"LS'2I'S

Reference:
Sugarswap

Sugarswa

is too similar to Sugar

EL-:&|_'S\-.-&|:P&1'.|‘.sx-.-a|:lﬁL1'.rt25E_.LirtESE. 2 ytes)
o SugarswapPair.pricelCumulativelast (S

/slither/wiki/Detector-Documentation#variable-names-too-similar
uses llt»l ls with too many digits:

uses lite cls \'tI
ir).creationCo

declared-immutable

- t.l<
SugarswapPair.initializ

SELECT I-R
cumentatio

Function ISugars
.DOMAIN_SEPARATOR IICL,
.1in 1t1=114- 2

viki/Detector-Documentation#variable-names-too-similar
) should be immutable

immutat

or-Documentation#state-variables-that-could

i cte
84 detectors) 33 result(s) found

lared- immutable

.50l#593) lacks a zer

"L.‘t»l' Y 1 504)

SugarswapRouter.
(SugarswapRo uter.s

SugarswapRouter.c (ol#597) lacks =
; . 5 (Router.sol#597) lacks

SugarswapRouter.

: document should
on of EtherAuthority.

is a private and confidential document. No part of th

losed to third party without prior written pern
Email: audit@EtherAuthority.io

Pair .PERMIT_TYPEHASH(

Pair.MINIMUM_ LII'LII:I

Router®l1.WETH{) (c =
Router.setSwapMini (Sug \ ter.sol#592) is not in mixedCase
uter .WETH i i i

ithub.com formance-to-solidity-naming

rswapRouter. iquidity(= e55,uint256,uint256,uint256,uint256) . amountADes ired (SugarswapRouter.so 1#61
similar to IS i { ress,uint256,uint256,uint256,uint25 dress,uint256) .amountBD
c ed (Sugarsw

outergl. a-::Ll- L,'L- i ddress, 255 ,ulnt256, s s 256,address,ui

, amountADesired (Sugarsw

|S\c|.R' uter._addLiguidity(256) .amountBDes 1
SugarswapRouter.

jar arswapRouter.sol#62
s‘Lr’ller 0 SugarswapRouter

ress,uin t_EC_U.l t_EC_Lu t256,uint256) .er:Ll'tElZ-|:tirel (SugarswapR

tt| s://github. rytic/slither/wiki/Detector-Documentation#variable-names-too-similar

) uses timestamp for comparison

signature expired) (SugarToken.sol#
ck -timestamp

aersions-of-solidity
z ess,uint2 56
(success) =C clL,»' MO .)
2l T = B alue(1 ing) (S rToken.sol#304-3
(success, =)
-calls
Parameter

S 1s not in mixedCase
Parameter S 2)

is not in mixedCase
r-Documentation#conformance-to-solidity-naming-conve

Redundant expressi
Refe : http

art:statererts
SugarToken.sol ana

Refere
SugarStak ingToken.setAdmin|
cumentation#missing-z ess-validation
in sugarStakingToken.enter{uint2s6) (SugarStakingToken.sol#73
calls:
t| an s‘r»r-r-‘rl rs-..s»‘r-“»‘r_. »ssl this) _amount) IjEL-,&\’Etekir-;_-:k»:r.5-31#749}
StakingT
yulnerabilities-2

{SugarstakingToken. p for comparisons

gToken.sol#915-947) uses timestamp

k.timestamp == expi AR: :dele i signature expired) (SugarStakingToken.sol#945)
/slither/wiki/Dete cume i -timestamp

#state-variables-that-could-be-declared- immutable
55 result({s] found

1d emit an event for:

ID0.setRaisingAm (uint25 (ld emit an event for:
- raisingh _ (

: http i crytic/slithe «i/Detector-Documentation#missing-events-arithmetic

nstruc t.lIIBEP:C_IBEPEE-_.LU"(EEE_.LlrtESE_.LlrtESE_.LlrtEEE_.LlrtESE_a-:-:r»‘ss bool,bo _adminAddress (IDO.sol#65

on
ress (ID0.sol#665)
https i com/ f /slither/wiki/Detector-Documentation#missing-zero-address-validation

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentr 5) (IDO.sol#690-70
al 3
“k.|.saTe ransferFrom{address(msg.sender), ress{this),_amount) (IDO.so
variables \Iltt n after the
ressList.p
z amount) (IDO
ytic/sLlither, ¢i/Detector-Documentation#reentrancy 'Ll\»lc|111t1»5—;

in 0.deposit(uint256) (ID0.sol#690
External calls:
pTok feTransferFrom{address(msg.sender),address{this),_amount) (IDO.sol#695
fter the call(s):
_amount) (IDO.s L
ytic/slith ci/Detector-Documentation#reentrancy-vulnerabilities-3

) uses timestamp for comparisons

COMparisons

k.timestamp < startTime,no) (IDD.sol#6
8) uses timestamp for comparisons

ock.timestamp = startTime && block.timestamp < endTime,not ido time) (IDO.sol#691)
) uses timestamp for comparisons

'II:".S 1#711)
ck-timestamp

) -urpc|-s toab N C
teSale == fa 15_ .sender),not whitelisted) {IDO.
1

an-equal ity

) should be immutable

e immutable

hould be immutable

be immutable

should be immutable
startTime (:] 1

Reference: https github.co i ithe iki/Detector-Documentation#state-variables-that-could-be-declared- immutable
ID0. sol analyzed (6 contracts with 84 detectors), 46 result(s) found

_xsugar (Lake0OfSugar.sol#6
- = i -
Lake0fSugar.constru ,add 255,)._sugar (LakeOfSugar.sol#6
-5
Lake0fSugar.constru

Reference: https

nction nisw 20.DOMAIN SEPARATOR{) (LakeOfSugar.sol#545) is not in
Function niswa ERC20.PERMIT_TYPEHASH() (Lake0fs .sol#546) 1is |-t in
Function 1Sk Pair.DOMAIN_SEPARATOR() (f
Function 15w Pair.PERMIT_TYPEHASH() (Lake0fs c B is r“t in
Function s\ Polr.lILIILV LIILIEI i) Z) is not in
Parameter Lak ar. n{ a 255) ._auth c ? is not in
Parameter Lak Sugar.r A (a | N (La 5 : :) is not in
Parameter Lak gar.se ' (uint256)._ (Lake0f . 3) is not 1in
Parameter Lake0 .5€ (: ce0fs .50 1#7 is not 1in
c|1c|1- La k HTC f)i o

ate(Multicall.ca 11[] (Multicall.sol#13-21) has external calls inside a 1 : (success,ret) = calls[1].ta
1lpata) (Mult
Reference: https ithub.com/cry

.t“r Documentation#incor

1 call in Multi . (M icall.call[]) (Multicall.sol#13-21):
- (success,ret) i].target.call{calls[1i].callbata) (Multica

e ferytic vik i/Detector-Documentationd
Multica 3 result({s] found

Referenc

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> WETH9.sol

ntrancy in WETI th int

ume

found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Greeter.sol

Gas & Economy

(Gas costs:

Gas requirement of function Greeter.setGreeting is infinite: If the gas requirement

of a function is higher than the block gas limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 15:4:

MasterChef.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

MasterChef.depositNFT (address,uint256,uint256,uint256): Could potentially lead
to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

Pos: 203:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
MasterChef.depositNFT (address,uint256,uint256,uint256): Could potentially lead

to re-entrancy vulnerability. Note: Modifiers are currently not considered by this

static analysis.
more

Pos: 203:4:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function MasterChef.massUpdatePools is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops In your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 290:4:

ERC
ERC20:

ERC20 contract's "decimals” function should have "uint8" as return type
more
Pos: 14:4:

W ERECIE

Constant/View/Pure functions:

MasterChef.getBoost(address,uint256) : Is constant but potentially should not be.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 128:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 204:8:

NFTController.sol
Miscellaneous

Similar variable names:

NFTController.getBoostRate(address,uint256) : Variables have very similar
names "token" and "tokenld". Note: Maodifiers are currently not considered by this
static analysis.

Pos: 17:30:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Oracle.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

more
Pos: 148:27:

Gas & Economy

Gas costs:

Gas requirement of function Oracle.update is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops In your functions or actions that modify large areas of storage (this includes
clearing or copying arrays In storage)

Pos: 117:4:

Miscellaneous

Similar variable names:

Oracle.update(address,address) : Variables have very similar names
"price0Cumulative” and "pricelCumulative”.
Pos: 126:9:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" If x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 79:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SmartChef.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address._functionCallWithValue(address,bytes,uint256,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

Pos: 423:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a

certain degree, to change the outcome of a transaction in the mined block.

more

Pos: 777:30:

Gas & Economy

Gas costs:

Gas requirement of function SmartChef.massUpdatePools is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 781:4:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

SmartChef.emergencyRewardWithdraw(uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 845:4:

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 878:8:

SwapMining.sol

Block timestamp:

Use of "block.timestamp™: "block timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 310:38:

Gas & Economy

(Gas costs:

Gas requirement of function SwapMining.massMintPools is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 207:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SwapMining.getTotalUserReward is infinite: If the
gas requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas

of storage (this includes clearing or copying arrays in storage)
Pos: 337:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 140:8:

SyrupBar.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

SyrupBar.safeCake Iransfer(address,uint256): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 30:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 149:16:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SyrupBar.getPriorVotes is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays In storage)

Pos: 148:4:

Miscellaneous

Similar variable names:

SyrupBar.getCurrentVotes(address) : Variables have very similar names
"checkpoints" and "nCheckpoints”. Note: Modifiers are currently not considered
by this static analysis.

Pos: 161:12:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 141:8:

Factory.sol

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 223:39:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(Gas costs:

Gas requirement of function SugarswapFactory.expectPairFor is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 27:4:

Miscellaneous

Similar variable names:

SugarswapFactory.createPair(address,address) : Variables have very similar
names "token0" and "tokenA". Note: Modifiers are currently not considered by
this static analysis.

Pos: 33:9:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 117:8:

Pair.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SugarswapPair._mintFee(uint112,uint112): Could potentially lead to re-entrancy

vulnerability. Note: Modifiers are currently not considered by this static analysis.

more
Pos: 237:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Block timestamp:

Use of "block.timestamp": "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 223:39:

Gas & Economy

Gas costs:

Gas requirement of function SugarswapPair.mint is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please
avold loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 258:4:

Miscellaneous

Similar variable names:

SugarswapPair._update(uint2b6,uint256,uint112,uint112) : Variables have very
similar names "reservel” and "_reserve(Q". Note: Modifiers are currently not
considered by this static analysis.

Pos: 233:28:

Router.sol

Block timestamp:

Use of "block.timestamp”; "block.timestamp"” can be influenced by miners to
a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more
Pos: 203:28:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SugarswapRouter.swapExactTokensForTokens
Is infinite: If the gas requirement of a function is higher than the block gas
limit, it cannot be executed. Please avoid loops in your functions or actions

that modify large areas of storage (this includes clearing or copying arrays
In storage)

Pos: 415:4:

Miscellaneous

Similar variable names:

SugarswapRouter._addLiguidity(address,address,uint256,uint256,uint256,uint25¢
: Variables have very similar names "reserveA" and "reserveB". Note:

Modifiers are currently not considered by this static analysis.
Pos: 233:24:

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 203:8:

SugarToken.sol

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to
a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 123:16:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SugarToken.getPriorVotes is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 148:4:

Miscellaneous

Constant/View/Pure functions:

SugarToken.getChainld() : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 243:4:

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 272:8:

SugarStakingToken.sol

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to
a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: /51:34:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function SugarStakingToken.getPriorVotes is infinite: If
the gas requirement of a function is higher than the block gas limit, it
cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 970:4:

Miscellaneous

Similar variable names:

SugarStaking Token.delegateBySig(address,uint256,uint256,uint8,bytes32,bytes3
: Variables have very similar names "_delegates" and "delegatee”.
Pos: 946:36:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 729:8:

IDO.sol

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to
a certain degree. That means that a miner can "choose” the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: /05:18:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function IDO.includeToWhiteList is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 764:2:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number
of iterations in a loop can grow beyond the block gas Limit which can cause
the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it
successful.

more

Pos: 765:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: /72:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

LakeOfSugar.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
LakeOfSugar._convert{address,address): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 756:4:

Gas & Economy

Gas costs:

Gas requirement of function LakeOfSugar.convertMultiple is infinite; If the
gas requirement of a function is higher than the block gas Limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 743:4:

Miscellaneous

Similar variable names:

LakeOfSugar.(address,address,address,address) : Variables have very
similar names "xsugar” and "sugar”. Note: Modifiers are currently not
considered by this static analysis.

Pos: 668:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 369:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Multicall.sol

Block hash:

Use of "blockhash": "blockhash(uint blockNumber)" is used to access the
last 256 block hashes. A miner computes the block hash by "summing up"
the information in the current block mined. By "summing up” the
information cleverly, a miner can try to influence the outcome of a
transaction in the current block. This is especially easy if there are only a
small number of equally likely outcomes.

Pos: 30:20:

Gas & Economy

Gas costs:

Gas requirement of function Multicall.aggregate is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 13:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number
of iterations in a loop can grow beyond the block gas limit which can cause
the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it
successful.

mare

Pos: 16:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 18:12:

WETH9.sol

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to
unexpected behavior if return value is not handled properly. Please use
Direct Calls via specifying the called contract's interface.

Pos: 42:27:

Gas & Economy

Gas costs:

Gas requirement of function WETH9.withdraw is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 38:4:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more

Pos: 68:12:

ERC20.sol

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to
unexpected behavior If return value is not handled properly. Please use
Direct Calls via specifying the called contract's interface.

more

Pos: 143:50:

Gas & Economy

Gas costs:

Gas requirement of function ERC20.transferOwnership is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 63:4:

Miscellaneous

Similar variable names:

ERC20.(string,string) : Vanables have very similar names "_name" and

"name_". Note: Modifiers are currently not considered by this static analysis.
Pos: b8:16:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Greeter.sol

Greeter.sol:2:1: Error: Compiler version >0.6.6 does not satisfy the

r semver eqbur@menf

MasterChef.sol

MasterChef.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requlrem@nr

MasterChef.so0l:12:8: Error: Use double quotes for string literals
MasterChef.sol:75: : : Constant name must be in capitalized
SNAKE CASE

MasterChef.sol:78: 8 : Variable name must be in mixedCase
MasterChef.sol: : : r : Constant name must be in capitalized
SNAKE CASE: COT: make time-based decisions in your
business logic

MasterChef.sol: 5: : Error: Avoid to make time-based

your business '

MasterChef. : 3 :65: Error: id to make time-based decisions in
your bus1n@ '

MasterChef. ol 31: Error: Avoid to make time-based decisions in
your business 13q16

NFTController.sol

NFTController.sol:3:1: Error: Compiler version 0.6.
satisfy the r semver requirement
NFTController.sol:13:26: Error: Code contains empty blocks

Oracle.sol

O

:3:1: Error: Compiller version >=0.6.6 does not satisfy the
equirement

:12:5: Error: Contract name must be in CamelCase

:18:5: Error: Contract name must be in CamelCase

:36: : Error: Use double quotes for string literals
:71:23: Avoid to make time-based decisions in your
ogic

.s01:125:39: r: Use double quotes for string literals
Avoid to make time-based decisions in your

o

n 0
O

o

1
r
1
1
1
1
1

0)
1)

0

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

business logic
Oracle.so0l:148:28: Error: Avoid to make time-based decisions in your
business logic

SmartChef.sol

SmartChef.sol:1:1: Error: Compiler version >=0.6.0 does not satisfy
the r semver requirement

SmartChef.so0l:146:26: Error: Use double quotes for string literals
SmartChef.so0l:192:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement

SmartChef.s0l:292:1: Error: Compiler version 70.6.2 does not satisfy
the r semver requirement

SmartChef.s0l:419:49: Error: Use double quotes for string literals
SmartChef.s0l:429:37: Error: Use double quotes for string literals
SmartChef.so0l:454:1: Error: Compiler version 70.6.0 does not satisfy
the r semver requirement

SmartChef.so0l:545:53: Error: Use double quotes for string literals
SmartChef.so0l:552:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement

SmartChef.so0l:567:28: Error: Code contains empty blocks
SmartChef.so0l:581:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement

SmartChef.so0l:621:41: Error: Use double gquotes for string literals
SmartChef.s0l:649:41: Error: Use double quotes for string literals
SmartChef.so0l:657:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement

SmartChef.sol:774:65: Error: Avoid to make time-based decisions in
your business logic

SmartChef.so0l:777:31: Error: Avoid to make time-based decisions in
your business logic

SmartChef.s0l:846:65: Error: Use double quotes for string literals
SmartChef.s0l:852:36: Error: Use double quotes for string literals
SmartChef.so0l:877:28: Error: Avoid using low level calls.

SwapMining.sol

SwapMining.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement

SwapMining.so0l:12:8: Error: Use double quotes for string literals
SwapMining.s0l:97:34: Error: Avoid to make time-based decisions in
your business logic

SwapMining.so0l:227:31: Error: Avoid to make time-based decisions in
your business logic

SwapMining.sol:272:31: Error: Avoid to make time-based decisions in
your business logic

SwapMining.so0l:310:39: Error: Avoid to make time-based decisions in
your business logic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SyrupBar.sol

SyrupBar.sol:3:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement

SyrupBar.so0l:149:17: Error: Avoid to make time-based decisions in
your business logic

SyrupBar.so0l:291:9: Error: Avoild using inline assembly. It is
acceptable only in rare cases

Factory.sol

Factory.sol:3:1: Error: Compiler version >=0.5.16 does not satisfy
the r semver requirement

Factory.sol:34:39: Error: Use double quotes for string literals
Factory.sol:35:56: Error: Use double quotes for string literals
Factory.sol:38:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

Factory.sol:49:44: Error: Use double quotes for string literals
Factory.sol:54:44: Error: Use double quotes for string literals

Pair.sol

Pair.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the r
semver requirement
Pair.sol:37:36: Error: Constant name must be in capitalized
SNAKE CASE
Pair.sol:42:29: Error: Variable name must be in mixedCase
.s01:52:9: Error: Avoid using inline assembly. It is acceptable
in rare cases
.501:59:33: Error: Use double quotes for string literals
.501:108:29: Error: Avoid to make time-based decisions in your
logic
:317:49: Error: Use double quotes for string literals
:326:49: Error: Use double quotes for string literals
:330:104: Error: Use double quotes for string literals

Router.sol

Router.sol:3:1: Error: Compiler version >=0.6.6 does not satisfy the
r semver requirement

Router.sol:5:8: Error: Use double quotes for string literals
Router.s0l1:199:39: Error: Variable name must be in mixedCase
Router.so0l:203:29: Error: Avoid to make time-based decisions in your
business logic

Router.so0l:203:46: Error: Use double quotes for string literals
Router.so0l:211:35: Error: Variable name must be in mixedCase
Router.so0l:500:34: Error: Use double quotes for string literals

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

double quotes string literals
double quotes string literals
double quotes string literals
double quotes string literals
double quotes string literals
double quotes string literals

SugarToken.sol

SugarToken.sol:3:1: Error: Compiler version >0.6.6 does not satisfy
the r semver requirement

SugarToken.so0l:8:30: Error: Use double quotes for string literals
SugarToken.so0l:8:49: Error: Use double quotes for string literals
SugarToken.so0l:123:17: Error: Avoid to make time-based decisions 1in
your business logic

SugarToken.so0l:245:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

XSUGER.sol

.s0l:3:1: Error: Compiler version 0.6.12 does not satisfy the r
requirement
.501:536:94: Error: Code contains empty blocks
.s01:722:57: Error: Avoid to make time-based decisions
business logic
XSUGAR.s0l:751:35: Error: Avoid to make time-based decisions
business logic
xSUGAR.s0l1:783:5: Error: Function name must be in mixedCase
xSUGAR.s01:796:5: Error: Function name must be in mixedCase
XSUGAR.s01:945:17: Error: Avoid to make time-based decisions
business logic
xSUGAR.s01:1067:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

IDO.sol

IDO.sol:3:1: Error: Compiler version 0.6.12 does not satisfy
semver requirement

IDO.s0l:686:43: Error: Use double quotes for string literals
IDO.s0l:691:14: Error: Avoid to make time-based decisions in
business logic

IDO.s0l:691:45: Error: Avoid to make time-based decisions in
business logic

IDO.s0l:701:70: Error: Use double quotes for string literals
IDO.s0l:705:19: Error: Avoid to make time-based decisions in
business logic

IDO.sol:711:14: Error: Avoid to make time-based decisions in
business logic

IDO.s0l:771:60: Error: Use double quotes for string literals

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Error: Use double gquotes for string literals

LakeOfSugar.sol

LakeOfSugar.sol:4:1: Error: Compiler version
the r semver requirement

LakeOfSugar.sol:585:5: Error: Function name
LakeOfSugar.sol:726:3

LakeOfSugar.sol:917:5

does not satisfy

LakeOfSugar.sol:568:5: Error: Function name must be in mixedCase
must be in mixedCase
1l: Error: Avoid to use tx.origin
LakeOfSugar.so0l:916:31: Error: Use double quotes for string literals
50: Error: Use double quotes for string literals

Multicall.sol

the r semver requirement
Multicall.sol:17:48: Error:
Multicall.sol:33:21: Error:
your business logic

Multicall.sol:: : Error: Compiler version >=0.5.0 does not satisfy

in

WETH?9.sol

r semver requirement

WETHS.sol:16:1: Error: Compiler version =0.6.12 does not satisfy the

WETHO.so0l:42:28: Error: Avoid using low level calls.

ERC20.sol

ERC20.s0l:3:1: Error:
semver requirement
C20.501:297:38: Error: Use double quotes

ERC20.s501:298:40: Error: Use double quotes
FERC20.s01:315:60: Error: Use double quotes

does not satisfy the r

string literals
string literals
string literals

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

