
Project: PepeMints
Website: https://pepemints.vip
Platform: BNB Network
Language: Solidity
Date: April 30th, 2023

https://pepemints.vip

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the PepeMints team to perform the Security audit of the
PepeMints smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on April 30th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● PepeMints is an auction token and high-yield Certificate of Deposit on the BNB

network, using an Auction Lobby system to support the price and liquidity.

● PepeMints is a unique DeFi protocol that represents the next step in evolution from

WhalesCandy.

● PepeMints is a PM token which has burn, transfer, stake, stakeInt, refStake,

sendETH, reinvest, claimRewards, buyAndStake, updateDaily functionalities.

● PepeMints contract inherits IERC20, ReentrancyGuard standard smart contracts

from the OpenZeppelin library and IUniswapV2Router02 standard smart contracts

from the uniswap from github library .

● These OpenZeppelin contracts and uniswap library are considered community

audited and time tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
PepeMints Smart Contract

Platform BNB Network / Solidity

File PepeMints.sol

File MD5 Hash BA089A2AD7740091597D0DA5B8634F5A

Updated File MD5 Hash 01887D19A7E3C8CEF5732EAB4DBBEDB7

Audit Date April 30th, 2023

Revised Audit Date May 1st, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: PepeMints.vip

● Symbol: PM

● Decimals: 18

● 1 Day: 1 days

YES, This is valid.

Auction supply.

● Decreases by 1.5%/day.

● Daily amount and rate of decrease can be reset by

admin.

YES, This is valid.

Team tokens

● 5% of the amount offered in each daily auction.

YES, This is valid.

● Forex Trading Fee: 12.50%

● 2.5% of lobby entries goto lottery pot.

● Buy Back Percent: 5%

● Tax Factor: 100%

● Percent to Receive On Sell: 90%

● Percent to Receive On Buy: 50%

● Daily Available Tokens: 16,420 ether

● Daily Available Tokens Decrease: 1.5%

YES, This is valid.

Owner has control over following functions:
● Current owner can transfer ownership of the contract to YES, This is valid.

a new account.

● Buy and sell tax can be toggled on/off.

● Buy tax can be set by the admin to any amount.

● Sales tax can be set by the admin but is limited to 10%.

● Daily amount and rate of decrease can be reset by

admin.

● Tax Factor value can be set by the owner.

● Set the percentage to be received when buying from

PancakeSwap by the owner.

● Set the right amount of user stakes for UI by the owner.

● Set the right amount of overall StakedToken for UI by

the owner.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
We confirm that 1 informational severity issue is fixed in the revised smart contract
code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the PepeMints Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the PepeMints Token.

The PepeMints Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a PepeMints Token smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website: https://pepemints.vip which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://pepemints.vip

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 transferOwnership write access only Owner No Issue
7 claimOwnership write Passed No Issue
8 onlyOwner modifier Passed No Issue
9 toggleSellTaxOn external access only Owner No Issue
10 toggleBuyTaxOn external access only Owner No Issue
11 totalSupply external Passed No Issue
12 balanceOf external Passed No Issue
13 allowance external Passed No Issue
14 approve write Passed No Issue
15 increaseAllowance external Passed No Issue
16 decreaseAllowance external Passed No Issue
17 setDailyAvailableTokens external access only Owner No Issue
18 setDailyAvailableTokensDecrease

Percentage
external access only Owner No Issue

19 setDev external access only Owner No Issue
20 setBuyBackContract external access only Owner No Issue
21 setLaunchpad external access only Owner No Issue
22 setSettingDone external access only Owner No Issue
23 setLotterySharePercentage external access only Owner No Issue
24 setDevAuctionBuyFee external access only Owner removed
25 setDripBuyAuctionFee external access only Owner No Issue
26 setBuyBackPercent external access only Owner No Issue
27 setTaxFactor external access only Owner No Issue
28 setPercentToReceiveOnSell external access only Owner No Issue
29 setPercentToReceiveOnBuy external access only Owner No Issue
30 setExcludedFromSellTaxReceiver external access only Owner No Issue
31 isExcludedFromSellTaxSender read Passed No Issue
32 setExcludedFromBuyTaxReceiver external access only Owner No Issue
33 isExcludedFromBuyTaxReceiver read Passed No Issue
34 transfer write Passed No Issue
35 transferFrom write Passed No Issue
36 _transfer internal Passed No Issue
37 _mint internal Passed No Issue
38 _devMint external access only Owner No Issue
39 burn external Passed No Issue
40 _burn internal Passed No Issue
41 stake external Passed No Issue

42 stakeInt internal Passed No Issue
43 refStake internal Passed No Issue
44 setUsersStakeNumber external Passed No Issue
45 setOverallStakedToken external Passed No Issue
46 setAuctionEntry_allDays external Passed No Issue
47 addStakesUser external Passed No Issue
48 setStakesUser external Passed No Issue
49 thisDay read Passed No Issue
50 getAmountFromLiq read Passed No Issue
51 buyAndStake external Function input

parameters lack of
check

Refer Audit
Findings

52 updateDaily write Passed No Issue
53 _updateDailyAvailableTokens internal Passed No Issue
54 burnAndBuyback internal Passed No Issue
55 buyShareFromAuction external Passed No Issue
56 calculateTokenPerShareOnDay read Passed No Issue
57 claimTokenFromSharesAndStake external Passed No Issue
58 claimRefTokensAndStake external Passed No Issue
59 calcReward read Passed No Issue
60 calcClaim external Passed No Issue
61 _collect internal Passed No Issue
62 claimRewards write Passed Fixed
63 reinvest write Passed No Issue
64 claimRewardsInRange external Passed No Issue
65 reinvestInRange external Passed No Issue
66 getUserStakesInRange external Passed No Issue
67 getAuctionEntryInfo external Passed No Issue
68 checkLottery internal Passed Fixed
69 sendETH internal Passed No Issue
70 setForexTradingFee external access onlyOwner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

● buyAndStake = buyBackContract

Resolution:We advise to put validation : int type variables should not be empty and > 0 &

address type variables should not be address(0).

Very Low / Informational / Best practices:

(1) SPDX license identifier missing:

SPDX license identifier not provided in source file.

Resolution:We suggest adding an SPDX license identifier.

(2) Code and comments mismatched:

Function: checkLottery()

In the checkLottery function , the comment says 50% goes to Winner , code calculates for

30% and according to the document Winner should get 33%. If there is no winner , the

amount should decrease to 10% but code commented with 20%.

Function: reinvest()

In the reinvest function , code comment is 33.34% for reinvesting and in the document it's

mentioned 33%. Also this comment is wrong "referee gets 1% boost too for partaking in ref

scheme".

Resolution: We suggest correcting all the percentages and comments according to the

document.

Status: This is fixed in the revised smart contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

PepeMints.sol
● toggleSellTaxOn: Sell tax can be toggled on/off Sell tax can be toggled on/off.

● toggleBuyTaxOn: Buy tax can be toggled on/off Buy tax can be toggled on/off.

● setDailyAvailableTokens: Daily available token value can be set by the owner.

● setDailyAvailableTokensDecreasePercentage: Daily available token percentage can

be set by the owner.

● setDev: Dev addresses can be set by the owner.

● setBuyBackContract: Buy Back Contract address can be set by the owner.

● setLaunchpad: Launchpad address can be set by the owner.

● setSettingDone: Setting status can be set by the owner.

● setLotterySharePercentage: Lottery share percentage can be set by the owner.

● setDripBuyAuctionFee: Drip Buy Auction fee can be set by the owner.

● setBuyBackPercent: Buyback Percentage can be set by the owner.

● setTaxFactor: Tax Factor value can be set by the owner.

● setPercentToReceiveOnSell: Set the percentage to be received when buying from

PancakeSwap by the owner.

● setPercentToReceiveOnBuy: Set the percentage to be received when buying to

PancakeSwap by the owner.

● setExcludedFromSellTaxReceiver: Set address to be in- or excluded from Tax when

received by the owner.

● setExcludedFromBuyTaxReceiver: Set address to be in- or excluded from Tax when

sender by the owner.

● _devMint: Dev mint by the owner.

● setUsersStakeNumber: Set the right amount of user stakes for UI by the owner.

● setOverallStakedToken: Set the right amount of overall StakedToken for UI by the

owner.

● setAuctionEntry_allDays: Set the right amount of auctionEntry_allDays for UI by the

owner.

● addStakesUser: Add a staker user address by the owner.

● setStakesUser: Set a staker user address by the owner.

● setForexTradingFee: Set the fee that goes to forex trading passive income with

each auction entry by the owner.

BoringOwnable.sol
● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed 1 low issue and 2 informational

severity issues in the token smart contract. We confirm that 1 informational severity issue

is fixed in the revised smart contract code. So, it’s good to go for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - PepeMints Token

Slither Results Log
Slither Log >> PepeMints.sol

Solidity Static Analysis
PepeMints.sol

Solhint Linter

PepeMints.sol

PepeMints.sol:1:1: Error: Compiler version 0.8.16 does not satisfy
the r semver requirement
PepeMints.sol:15:1: Error: Contract has 49 states declarations but
allowed no more than 15
PepeMints.sol:31:29: Error: Constant name must be in capitalized
SNAKE_CASE
PepeMints.sol:32:5: Error: Explicitly mark visibility of state
PepeMints.sol:33:29: Error: Constant name must be in capitalized
SNAKE_CASE
PepeMints.sol:34:5: Error: Explicitly mark visibility of state
PepeMints.sol:53:28: Error: Constant name must be in capitalized
SNAKE_CASE
PepeMints.sol:54:28: Error: Constant name must be in capitalized
SNAKE_CASE
PepeMints.sol:55:26: Error: Constant name must be in capitalized
SNAKE_CASE
PepeMints.sol:61:38: Error: Variable name must be in mixedCase
PepeMints.sol:64:27: Error: Variable name must be in mixedCase
PepeMints.sol:97:5: Error: Explicitly mark visibility of state
PepeMints.sol:111:17: Error: Variable name must be in mixedCase
PepeMints.sol:128:5: Error: Contract name must be in CamelCase
PepeMints.sol:129:9: Error: Variable name must be in mixedCase
PepeMints.sol:130:9: Error: Variable name must be in mixedCase
PepeMints.sol:131:9: Error: Variable name must be in mixedCase
PepeMints.sol:134:58: Error: Variable name must be in mixedCase
PepeMints.sol:137:5: Error: Contract name must be in CamelCase
PepeMints.sol:146:5: Error: Contract name must be in CamelCase
PepeMints.sol:157:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PepeMints.sol:157:17: Error: Variable name must be in mixedCase
PepeMints.sol:397:63: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:398:78: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:398:110: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:402:68: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:410:63: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:411:78: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:411:110: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:415:68: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:423:63: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:424:78: Error: Avoid to make time-based decisions in

your business logic
PepeMints.sol:424:110: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:428:68: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:448:5: Error: Function name must be in mixedCase
PepeMints.sol:448:38: Error: Variable name must be in mixedCase
PepeMints.sol:460:51: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:462:66: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:462:98: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:466:56: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:485:27: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:486:18: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:527:9: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:558:13: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:565:19: Error: Variable name must be in mixedCase
PepeMints.sol:589:23: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:611:23: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:653:32: Error: Code contains empty blocks
PepeMints.sol:911:50: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:959:51: Error: Avoid to make time-based decisions in
your business logic
PepeMints.sol:1011:17: Error: Variable name must be in mixedCase
PepeMints.sol:1012:20: Error: Variable name must be in mixedCase
PepeMints.sol:1015:17: Error: Variable name must be in mixedCase
PepeMints.sol:1018:17: Error: Variable name must be in mixedCase
PepeMints.sol:1048:34: Error: Avoid using low level calls.

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

