
Project: Blue Social Token
Platform: Ethereum
Website: https://blue.social
Language: Solidity
Date: May 9th, 2023

https://blue.social

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 35

● Slither Results Log ……………………………………………………………………….39

● Solidity static analysis ….……………………………………………………………….. 48

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Blue Social to perform the Security audit of the Blue
Social Token smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on May 9th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Blue Social is a protocol having functionalities like Presale, Tokensale, Airdrop, etc.

● The Blue Social contract inherits IERC20, MerkleProof, ERC20Upgradeable,

ERC20BurnableUpgradeable, PausableUpgradeable, SafeERC20,

OwnableUpgradeable, Initializable, UUPSUpgradeable, ERC20VotesUpgradeable,

standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Blue Social Smart Contracts

Platform Ethereum / Solidity

File 1 BlueSocialToken.sol

File 1 MD5 Hash C4C42B5223A1398E304CFFE32DDF268C

File 2 Presale.sol

File 2 MD5 Hash 67EA87A5EBA2AE47596DE0FFF4A29FB8

File 3 AirdropController.sol

File 3 MD5 Hash 354DE86CDA35ED07C423060357F0D246

File 4 BSTAirdrop.sol

File 4 MD5 Hash 2A8DC029D35459F6256698E3DCDEC224

File 5 EIP712Base.sol

File 5 MD5 Hash F86C897939A9626FE8A428DF3199D05E

File 6 Forwarder.sol

File 6 MD5 Hash 1C8E9ED96F25DAB04BB90C194D96872C

File 7 NetworkAgnostic.sol

File 7 MD5 Hash 1BE6DE17F2F55FC4D4CA4F0B50F3F440

File 8 TokenSale.sol

File 8 MD5 Hash B5B160D0C144B41B8D8269929B6AEBB4

File 9 MetaTransactionLib.sol

File 9 MD5 Hash 3DD60BFF324E1002D6411DC826DBF7CC

Audit Date May 9th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BlueSocialToken.sol
Owner Specifications:

● Triggers stopped state.

● Returns to normal state.

Other Specifications:
● Name: BlueSocialToken

● Symbol: BST

● Total Supply: 1 Million

YES, This is valid.

File 2 Presale.sol
Owner Specifications:

● Set a start - stop pre-sale.

● withdraw tokens.

● Set a rate value.

● Set Available tokens.

● Set a Wallet Receiver address.

● Set a HardCap and SoftCap value.

YES, This is valid.

File 3 AirdropController.sol
● This contract is used to control bulk airdrop different

tokens.

YES, This is valid.

File 4 BSTAirdrop.sol
● BlueSocialAirdrop is used to claim data.

YES, This is valid.

File 5 EIP712Base.sol
● EIP712Base is used to recover signers from

signature signed using EIP712 formatted data.

YES, This is valid.

File 6 Forwarder.sol

● Forwarded contract is used to pause and unpause

the state.

Owner Specifications:
● Triggers stopped state.

● Returns to normal state.

YES, This is valid.

File 7 NetworkAgnostic.sol
● NetworkAgnostic has functionality like:

executeMetaTransaction, hashMetaTransaction,

etc.

YES, This is valid.

File 8 TokenSale.sol
Owner Specifications:

● The Owner can end the sale.

● Update Price by the Owner.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 9 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Blue Social Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Blue Social Token.

The Blue Social team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a BST Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://blue.social which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://blue.social

AS-IS overview

BlueSocialToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __ERC20_init internal access only

Initializing
No Issue

7 __ERC20_init_unchained internal access only
Initializing

No Issue

8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 allowance read Passed No Issue
15 approve write Passed No Issue
16 transferFrom write Passed No Issue
17 increaseAllowance write Passed No Issue
18 decreaseAllowance write Passed No Issue
19 _transfer internal Passed No Issue
20 _mint internal Passed No Issue
21 _burn internal Passed No Issue
22 _approve internal Passed No Issue
23 _spendAllowance internal Passed No Issue
24 _beforeTokenTransfer internal Passed No Issue
25 _afterTokenTransfer internal Passed No Issue
26 __ERC20Burnable_init internal access only

Initializing
No Issue

27 __ERC20Burnable_init_unchai
ned

internal access only
Initializing

No Issue

28 burn write Passed No Issue
29 burnFrom write Passed No Issue
30 __Pausable_init internal access only

Initializing
No Issue

31 __Pausable_init_unchained internal access only
Initializing

No Issue

32 whenNotPaused modifier Passed No Issue
33 whenPaused modifier Passed No Issue
34 paused read Passed No Issue

35 _requireNotPaused internal Passed No Issue
36 _requirePaused internal Passed No Issue
37 _pause internal Passed No Issue
38 _unpause internal Passed No Issue
39 __Ownable_init internal access only

Initializing
No Issue

40 __Ownable_init_unchained internal access only
Initializing

No Issue

41 onlyOwner modifier Passed No Issue
42 owner read Passed No Issue
43 _checkOwner internal Passed No Issue
44 renounceOwnership write access onlyOwner No Issue
45 transferOwnership write access onlyOwner No Issue
46 _transferOwnership internal Passed No Issue
47 __ERC20Votes_init internal access only

Initializing
No Issue

48 __ERC20Votes_init_unchained internal access only
Initializing

No Issue

49 checkpoints read Passed No Issue
50 numCheckpoints read Passed No Issue
51 delegates read Passed No Issue
52 getVotes read Passed No Issue
53 getPastVotes read Passed No Issue
54 getPastTotalSupply read Passed No Issue
55 _checkpointsLookup read Passed No Issue
56 delegate write Passed No Issue
57 delegateBySig write Passed No Issue
58 _maxSupply internal Passed No Issue
59 _mint internal Passed No Issue
60 _burn internal Passed No Issue
61 _afterTokenTransfer internal Passed No Issue
62 _delegate internal Passed No Issue
63 _moveVotingPower write Passed No Issue
64 _writeCheckpoint write Passed No Issue
65 _add write Passed No Issue
66 _subtract write Passed No Issue
67 _unsafeAccess write Passed No Issue
68 __UUPSUpgradeable_init internal access only

Initializing
No Issue

69 __UUPSUpgradeable_init_unc
hained

internal access only
Initializing

No Issue

70 onlyProxy modifier Passed No Issue
71 notDelegated modifier Passed No Issue
72 proxiableUUID external Passed No Issue
73 upgradeTo write Passed No Issue
74 upgradeToAndCall write Passed No Issue
75 _authorizeUpgrade internal Passed No Issue

76 initialize write access only
Initializing

No Issue

77 pause write access onlyOwner No Issue
78 unpause write access onlyOwner No Issue
79 _mint internal Passed No Issue
80 _burn internal Passed No Issue
81 _beforeTokenTransfer internal Passed No Issue
82 _authorizeUpgrade internal access onlyOwner No Issue
83 _afterTokenTransfer internal Passed No Issue
84 approveAndCall write Passed No Issue

Presale.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 transferOwnership write access onlyOwner No Issue
5 nonReentrant modifier Passed No Issue
6 receive external Passed No Issue
7 startICO external access onlyOwner No Issue
8 stopICO external access onlyOwner No Issue
9 buyTokens write Passed No Issue
10 _preValidatePurchase internal Passed No Issue
11 claimTokens external Passed No Issue
12 _getTokenAmount internal Passed No Issue
13 _forwardFunds internal Passed No Issue
14 withdraw external access onlyOwner No Issue
15 checkContribution read Passed No Issue
16 setRate external access onlyOwner No Issue
17 setAvailableTokens write access onlyOwner No Issue
18 weiRaised read Passed No Issue
19 setWalletReceiver external access onlyOwner No Issue
20 setHardCap external access onlyOwner No Issue
21 setSoftCap external access onlyOwner No Issue
22 setMaxPurchase external access onlyOwner No Issue
23 setMinPurchase external access onlyOwner No Issue
24 takeTokens write access onlyOwner No Issue
25 refundMe write Passed No Issue
26 icoActive modifier Passed No Issue
27 icoNotActive modifier Passed No Issue

AirdropController.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 bulkAirdropERC20 write Passed No Issue
3 bulkAirdropERC721 write Passed No Issue
4 bulkAirdropERC1155 write Passed No Issue

BSTAirdrop.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 claim external Passed No Issue
3 canClaim read Passed No Issue

EIP712Base.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __EIP712BaseInit write Passed No Issue
7 getDomainSeperator read Passed No Issue
8 toTypedMessageHash internal Passed No Issue

Forwarder.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 transferOwnership write access onlyOwner No Issue
5 whenNotPaused modifier Passed No Issue
6 whenPaused modifier Passed No Issue
7 paused read Passed No Issue
8 _requireNotPaused internal Passed No Issue
9 _requirePaused internal Passed No Issue
10 _pause internal Passed No Issue
11 _unpause internal Passed No Issue

12 pause write access onlyOwner No Issue
13 unpause write access onlyOwner No Issue
14 DOMAIN_SEPARATOR external Passed No Issue
15 getNonce read Passed No Issue
16 verify read Passed No Issue
17 execute write Passed No Issue
18 addSenderToWhitelist write access onlyOwner No Issue
19 removeSenderFromWhitelist write access onlyOwner No Issue
20 isWhitelisted read Passed No Issue
21 killForwarder write access onlyOwner No Issue
22 _checkOwner internal Passed No Issue
23 renounceOwnership write access onlyOwner No Issue
24 _transferOwnership internal Passed No Issue

NetworkAgnostic.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __EIP712BaseInit write Passed No Issue
3 getDomainSeperator read Passed No Issue
4 toTypedMessageHash internal Passed No Issue
5 executeMetaTransaction write Passed No Issue
6 hashMetaTransaction internal Passed No Issue
7 getNonce read Passed No Issue
8 verify internal Passed No Issue
9 receive external Passed No Issue

TokenSale.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __BlueSocialTokenSaleInit write Passed No Issue
7 multiply internal Passed No Issue
8 buyTokens write Passed No Issue
9 endSale write Passed No Issue
10 updatePrice write Passed No Issue

MetaTransactionLib.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _msgSender internal Passed No Issue
3 __EIP712BaseInit write Passed No Issue
4 getDomainSeperator read Passed No Issue
5 toTypedMessageHash internal Passed No Issue
6 executeMetaTransaction write Passed No Issue
7 hashMetaTransaction internal Passed No Issue
8 getNonce read Passed No Issue
9 verify internal Passed No Issue
10 receive external Passed No Issue
11 __AccessControl_init internal Passed No Issue
12 __AccessControl_init_unchain

ed
internal Passed No Issue

13 onlyRole modifier Passed No Issue
14 supportsInterface read Passed No Issue
15 hasRole read Passed No Issue
16 _checkRole internal Passed No Issue
17 _checkRole internal Passed No Issue
18 getRoleAdmin read Passed No Issue
19 grantRole write Passed No Issue
20 revokeRole write Passed No Issue
21 renounceRole write Passed No Issue
22 _setupRole internal Passed No Issue
23 _setRoleAdmin internal Passed No Issue
24 _grantRole internal Passed No Issue
25 _revokeRole internal Passed No Issue
26 __ERC20_init internal Passed No Issue
27 __ERC20_init_unchained internal Passed No Issue
28 name read Passed No Issue
29 symbol read Passed No Issue
30 decimals read Passed No Issue
31 totalSupply read Passed No Issue
32 balanceOf read Passed No Issue
33 transfer write Passed No Issue
34 allowance read Passed No Issue
35 approve write Passed No Issue
36 transferFrom write Passed No Issue
37 increaseAllowance write Passed No Issue
38 decreaseAllowance write Passed No Issue
39 _transfer internal Passed No Issue
40 _mint internal Passed No Issue
41 _burn internal Passed No Issue
42 _approve internal Passed No Issue

43 _spendAllowance internal Passed No Issue
44 _beforeTokenTransfer internal Passed No Issue
45 _afterTokenTransfer internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the smart contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Compile time warnings:

Presale.sol

Warning: SPDX license identifier not provided in source file. Before publishing, consider

adding a comment containing "SPDX-License-Identifier: <SPDX-License>" to each source

file. Use "SPDX-License-Identifier: UNLICENSED" for non-open-source code.

Resolution: Add SPDX-License-Identifier in Context.sol file.

Forwarder.sol

Warning: "selfdestruct" has been deprecated. The underlying opcode will eventually

undergo breaking changes, and its use is not recommended.

(2) SafeMath Library: Presale.sol

SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

BlueSocialToken.sol
● pause: Triggers stopped by the owner.

● unpause: Returns to normal state by the owner.

● _authorizeUpgrade: Authorize upgrade by the owner.

Presale.sol
● startICO: Start Pre-sale can be set by the owner.

● stopICO: Stop Pe-sale can be set by the owner.

● withdraw: Owner can withdraw tokens.

● setRate: Rate value can be set by the owner.

● setAvailableTokens: Available tokens can be set by the owner.

● setWalletReceiver: Wallet Receiver address can be set by the owner.

● setHardCap: HardCap value can be set by the owner.

● setSoftCap:SoftCap value can be set by the owner.

● setMaxPurchase: Maximum purchase value can be set by the owner.

● setMinPurchase: Minimum purchase value can be set by the owner.

Ownable.sol
● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

OwnableUpgradeable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Throws if the sender is not the owner.

Forwarder.sol
● pause: Triggers stopped by the owner.

● unpause: Returns to normal state by the owner.

● addSenderToWhitelist: Only whitelisted addresses are allowed to broadcast

meta-transactions by the owner.

● removeSenderFromWhitelist: Removes a whitelisted address by the owner.

TokenSale.sol
● endSale: End sale by the owner.

● updatePrice: Update price by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on the given objects as files. We had observed some informational issues in the

smart contracts, but those are not critical ones. So, the smart contracts are ready for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Blue Social Token

BlueSocialToken Diagram

Presale Diagram

AirdropController Diagram

BSTAirdrop Diagram

EIP712Base Diagram

Forwarder Diagram

NetworkAgnostic Diagram

TokenSale Diagram

MetaTransactionLib Diagram

Slither Results Log

Slither log >> BlueSocialToken.sol

Slither log >> Presale.sol

Slither log >> AirdropController.sol

Slither log >> BSTAirdrop.sol

Slither log >> EIP712Base.sol

Slither log >> Forwarder.sol

Slither log >> NetworkAgnostic.sol

Slither log >> TokenSale.sol

Slither log >> MetaTransactionLib.sol

Solidity Static Analysis

BlueSocialToken.sol

Presale.sol

AirdropController.sol

BSTAirdrop.sol

EIP712Base.sol

Forwarder.sol

NetworkAgnostic.sol

TokenSale.sol

MetaTransactionLib.sol

Solhint Linter

BlueSocialToken.sol

BlueSocialToken.sol:2:1: Error: Compiler version ^0.8.9 does not
satisfy the r semver requirement
BlueSocialToken.sol:13:1: Error: Contract name must be in CamelCase
BlueSocialToken.sol:20:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
BlueSocialToken.sol:26:39: Error: Visibility modifier must be first
in list of modifiers
BlueSocialToken.sol:74:5: Error: Code contains empty blocks

Presale.sol

Presale.sol:2:1: Error: Compiler version ^0.8.9 does not satisfy the
r semver requirement
Presale.sol:31:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Presale.sol:44:26: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:49:20: Error: Use double quotes for string literals
Presale.sol:59:27: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:59:44: Error: Use double quotes for string literals
Presale.sol:62:42: Error: Use double quotes for string literals
Presale.sol:63:35: Error: Use double quotes for string literals
Presale.sol:79:31: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:97:43: Error: Use double quotes for string literals
Presale.sol:98:75: Error: Use double quotes for string literals
Presale.sol:99:52: Error: Use double quotes for string literals
Presale.sol:120:70: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:121:44: Error: Use double quotes for string literals
Presale.sol:164:31: Error: Use double quotes for string literals
Presale.sol:169:38: Error: Use double quotes for string literals
Presale.sol:182:31: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:187:26: Error: Avoid to make time-based decisions in your
business logic
Presale.sol:187:43: Error: Use double quotes for string literals

AirdropController.sol

AirdropController.sol:2:1: Error: Compiler version ^0.8.9 does not
satisfy the r semver requirement

BSTAirdrop.sol

BSTAirdrop.sol:2:1: Error: Compiler version ^0.8.9 does not satisfy
the r semver requirement
BSTAirdrop.sol:18:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

EIP712Base.sol

EIP712Base.sol:2:1: Error: Compiler version ^0.8.9 does not satisfy
the r semver requirement
EIP712Base.sol:23:5: Error: Function name must be in mixedCase

Forwarder.sol

Forwarder.sol:2:1: Error: Compiler version ^0.8.9 does not satisfy
the r semver requirement
Forwarder.sol:30:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

NetworkAgnostic.sol

NetworkAgnostic.sol:2:1: Error: Compiler version ^0.8.9 does not
satisfy the r semver requirement
NetworkAgnostic.sol:19:5: Error: Explicitly mark visibility of state
NetworkAgnostic.sol:60:51: Error: Avoid using low level calls.
NetworkAgnostic.sol:106:32: Error: Code contains empty blocks

TokenSale.sol

TokenSale.sol:2:1: Error: Compiler version ^0.8.9 does not satisfy
the r semver requirement
TokenSale.sol:9:5: Error: Explicitly mark visibility of state
TokenSale.sol:17:5: Error: Function name must be in mixedCase
TokenSale.sol:35:9: Error: Possible reentrancy vulnerabilities. Avoid
state changes after transfer.

MetaTransactionLib.sol

MetaTransactionLib.sol:2:1: Error: Compiler version ^0.8.9 does not

satisfy the r semver requirement
MetaTransactionLib.sol:19:13: Error: Avoid using inline assembly. It
is acceptable only in rare cases

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

