
Project: Tyrion Token
Website: https://tyrion.io
Platform: Binance Smart Chain
Language: Solidity
Date: April 6th, 2023

https://www.tyrion.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Tyrion Token team to perform the Security audit of
the Tyrion Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 6th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The TYON token smart contract is an ecosystem token in BSC blockchain

networks.

● The token follows the ERC20 standard, which will make it compatible with all the

platforms that support the ERC20 standard.

● This contract has functionality like enabling and disabling trading fees, calculating

ecosystem fees and tax fees, setting tax percentage values, setting LP addresses,

setting ecosystem fee percentages, and setting the buy and sell amount.

● The Tyrion token smart contract inherits AccessControlUpgradeable,

SafeERC20Upgradeable, PausableUpgradeable, OwnableUpgradeable and

Initializable standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Tyrion Token Smart Contract

Platform BSC / Solidity

File TYON.sol

File MD5 Hash 08F32F0C3B15EC5D0F58FB5314B35D57

Updated File MD5 Hash FBF4B1DBB3BF957F95CF9C9C67276F9D

Audit Date April 5th, 2023

Revised Audit Date April 8th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: TYON

● symbol: TYON

● Decimals: 9

● Total Supply: 500 Million

○ 40% for GrowthX wallet

○ 7% for TyrionShield Wallet

YES, This is valid.

Other Specification:
● Open Zeppelin standard code is used.

● initializer modifier is used to prevent initializing a token

twice.

● Minting _totalSupply values into owner and

_growthXWallet account.

YES, This is valid.

Tax Cut Per Wallet Specification:
● Buy / Sell Taxing: 2.5%

○ Ecosystem Fee: 1%

■ 0.25% of GrowthX tax

■ 0.25% of TyrionShield tax

■ 0.25% of FundMe tax

■ 0.25% of Ecosystem tax

○ Tax Fee: 1.5% to holders

● Transfer Taxing: 0.5%

○ Ecosystem Fee: 0.5%

○ Tax Fee: 0

● Maximum Tax Fee: 10%

● Maximum Ecosystem Fee: 10%

● Initial Sale Phase: 1

● Maximum Transaction Amount: 5 Million TYON

● Maximum Transaction Amount percentage: 4% of the

YES, This is valid.
Owner wallet’s
private key must be
handled very
securely. Because if
that is compromised,
then it will create
problems.

total supply

● Minimum Buy/Sell Amount: 500 TYON

Owner has control over following functions:
● Set the maximum transaction percentage.

● Set a minimum Buy and Sell amount.

● Set current phases.

● Removes an account from the excluded list.

● Add a new account to the excluded list.

● Current owner can transfer ownership of the contract to

a new account.

● Deleting ownership will leave the contract without an

owner, removing any owner-only functionality.

● A role of admin can assign different role addresses.

● Withdraw all ETH trapped in the smart contract.

● Withdraw ERC20 tokens trapped in the smart contract.

YES, This is valid.
Owner wallet’s
private key must be
handled very
securely. Because if
that is compromised,
then it will create
problems.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 3 medium and 1 low and a very low level issue.
We confirm that 1 high issue and 3 medium issues are fixed/Acknowledged in the
revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Moderate
Features claimed Moderate

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Tyrion Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Tyrion Token .

The Tyrion Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Tyrion Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. but the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.tyrion.io which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://www.tyrion.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __AccessControl_init internal access only

Initializing
No Issue

3 __AccessControl_init_unchai
ned

internal access only
Initializing

No Issue

4 onlyRole modifier Passed No Issue
5 supportsInterface read Passed No Issue
6 hasRole read Passed No Issue
7 _checkRole internal Passed No Issue
8 _checkRole internal Passed No Issue
9 getRoleAdmin read Passed No Issue
10 grantRole write access only Role No Issue
11 revokeRole write access only Role No Issue
12 renounceRole write Passed No Issue
13 _setupRole internal Passed No Issue
14 _setRoleAdmin internal Passed No Issue
15 _grantRole internal Passed No Issue
16 _revokeRole internal Passed No Issue
17 __Ownable_init internal access only

Initializing
No Issue

18 __Ownable_init_unchained internal access only
Initializing

No Issue

19 onlyOwner modifier Passed No Issue
20 owner read Passed No Issue
21 _checkOwner internal Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 _transferOwnership internal Passed No Issue
25 __Pausable_init internal access only

Initializing
No Issue

26 __Pausable_init_unchained internal access only
Initializing

No Issue

27 whenNotPaused modifier Passed No Issue
28 whenPaused modifier Passed No Issue
29 paused read Passed No Issue
30 _requireNotPaused internal Passed No Issue
31 _requirePaused internal Passed No Issue
32 _pause internal Passed No Issue
33 _unpause internal Passed No Issue
34 constructor write Passed No Issue
35 initialize write Passed No Issue
36 __TYON_V1_init_unchained internal access only

Initializing
No Issue

37 receive external Passed No Issue
38 setTaxFeePercent external access only Role No Issue
39 setEcosystemFeePercent external access only Role No Issue
40 setMaxTxPercent external access only Owner No Issue
41 setMinBuySellAmount external access only Owner No Issue
42 setCurrentPhase external access only Owner No Issue
43 setBadge external access only Role No Issue
44 withdrawToken external Owner can drain

contract’s coin and
tokens

Refer to audit
findings

45 withdraw external Owner can drain
contract’s coin and

tokens

Refer to audit
findings

46 pause external access only Owner No Issue
47 unpause external access only Owner No Issue
48 deliver external Passed No Issue
49 name external Passed No Issue
50 symbol external Passed No Issue
51 decimals external Passed No Issue
52 salePhase external Passed No Issue
53 totalSupply external Passed No Issue
54 totalFees external Passed No Issue
55 balanceOf external Passed No Issue
56 setLPAddress write access only Owner No Issue
57 removeLPAddress write access only Owner No Issue
58 transfer write Tax fees validation,

Tax fees on transfers
Acknowledged

59 approve write Passed No Issue
60 transferFrom write Passed No Issue
61 increaseAllowance write Passed No Issue
62 decreaseAllowance write Passed No Issue
63 excludeFromReward write access only Owner No Issue
64 includeInReward write access only Owner No Issue
65 excludeFromFee write access only Owner No Issue
66 includeInFee write access only Owner No Issue
67 reflectionFromToken read Passed No Issue
68 tokenFromReflection read Passed No Issue
69 getUserBadge read Passed No Issue
70 isExcludedFromReward read Passed No Issue
71 isExcludedFromFee read Passed No Issue
72 allowance read Passed No Issue
73 _distributeTax internal Passed No Issue
74 removeAllFee internal Passed No Issue
75 enableTradingFee internal Passed No Issue
76 disableTradingFee internal Passed No Issue
77 restoreAllFee internal Passed No Issue
78 _approve internal Passed No Issue
79 _transfer internal Passed No Issue

80 _tokenTransfer internal Passed No Issue
81 _transferStandard internal Passed No Issue
82 _transferBothExcluded internal Passed No Issue
83 _transferToExcluded internal Passed No Issue
84 _transferFromExcluded internal Passed No Issue
85 _balanceOf internal Passed No Issue
86 _reflectFee internal Passed No Issue
87 _getValues internal Passed No Issue
88 _getTValues internal Passed No Issue
89 _getRate internal Passed No Issue
90 _getCurrentSupply internal Passed No Issue
91 calculateTaxFee internal Passed No Issue
92 calculateEcosystemFee internal Passed No Issue
93 _getRValues internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Initialize function is not working:

Constructor and initialize both use the initializer modifier. Constructor doesn’t have any

code written but when the modifier is called the "_initialized" variable is set to 1 which

prevents initialization function execution.

Resolution: We advise removing the initializer modifier from the constructor.

Status: This is fixed in the revised smart contract code.

Medium

(1) The value of 30% presale is missing:

The value of 47% of the total supply has been allocated to two wallets. And a 30% presale

is required. However, 22% of the total supply is also available for presale.

Resolution: We suggest correcting the supply for presale.

Status: This is fixed in the revised smart contract code.

(2) Tax fees validation:

The maximum limit for tax fees is 50%, individually. So, tax fee + ecosystem fee can be

100%, as they can both be set at 50%. Owners can stop the sales by setting high tax fees.

Resolution: We suggest correcting the limits for fees.

Status: This is fixed in the revised smart contract code.

(3) Tax fees on transfers:

On changing transfer fees, the change does not reflect. Transfer of the token does not use

the latest updated _transferEcosystemFee and _transferTaxfee.

Resolution: We suggest correcting the transfer fee logic.

Status: This is acknowledged in the revised smart contract code.

Low

(1) Owner can drain contract’s coin and tokens:

By using “withdraw” and “withdrawToken” functions, the owner can drain all the coins and

tokens from the contract.

Resolution: We suggest confirming this feature is required.

Status: We got confirmation from the Tyrion team that this is a required feature, and
will be executed based on business logic.

Very Low / Informational / Best practices:

(1) Wrong openzeppelin path:

The openzeppelin path for SafeERC20Upgradeable is wrong.

Resolution: Replace "Utils" with "utils".

Status: This is fixed in the revised smart contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

OwnableUpgradeable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Check address is current owner address or not.

AccessControlUpgradeable.sol
● grantRole: A role of admin can assign different role addresses.

● revokeRole: A role of admin can remove role address.

● renounceRole: A role of admin can renounce roles for self.

TYON_V1.sol
● setMaxTxPercent: Percentage for maximum transaction amount can be set by the

owner.

● setMinBuySellAmount: Minimum Buy and Sell amount can be set by the owner.

● setCurrentPhase: Current phase can be set by the owner.

● withdrawToken:The owner can withdraw ERC20 tokens trapped in the smart

contract.

● withdraw:The owner can withdraw all ETH trapped in the smart contract to the

owner's account.

● pause: The owner can set trigger pause status true.

● unpause: The owner can set trigger pause status false

● setLPAddress: LP address can be set by the owner.

● removeLPAddress: Lp address can be removed. by the owner.

● excludeFromReward: The owner can add a new account to the excluded list.

● includeInReward: Removes an account from the excluded list by the owner.

● excludeFromFee: The owner can set the excluded account address status is true.

● includeInFee: The owner can set the excluded account address status is false.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects. We have observed 1 high severity issue, 3 medium severity

issues, 1 low severity issue and 1 Informational issue in the code. We confirm that 1 high

issue and 3 medium issues are fixed / acknowledged in the revised smart contract code.

So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - Tyrion Token

Slither Results Log
Slither Log >> TYON.sol

Solidity Static Analysis
TYON.sol

Solhint Linter

TYON.sol

TYON.sol:3:1: Error: Compiler version ^0.8.15 does not satisfy the r
semver requirement
TYON.sol:14:1: Error: Contract has 34 states declarations but allowed
no more than 15
TYON.sol:14:1: Error: Contract name must be in CamelCase
TYON.sol:82:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
TYON.sol:82:31: Error: Code contains empty blocks
TYON.sol:112:5: Error: Function name must be in mixedCase
TYON.sol:207:32: Error: Code contains empty blocks
TYON.sol:285:9: Error: Variable name must be in mixedCase
TYON.sol:295:25: Error: Avoid using low level calls.

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

