
Project: ThorSwap Token
Website: https://thorswap.co
Platform: CORE Chain Network
Language: Solidity
Date: April 14th, 2023

https://thorswap.co

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 10

Audit Findings …………………………………………………………………………………… 11

Conclusion ………………………………………………………………………………………. 14

Our Methodology ………………………………………………………………………………... 15

Disclaimers ………………………………………………………………………………………. 17

Appendix

● Code Flow Diagram ……………………………………………………………………... 18

● Slither Results Log ………………………………………………………………………. 19

● Solidity static analysis ….……………………………………………………………….. 20

● Solhint Linter …………………………………………………………………….……….. 22

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the ThorSwap Token team to perform the Security audit
of the ThorSwap Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 14th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● ThorSwap Token is a bep20 token.

● ThorSwap is a unique platform that combines exciting features of NFT trades, earn,

gaming and launchpad built on CoreDao.

Audit scope

Name Code Review and Security Analysis Report for
ThorSwap Token Smart Contract

Platform CORE Chain Network / Solidity

File ThorSwapToken.sol

File MD5 Hash FA11DC1CB80A17DA6981BDD46CD7BA56

Online code link 0x06F0A74EBC394328A08aBE3ef0D57008A7c2e38b

Audit Date April 14th, 2023

https://scan.coredao.org/address/0x06F0A74EBC394328A08aBE3ef0D57008A7c2e38b#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: ThorSwap

● Symbol: THOR

● Decimals: 18

● Maximum Supply: 100 Million

YES, This is valid.

Owner Specifications:
● Current owner can transfer ownership of the contract to

a new account.

● Deleting ownership will leave the contract without an

owner, removing any owner-only functionality.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the ThorSwap Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the ThorSwap Token.

The ThorSwap Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a ThorSwap Token smart contract code in the form of a scan.coredao.org

web link The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website: https://thorswap.co which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://thorswap.co/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Multiple SPDX license

identifier used
Refer to audit

findings
7 _msgSender internal Passed No Issue
8 _msgData internal Multiple SPDX license

identifier used
Refer to audit

findings
9 getOwner external Passed No Issue
10 decimals external Passed No Issue
11 symbol external Passed No Issue
12 name external Passed No Issue
13 totalSupply external Passed No Issue
14 balanceOf external Passed No Issue
15 transfer external Passed No Issue
16 allowance external Passed No Issue
17 approve external Passed No Issue
18 transferFrom external Passed No Issue
19 increaseAllowance write Passed No Issue
20 decreaseAllowance write Passed No Issue
21 burn write Passed No Issue
22 burnFrom write Passed No Issue
23 _transfer internal Passed No Issue
24 _burn internal Passed No Issue
25 _approve internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Please use the latest compiler version when deploying contract:

This is not a severe issue, but we suggest using the latest compiler version at the time of

contract deployment, which is 0.8.18 at the time of this audit. Using the latest compiler

version is always recommended which prevents any compiler level issues.

(2) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

(3) Multiple // SPDX-License-Identifier: UNLICENSED used:

MIT License is mentioned still in 4 places found // SPDX-License-Identifier: UNLICENSED
string.

Resolution: We suggest removing unwanted or unrelated commented lines.

(4) State variables declared as public which is redundant:

Below State variables declared as public which is redundant.

● uint8 public _decimals;

● string public _symbol;

● string public _name;

Resolution: Declare mentioned State variables as private which can be accessed with the

help of already declared functions.

● decimals()

● symbol()

● name()

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a scan.coredao.org link and we have used all

possible tests based on given objects as files. We have observed some informational

severity issues in the token smart contract. But those issues are not critical ones. So, it’s
good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - ThorSwap Token

Slither Results Log
Slither Log >> ThorSwapToken.sol

Solidity Static Analysis
ThorSwapToken.sol

Solhint Linter

ThorSwapToken.sol

ThorSwapToken.sol:2:1: Error: Compiler version ^0.8.3 does not
satisfy the r semver requirement
ThorSwapToken.sol:127:21: Error: Use double quotes for string
literals
ThorSwapToken.sol:142:22: Error: Use double quotes for string
literals
ThorSwapToken.sol:183:25: Error: Use double quotes for string
literals
ThorSwapToken.sol:200:22: Error: Use double quotes for string
literals
ThorSwapToken.sol:239:22: Error: Use double quotes for string
literals
ThorSwapToken.sol:308:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
ThorSwapToken.sol:325:37: Error: Use double quotes for string
literals
ThorSwapToken.sol:353:37: Error: Use double quotes for string
literals
ThorSwapToken.sol:371:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
ThorSwapToken.sol:372:13: Error: Use double quotes for string
literals
ThorSwapToken.sol:373:15: Error: Use double quotes for string
literals
ThorSwapToken.sol:497:9: Error: Use double quotes for string literals
ThorSwapToken.sol:550:9: Error: Use double quotes for string literals
ThorSwapToken.sol:580:9: Error: Use double quotes for string literals
ThorSwapToken.sol:606:35: Error: Use double quotes for string
literals
ThorSwapToken.sol:607:38: Error: Use double quotes for string
literals
ThorSwapToken.sol:611:7: Error: Use double quotes for string literals
ThorSwapToken.sol:629:36: Error: Use double quotes for string
literals
ThorSwapToken.sol:633:7: Error: Use double quotes for string literals
ThorSwapToken.sol:657:34: Error: Use double quotes for string
literals
ThorSwapToken.sol:658:36: Error: Use double quotes for string
literals

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

