
Project: Digital Doka
Website: www.digitaldoka.xyz
Platform: Ethereum
Language: Solidity
Date: April 25th, 2023

https://www.digitaldoka.xyz

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Doka Digital team to perform the Security audit of the
Doka Digital smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on April 25th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Doka Digital is a web3 project by Studio 9 Labs and Phantasm Labs with the aim of

revolutionizing anime through the use of blockchain, storytelling and the team's

decades of experience with anime and finance.

● The Doka Digital is an ERC721A token which has withdraw, airdrop, stopMint

functionalities.

● Doka Digital contract inherits Ownable, ERC2981, ECDSA standard smart

contracts from the OpenZeppelin library.

● Doka Digital contract inherits OperatorFilterer standard smart contracts from the

Vectorized from github library and ERC721A standard smart contracts from the

chiru-labs from github library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Doka Digital Smart Contract

Platform Ethereum / Solidity

File Doka.sol

File MD5 Hash EA95C6235875E5A96E3C0B62898C1FA3

Audit Date April 25th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Doka

● Symbol: DOKA

● Decimals: 18

YES, This is valid.

● Initial Royalty: 5%

● Reserve Price: 0.088 ether

● Maximum Supply: 5555

○ 100 reserved for the team.

○ 5455 available for the reservation.

YES, This is valid.

● Here 2 phases are used.

○ Phase 1 (WL)

■ Both public & wl users can reserve tokens

(2 max each wallet).

■ WL has priority, capped at 5455.

■ Public can only reserve if there are

available spots left.

■ E.g. if 5055 are reserved by WL, only 400

can be reserved by the public.

○ Phase 2 (public)

■ Reservation open to the public.

■ Public can only reserve if there are

available spots left.

YES, This is valid.

Owner Specifications:
● Owner calls airdrop after the reservations phases are

finished to distribute tokens.

● Owner calls to withdraw funds from the contract.

● Owner calls stopMint to stop minting forever.

● Current owner can transfer ownership of the contract to

YES, This is valid.

a new account.

● Deleting ownership will leave the contract without an

owner, removing any owner-only functionality.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.
We confirm that 2 informational issues are Acknowledged in the revised smart
contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Doka Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Doka Token.

The Doka Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Doka Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.digitaldoka.xyz which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://www.digitaldoka.xyz

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _startTokenId internal Passed No Issue
3 _nextTokenId internal Passed No Issue
4 totalSupply read Passed No Issue
5 _totalMinted internal Passed No Issue
6 _totalBurned internal Passed No Issue
7 balanceOf read Passed No Issue
8 _numberMinted internal Passed No Issue
9 _numberBurned internal Passed No Issue
10 _getAux internal Passed No Issue
11 _setAux internal Passed No Issue
12 supportsInterface read Passed No Issue
13 name read Passed No Issue
14 symbol read Passed No Issue
15 tokenURI read Passed No Issue
16 _baseURI internal Passed No Issue
17 ownerOf read Passed No Issue
18 _ownershipOf internal Passed No Issue
19 _ownershipAt internal Passed No Issue
20 _ownershipIsInitialized internal Passed No Issue
21 _initializeOwnershipAt internal Passed No Issue
22 _packedOwnershipOf read Passed No Issue
23 _unpackedOwnership write Passed No Issue
24 _packOwnershipData read Passed No Issue
25 _nextInitializedFlag write Passed No Issue
26 approve write Passed No Issue
27 getApproved read Passed No Issue
28 setApprovalForAll write Passed No Issue
29 isApprovedForAll read Passed No Issue
30 _exists internal Passed No Issue
31 _isSenderApprovedOrOwner write Passed No Issue
32 _getApprovedSlotAndAddress read Passed No Issue
33 transferFrom write Passed No Issue
34 safeTransferFrom write Passed No Issue
35 safeTransferFrom write Passed No Issue
36 _beforeTokenTransfers internal Passed No Issue
37 _afterTokenTransfers internal Passed No Issue
38 _checkContractOnERC721Re

ceived
write Passed No Issue

39 _mint internal Passed No Issue
40 _mintERC2309 internal Passed No Issue
41 _safeMint internal Passed No Issue

42 _safeMint internal Passed No Issue
43 _approve internal Passed No Issue
44 _approve internal Passed No Issue
45 _burn internal Passed No Issue
46 _burn internal Passed No Issue
47 _setExtraDataAt internal Passed No Issue
48 _extraData internal Passed No Issue
49 _nextExtraData read Passed No Issue
50 _msgSenderERC721A internal Passed No Issue
51 _toString internal Passed No Issue
52 _revert internal Passed No Issue
53 onlyOwner modifier Passed No Issue
54 owner read Passed No Issue
55 _checkOwner internal Passed No Issue
56 renounceOwnership write access only Owner No Issue
57 transferOwnership write access only Owner No Issue
58 _transferOwnership internal Passed No Issue
59 supportsInterface read Passed No Issue
60 royaltyInfo read Passed No Issue
61 _feeDenominator internal Passed No Issue
62 _setDefaultRoyalty internal Passed No Issue
63 _deleteDefaultRoyalty internal Passed No Issue
64 _setTokenRoyalty internal Passed No Issue
65 _resetTokenRoyalty internal Passed No Issue
66 _registerForOperatorFiltering internal Passed No Issue
67 _registerForOperatorFiltering internal Passed No Issue
68 onlyAllowedOperator modifier Passed No Issue
69 onlyAllowedOperatorApproval modifier Passed No Issue
70 _revertIfBlocked read Passed No Issue
71 _operatorFilteringEnabled internal Passed No Issue
72 _isPriorityOperator internal Passed No Issue
73 setApprovalForAll write access only Allowed

Operator Approval
No Issue

74 approve write access only Allowed
Operator Approval

No Issue

75 transferFrom write access only Allowed
Operator

No Issue

76 _isPriorityOperator internal Passed No Issue
77 setDefaultRoyalty write access only Owner No Issue
78 deleteDefaultRoyalty write access only Owner No Issue
79 supportsInterface read Passed No Issue
80 _startTokenId internal Passed No Issue
81 _baseURI internal Passed No Issue
82 tokenURI read Passed No Issue
83 reserve external Passed No Issue
84 setSigner external access only Owner No Issue
85 setOperatorFilteringEnabled write access only Owner No Issue
86 setPhase external access only Owner No Issue

87 setReservePrice external access only Owner No Issue
88 setBaseURI write Passed No Issue
89 withdraw external Owner can withdraw

all funds, Transferred
0 amount

Refer to audit
findings

90 airdrop external Infinite loops
possibility

Refer to audit
findings

91 stopMint external access only Owner No Issue
92 signer external Passed No Issue
93 operatorFilteringEnabled external Passed No Issue
94 phase external Passed No Issue
95 reservePrice external Passed No Issue
96 baseURI external Passed No Issue
97 totalReserveCounter external Passed No Issue
98 wlReserveCounter external Passed No Issue
99 publicReserveCounter external Passed No Issue
100 wlReserveAddresses external Passed No Issue
101 publicReserveAddresses external Passed No Issue
102 reserveCounter external Passed No Issue
103 mintEnabled external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.
airdrop() - holders_.length.

(2) Owner can withdraw all funds:

There is a withdraw() function, with a restriction to call this function only owner, And the

owner can withdraw all the funds of the smart contract.

Resolution: We suggest cross verify logic for withdrawing funds by the owner. If this is a

part of the plan then disregard this issue.

Status: This is acknowledged in the revised smart contract code.

(3) Transferred 0 amount:

Withdraw function, there is no checks contract balance is not zero, before transfer.

Transfers 0 amounts.

Resolution: We suggest avoiding 0 amounts to get transferred to an Unused Internal

function.

Status: This is acknowledged in the revised smart contract code.

(4) Hardcoded value:

TEAM_ADDRESS is defined as constant and set by the address.

Resolution: We suggest confirming this address before deploying the smart contract. This

address is used to withdraw coins from the contract.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Doka.sol
● setDefaultRoyalty: Royalty address can be set by the owner.

● deleteDefaultRoyalty: Royalty address can be deleted by the owner.

● setSigner: Signer address can be set by the owner.

● setOperatorFilteringEnabled: Operator Filtering Enabled value can be set by the

owner.

● setPhase: Phase can be set by the owner.

● setReservePrice: Reserve price can be set by the owner.

● setBaseURI: BaseURI can be set by the owner.

● withdraw: Owner calls to withdraw funds from the contract.

● airdrop: Owner calls airdrop after the reservations phases are finished to distribute

tokens.

● stopMint: Owner calls stopMint to stop minting forever.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Check if the sender is not the owner then throws.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed some informational severity issues in

the token smart contract. We confirm that there are no major issues in the revised smart

contract code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Doka Digital Token

Slither Results Log
Slither Log >> Doka.sol

Solidity Static Analysis
Doka.sol

Solhint Linter

Doka.sol

Doka.sol:34:18: Error: Parse error: missing ';' at '{'
Doka.sol:87:18: Error: Parse error: missing ';' at '{'
Doka.sol:204:18: Error: Parse error: missing ';' at '{'
Doka.sol:220:18: Error: Parse error: missing ';' at '{'
Doka.sol:232:18: Error: Parse error: missing ';' at '{'
Doka.sol:273:18: Error: Parse error: missing ';' at '{'
Doka.sol:285:18: Error: Parse error: missing ';' at '{'
Doka.sol:322:18: Error: Parse error: missing ';' at '{'
Doka.sol:336:18: Error: Parse error: missing ';' at '{'
Doka.sol:365:18: Error: Parse error: missing ';' at '{'
Doka.sol:379:18: Error: Parse error: missing ';' at '{'
Doka.sol:411:18: Error: Parse error: missing ';' at '{'
Doka.sol:547:43: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:549:42: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:551:36: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:553:27: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:555:26: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:557:39: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:559:43: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:561:36: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:563:48: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:565:31: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:567:37: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:569:41: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:571:45: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:982:18: Error: Parse error: missing ';' at '{'
Doka.sol:993:18: Error: Parse error: missing ';' at '{'
Doka.sol:1179:30: Error: Parse error: missing ';' at '{'
Doka.sol:1384:18: Error: Parse error: missing ';' at '{'
Doka.sol:1569:18: Error: Parse error: missing ';' at '{'
Doka.sol:1646:18: Error: Parse error: missing ';' at '{'
Doka.sol:1691:18: Error: Parse error: missing ';' at '{'
Doka.sol:1800:18: Error: Parse error: missing ';' at '{'
Doka.sol:1833:48: Error: Parse error: mismatched input ';' expecting
'('
Doka.sol:1837:18: Error: Parse error: missing ';' at '{'

Doka.sol:2042:25: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2043:26: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2044:23: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2045:21: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2046:32: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2047:37: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2048:26: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2049:29: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2050:25: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2211:44: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2212:77: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2222:60: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2223:63: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2224:73: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2225:68: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2232:90: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2240:85: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2244:88: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2249:79: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2310:34: Error: Parse error: mismatched input '(' expecting
{';', '='}
Doka.sol:2316:22: Error: Parse error: missing ';' at '{'
Doka.sol:2322:35: Error: Parse error: mismatched input '(' expecting
{';', '='}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

