@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: AstroPup Coin
Website: www.astropupcoin.com
Platform: Ethereum

Language: Solidity

Date: May 9th, 2023

https://www.astropupcoin.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 19
e Solidity staticanalysis ... 20
® SOININt LiNtEr oo 21

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the AstroPup Coin team to perform the Security audit of
the AstroPup Coin smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 9th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e AstroPup Coin is an ERC20 token built on the Ethereum blockchain.

e AstroPup Coin is built using the latest versions of OpenZeppelin smart contracts,
ensuring a high level of security and compliance.

e AstroPup Coin uses a burn mechanism to decrease the token supply over time,
potentially increasing the value of remaining tokens. The initial burn rate is set to

1%, but can be modified to adapt to market conditions.

Audit scope
Name Code Review and Security Analysis Report for
AstroPup Coin Smart Contract
Platform Ethereum / Solidity
File AstroPup.sol
File MD5 Hash 143C43BE0550CD5E639572F2FF8C4D77

Smart Contract Code 0x96eAfff5BedF18566B18fCe71C2323b69C795623

Audit Date May 9th, 2023

Revision Date May 10th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/address/0x96eAfff5BedF18566B18fCe71C2323b69C795623#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:

Name: AstroPup Coin
Symbol: ASPC
Decimals: 18

The burn rate is set to 1%
Total Supply: 69 Billion

YES, This is valid.

Owner Specifications:

Triggers stopped state.

Returns to normal state.

Set a burn percentage.

Current owner can transfer ownership of the contract to
a new account.

Deleting ownership will leave the contract without an

owner, removing any owner-only functionality.

The ownership is
renounced. and thus
the smart contract is

100% decentralized.

This is a private and confidential document. Mo part of thi

s document should

be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Well Secured”. The project owner also completed the KYC with EtherAuthority which
can be verified at here.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

We confirm that All severity issues are solved in the revised smart contract.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherauthority.io/astropup-coin-aspc-kyc-certificate

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the AstroPup Coin are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the AstroPup Coin.

The AstroPup Coin team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given an AstroPup Coin smart contract code in the form of a file. The hash of that

code is mentioned above in the table.
As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.astropupcoin.com

which provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://www.astropupcoin.com

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | name read Passed No Issue
3 | symbol read Passed No Issue
4 | decimals read Passed No Issue
5 | totalSupply read Passed No Issue
6 | balanceOf read Passed No Issue
7 | transfer write Passed No Issue
8 [allowance read Passed No Issue
9 | approve write Passed No Issue
10 | transferFrom write Passed No Issue
11 | increaseAllowance write Passed No Issue
12 | decreaseAllowance write Passed No Issue
13 | transfer internal Passed No Issue
14 | mint internal Passed No Issue
15 | burn internal Passed No Issue
16 | approve internal Passed No Issue
17 | spendAllowance internal Passed No Issue
18 | beforeTokenTransfer internal Passed No Issue
19 | afterTokenTransfer internal Passed No Issue
20 | whenNotPaused modifier Passed No Issue
21 | whenPaused modifier Passed No Issue
22 | paused read Passed No Issue
23 | requireNotPaused internal Passed No Issue
24 | requirePaused internal Passed No Issue
25 | pause internal Passed No Issue
26 | unpause internal Passed No Issue
27 | onlyOwner modifier Passed No Issue
28 | owner read Passed No Issue
29 | checkOwner internal Passed No Issue
30 | renounceOwnership write access only Owner No Issue
31 | transferOwnership write access only Owner No Issue
32 | transferOwnership internal Passed No Issue
33 [burn write Passed No Issue
34 | burnFrom write Passed No Issue
35 | pause write access only Owner No Issue
36 [unpause write access only Owner No Issue
37 | setBurnPercentage write Passed Fixed
38 | beforeTokenTransfer internal Passed No Issue
39 | transfer internal Passed Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Used Wrong symbol to compare:

_transfer(
from,
to,
amount

{
burnAmount = amount.mul(burnPercentage).div(100);
remainingAmount = amount.sub{burnAmount);
._transfer(from, to, remainingAmount);

if (burnAmount] @) {
._burn(from, burnAmount});
H

Used wrong symbol to compare greater than(>) in the if statement of _transfer function to

compare burn amount.

Resolution: We suggest using the > symbol.

Status: This is fixed in the revised code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Not able to set Burn Percentage:

setBurnPercentage (newBurnPercentage) onlyOwner {
(

newBurnPercentage [= 100,

“"Burn percentage must be between @ and 100."
|H
burnPercentage = newBurnPercentage;

Used the wrong symbol to compare less than(<) in the required statement.

Resolution: We suggest using < symbol.

Status: This is fixed in the revised code.

Very Low / Informational / Best practices:
(1) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve
code size, and less gas consumption.

Status: This is fixed in the revised code.

(2) Please use the latest compiler version when deploying contract:

This is not a severe issue, but we suggest using the latest compiler version at the time of
contract deployment, which is 0.8.19 at the time of this audit. Using the latest compiler

version is always recommended which prevents any compiler level issues.

Resolution: We suggest using the latest compiler version 0.8.19.

Status: This is fixed in the revised code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

The ownership of the token smart contract is renounced with this transaction hash.

And thus the token smart contract has no centralized risk and the contract is 100%

decentralized.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/tx/0x0b3af5277b34b524eef6fdd4ec8cc553ecb11fa60dde13de7c9f788db4298e28

Conclusion

We were given a contract code in the form of a file and we have used all possible tests
based on given objects as files. We have observed 2 low severity issues and 2
informational severity issues in the token smart contract. We confirm that all severity

issues are solved in the revised code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Jfor wint256
(R sareniath

< Quadd()
< Ousubil)
< COurmull)
o Oueliv)
< Sumod()

< Gumin)
O sgrt()

@ -~c=o

Contesxt
IERC20

Code Flow Diagram - AstroPup Coin

© AstroPupCoin

ERrRC2a

ERC20Burnable
Pausable
Cwnabile

mSafeldath for wint256

D uim256 burnPercentags

@ _ constructor__ ()
o pause()

o unpause()

@ Address

< isContract()
< sendwalus()
< functionCalld)

@ setBurnPercentage()

< _beforeTokenTransfer()
< _transfer()

< functionCallvwith'walue()

B _functionCallwithwalue()
7

Context

e ERczoaurnableI

ERCZ0

@ urnd)

@ purnFromi)

© -Ownable

Condext
\

-

@ Fausable

Context

O address _owner
_ constructor___ ()
@ Ouovwwrer(d

< Oy _checkOwner()

O kool _paused

TER CZO0Metadats

@ renouncewnershipl)
@ transferOwnaership)

O address=>uiM256 _balances
O address=>mas

O uint256 _totalSupply
O =tring _name

ing address=>uUirt255
O =tring _symbol

@ _ constructor___ ()
@ QtotalSupply()
@ XbalanceOf()
@ transfer()

\
_allowances

< _transferOwwnership)

@ constructor__ ()
o O pausec()

< O reguiretMotPausec()
Oy _requirePaused()
< pause()

r_unpause)

@ Fallovwance()

o approwvel)

@ transferFromi)

T increasedllowance()
@ decreaselllowance()
< _transfer()

< _mirtd)

< _laurmid

< _approvel)

“_spendAllovwancel)
< _beforeTokenTransfer()
< _afterTokenTransfer()

| .

- \
\\\
4 L
(X)) 1ERC2oMetadata =
(e) context I

| IERCZO

@ O name) <Gy _megSender()
| @ O symbol()

@ Qdecimals()

@ OitotalSupply()
@ Quoecimals()

@ Ousymboll)

@ OQunamel)

@ OQugetOwner()
@ Qbalance0 ()
@ transfer()

@ OQuallowance()
o approwve)

@ transferFrom()

<y _msgDatal)

This is a private and confidential document. No part of this document should

Email: audit@EtherAuthority.io

be disclosed to third party without prior written permission of EtherAuthority.

Slither Results Log

Slither Log >> AstroPup.sol

rithmetic

Reference: htty S/ /git .C rt ther Dete nentati nimplemented- functi
AstroPup.sol yze B 2 3 ult(found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

AstroPup.sol
Gas & Economy

Gas costs:

Gas requirement of function AstroPupCoin.pause is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify Llarge areas of storage (this includes
clearing or copying arrays in storage)

Pos: 20:0:

Gas costs:

Gas requirement of function AstroPupCoin.unpause is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 24:0:

Miscellaneous

Constant/View/Pure functions:

AstroPupCoin._beforeTokenTransfer(address,address,uint256) : Potentially
should be constant/view/pure but is not. Note: Modifiers are currently not
considered by this static analysis.

more

Pos: 33:0:

Constant/View/Pure functions:

AstroPupCoin._transfer(address,address,uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered by this
static analysis.

Pos: 41:0:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

AstroPup.sol

AstroPup.sol:2:1: Error: Compiler version "0.

r semver requirement
AstroPup.sol:15:1: Error:

Explicitly mark visibility in
ignoreConstructors to true if using solidity >=0.7.0)

function

Software analysis result:

These software reported many false positive results and some are informational issues.
So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

