
Project: VeZard Exchange
Website: https://vezard.exchange
Platform: ZkSync Era Chain
Language: Solidity
Date: May 8th, 2023

https://vezard.exchange/

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….11

Technical Quick Stats …..……………………………………………………………………… 12

Code Quality ……………………………………………………………………………………. 13

Documentation ………………………………………………………………………………….. 13

Use of Dependencies …………………………………………………………………………… 13

AS-IS overview ………………………………………………………………………………….. 14

Severity Definitions ……………………………………………………………………………... 26

Audit Findings …………………………………………………………………………………… 27

Conclusion ………………………………………………………………………………………. 32

Our Methodology ………………………………………………………………………………... 33

Disclaimers ………………………………………………………………………………………. 35

Appendix

● Code Flow Diagram ……………………………………………………………………... 36

● Slither Results Log ………………………………………………………………………. 53

● Solidity static analysis ….……………………………………………………………….. 61

● Solhint Linter …………………………………………………………………….……….. 77

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by VeZard Exchange to perform the Security audit of the
VeZard Exchange smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 8th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● veZard Exchange is built on the zkSync Era network using a governance model

called the ve(3,3) system. Purpose of the ve(3,3) structure is to create an

environment where users can actively choose to participate and establish a cycle of

growth that reinforces itself over time.

● The veZard Exchange contract inherits IERC20, TransparentUpgradeableProxy,

SafeERC20, ReentrancyGuard, Ownable, ERC20, OwnableUpgradeable,

SafeMath, IERC721Metadata, IERC721Receiver standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
VeZard Exchange Smart Contracts

Platform ZkSync Era Chain / Solidity

File 1 Bribes.sol

File 1 MD5 Hash 22930973B1EE7005CB48E9400E4CBC4D

File 2 FaucetToken.sol

File 2 MD5 Hash 3CFACF5B2D6E9CCB150911A49ADE67D7

File 3 GaugeV2.sol

File 3 MD5 Hash 7A3F2E2A748573CDFB8654A714DCCCF0

File 4 MinterUpgradeable.sol

File 4 MD5 Hash B28E301E4724B23D7396651183B13C2C

File 5 Multicall.sol

File 5 MD5 Hash B31A5401C236F10109672BC3D903C9DA

File 6 Pair.sol

File 6 MD5 Hash 11E9CF8F52D2324B3E1A964D55EFF83C

File 7 PairFees.sol

File 7 MD5 Hash FBEB940CDE074480C2DCBA9D1BF404F1

File 8 RewardsDistributor.sol

File 8 MD5 Hash 708D98975EC0DB4DE3ED85C9803BA155

File 9 RouterV2.sol

File 9 MD5 Hash DF5BF916C6DAA34A4D3FAEBFF7BB5AF5

File 10 SwapLibrary.sol

File 10 MD5 Hash B6DBF1D160C62F3CA689D0E38E457075

File 11 VoterV2.sol

File 11 MD5 Hash 111C4D010010BA87915329BC488C63DA

File 12 VotingEscrow.sol

File 12 MD5 Hash FC2AF6575DE1BB2344088C7C123383F4

File 13 Zard.sol

File 13 MD5 Hash 3596FD4176DBCC8F6FB40C53CB2BB6F4

File 14 BribeFactoryV2.sol

File 14 MD5 Hash 11AE5E800B94E9650FD617985B91BAC9

File 15 GaugeFactoryV2.sol

File 15 MD5 Hash 10EF53C0D003B7CD9B16E94E981EDD80

File 16 PairFactoryUpgradeable.sol

File 16 MD5 Hash B60C422FA97157362B396A6F31A73BE2

File 17 AdminUpgradeabilityProxy.sol

File 17 MD5 Hash 9DB89ED56B653E26510B7013EFFE47B0

File 18 VeArtProxyUpgradeable.sol

File 18 MD5 Hash 5074D64AF05AB31C410E9431B02FFB65

Audit Date May 8th, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Bribes.sol
● Rewards are released over 7 days

Owner has control over following functions:
● Recover the ERC20 token address with the

amount.

● Set the Voter address.

● Set the Reward address.

● Set the Minter address.

● Add a reward token address.

● Set a new owner address.

YES, This is valid.

File 2 GaugeV2.sol
Owner has control over following functions:

● Set the distribution address.

● Set the Gauge rewarder address.

● Set the extra rewarder pid.

YES, This is valid.

File 3 import.sol
● Import contract can inherit the

TransparentUpgradeableProxy contract.

YES, This is valid.

File 4 Multicall.sol
● Multicall - Aggregate results from multiple read-only

function calls.

YES, This is valid.

File 5 MinterUpgradeable.sol
Other Specifications:

● MinterUpgradeable is used to codify the minting

rules as per ve(3,3), abstracted from the token to

support any token that allows minting.

● Maximum Team rate: 5%

YES, This is valid.

● Allows minting once per week.

Owner has control over following functions:
● Set a team address.

● Accept the team.

● Set a voter address.

● Set a team rate.

● Set an emission rate value.

● Set a Rebase rate value.

● Set a reward distributor address.

File 6 Pair.sol
Other Specifications:

● Decimals: 18

● Minimum Liquidity: 1000

● Capture oracle reading every 30 minutes.

YES, This is valid.

File 7 PairFees.sol
● Pair Fees contract is used as a 1:1 pair relationship

to split out fees, this ensures that the curve does

not need to be modified for LP shares.

Owner Specifications:
● claimFeesFor us allow the pair to transfer fees to

users.

YES, This is valid.

File 8 RewardsDistributor.sol
● Instant Rate: 20

Owner has control over following functions:
● check the checkpoint token.

● Set the Depositor.

● A new owner address can be set by the current

Owner.

● Withdraw ERC20 tokens from the contract.

YES, This is valid.

● Set an Instant rate.

File 9 RouterV2.sol
Owner has control over following functions:

● RouterV2 : Support for Fee-on-Transfer Tokens.

● Only accept ETH via fallback from the WETH

contract.

YES, This is valid.

File 10 SwapLibrary.sol
● SwapLibrary is used to fetch pair addresses by

token addresses, sort tokens.

YES, This is valid.

File 11 VoterV2.sol
● Rewards are released over 7 days

Owner has control over following functions:
● Set a minter address.

● Set a Governor address.

● Set an emergency council address.

YES, This is valid.

File 12 VotingEscrow.sol
● Name: veZard

● Symbol: veZARD

● Decimals: 18

● version: 1.0.0

Other Specifications:
● Voting Escrow: veNFT implementation that

escrows ERC-20 tokens in the form of an ERC-721

NFT.

Owner has control over following functions:
● Set a team address.

● Set an art proxy address.

YES, This is valid.

File 13 Zard.sol
● Name: Zard Token

YES, This is valid.

● Symbol: ZARD

● Decimals: 18

Owner has control over following functions:
● Set a minter address.

● Owner can mint a token.

File 14 BribeFactoryV2.sol
Owner has control over following functions:

● Voter owners can create a new Bribe.

● Voter address can be set by Owner.

● Owner can add a new reward address.

YES, This is valid.

File 15 GaugeFactoryV2.sol
Owner has control over following functions:

● Distribution address can be set by Owner.

YES, This is valid.

File 16 PairFactoryUpgradeable.sol
● Maximum Fee: 0.25%

● Stable Fee: 0.02%

● Volatile Fee: 0.2%

Owner has control over following functions:
● Set a Pauser address.

● Set a dibs address.

● Set a fee.

YES, This is valid.

File 17 VeArtProxyUpgradeable.sol
● VeArtProxyUpgradeable contract can inherit

OwnableUpgradeable contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and some very low level issues.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 18 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the VeZard Exchange Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the VeZard Exchange Protocol.

The VeZard Exchange team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a VeZard Exchange Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://vezard.exchange which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://vezard.exchange/

AS-IS overview

Bribes.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 onlyOwner modifier Passed No Issue
7 getEpochStart read Passed No Issue
8 getNextEpochStart read Passed No Issue
9 addReward write Passed No Issue
10 rewardsListLength external Passed No Issue
11 totalSupply external Passed No Issue
12 totalSupplyAt external Passed No Issue
13 balanceOfAt read Passed No Issue
14 balanceOf read Passed No Issue
15 earned read Passed No Issue
16 _earned internal Passed No Issue
17 rewardPerToken read Passed No Issue
18 _deposit external Passed No Issue
19 _withdraw write Passed No Issue
20 getReward external Passed No Issue
21 getRewardForOwner write Passed No Issue
22 notifyRewardAmount external Passed No Issue
23 recoverERC20 external Passed No Issue
24 setVoter external access only Owner No Issue
25 setMinter external access only Owner No Issue
26 addRewardToken external access only Owner No Issue
27 setOwner external access only Owner No Issue

GaugeV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 _reentrancyGuardEntered internal Passed No Issue
6 onlyOwner modifier Passed No Issue
7 owner read Passed No Issue

8 _checkOwner internal Passed No Issue
9 renounceOwnership write access only Owner No Issue
10 transferOwnership write access only Owner No Issue
11 _transferOwnership internal Passed No Issue
12 updateReward modifier Passed No Issue
13 onlyDistribution modifier Passed No Issue
14 setDistribution external access only Owner No Issue
15 setGaugeRewarder external access only Owner No Issue
16 setRewarderPid external access only Owner No Issue
17 totalSupply read Passed No Issue
18 balanceOf external Passed No Issue
19 lastTimeRewardApplicable read Passed No Issue
20 rewardPerToken read Passed No Issue
21 earned read Passed No Issue
22 rewardForDuration external Passed No Issue
23 depositAll external Passed No Issue
24 deposit external Passed No Issue
25 _deposit internal Passed No Issue
26 withdrawAll external Passed No Issue
27 withdraw external Passed No Issue
28 _withdraw internal Passed No Issue
29 withdrawAllAndHarvest external Passed No Issue
30 getReward write Passed No Issue
31 _periodFinish external Passed No Issue
32 notifyRewardAmount external access only

Distribution
No Issue

33 claimFees external Passed No Issue
34 _claimFees internal Passed No Issue

import.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ifAdmin modifier Passed No Issue
3 admin external access if Admin No Issue
4 implementation external access if Admin No Issue
5 changeAdmin external access if Admin No Issue
6 upgradeTo external access if Admin No Issue
7 upgradeToAndCall external access if Admin No Issue
8 _admin internal Passed No Issue
9 _beforeFallback internal Passed No Issue
10 _requireZeroValue write Passed No Issue

MinterUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write initializer No Issue
11 _initialize external Passed No Issue
12 setTeam external Passed No Issue
13 acceptTeam external Passed No Issue
14 setVoter external Passed No Issue
15 setTeamRate external Passed No Issue
16 setEmission external Passed No Issue
17 setRebase external Passed No Issue
18 circulating_supply read Passed No Issue
19 calculate_emission read Passed No Issue
20 weekly_emission read Passed No Issue
21 circulating_emission read Passed No Issue
22 calculate_rebate read Passed No Issue
23 update_period external Passed No Issue
24 check external Passed No Issue
25 period external Passed No Issue
26 setRewardDistributor external Passed No Issue

Pair.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lock modifier Passed No Issue
3 observationLength external Passed No Issue
4 lastObservation read Passed No Issue
5 metadata external Passed No Issue
6 tokens external Passed No Issue
7 isStable external Passed No Issue
8 claimFees external Passed No Issue
9 _update0 internal Passed No Issue
10 _update1 internal Passed No Issue

11 _updateFor internal Passed No Issue
12 getReserves read Passed No Issue
13 _update internal Passed No Issue
14 currentCumulativePrices read Passed No Issue
15 current external Passed No Issue
16 quote external Passed No Issue
17 prices external Passed No Issue
18 sample read Passed No Issue
19 mint external Passed No Issue
20 burn external Passed No Issue
21 swap external Passed No Issue
22 skim external Passed No Issue
23 sync external Passed No Issue
24 _f internal Passed No Issue
25 _d internal Passed No Issue
26 _get_y internal Passed No Issue
27 getAmountOut external Passed No Issue
28 _getAmountOut internal Passed No Issue
29 _k internal Passed No Issue
30 _mint internal Passed No Issue
31 _burn internal Passed No Issue
32 approve external Passed No Issue
33 transfer external Passed No Issue
34 transferFrom external Passed No Issue
35 _transferTokens internal Passed No Issue
36 _safeTransfer internal Passed No Issue
37 _safeApprove internal Passed No Issue

PairFees.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _safeTransfer internal Passed No Issue
3 claimFeesFor external Passed No Issue

RewardsDistributor.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 timestamp external Passed No Issue
3 _checkpoint_token internal Passed No Issue
4 checkpoint_token external Passed No Issue
5 _find_timestamp_epoch internal Passed No Issue
6 _find_timestamp_user_epoch internal Passed No Issue
7 ve_for_at external Passed No Issue

8 _checkpoint_total_supply internal Passed No Issue
9 checkpoint_total_supply external Passed No Issue
10 _claim internal Passed No Issue
11 _claimable internal Passed No Issue
12 claimable external Passed No Issue
13 claim external Passed No Issue
14 claim_many external Passed No Issue
15 setDepositor external Passed No Issue
16 setOwner external Passed No Issue
17 withdrawERC20 external Passed No Issue
18 setInstantRate external Passed No Issue

Router.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 sortTokens write Passed No Issue
5 pairFor read Passed No Issue
6 quoteLiquidity internal Passed No Issue
7 getReserves read Passed No Issue
8 getAmountOut external Passed No Issue
9 getAmountsOut read Passed No Issue
10 isPair external Passed No Issue
11 quoteAddLiquidity external Passed No Issue
12 _addLiquidity internal Passed No Issue
13 quoteRemoveLiquidity external Passed No Issue
14 addLiquidity external Passed No Issue
15 addLiquidityETH external Passed No Issue
16 removeLiquidity write Passed No Issue
17 removeLiquidityETH write Passed No Issue
18 removeLiquidityWithPermit external Passed No Issue
19 removeLiquidityETHWithPer

mit
external Passed No Issue

20 _swap internal Passed No Issue
21 swapExactTokensForTokens

Simple
external Passed No Issue

22 swapExactTokensForTokens external Passed No Issue
23 swapExactETHForTokens external Passed No Issue
24 swapExactTokensForETH external Passed No Issue
25 _safeTransferETH internal Passed No Issue
26 _safeTransfer internal Passed No Issue
27 _safeTransferFrom internal Passed No Issue
28 removeLiquidityETHSupporti

ngFeeOnTransferTokens
write Passed No Issue

29 removeLiquidityETHWithPer
mitSupportingFeeOnTransfer
Tokens

external Passed No Issue

30 _swapSupportingFeeOnTran
sferTokens

internal Passed No Issue

31 swapExactTokensForTokens
SupportingFeeOnTransferTo
kens

external Passed No Issue

32 swapExactETHForTokensSu
pportingFeeOnTransferToken
s

external Passed No Issue

33 swapExactTokensForETHSu
pportingFeeOnTransferToken
s

external Passed No Issue

SwapLibrary.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _f internal Passed No Issue
3 _d internal Passed No Issue
4 _get_y internal Passed No Issue
5 getTradeDiff external Passed No Issue
6 getTradeDiffSimple external Passed No Issue
7 getTradeDiff2 external Passed No Issue
8 getTradeDiff3 external Passed No Issue
9 _calcSample internal Passed No Issue
10 getTradeDiff external Passed No Issue
11 getSample external Passed No Issue
12 getMinimumValue external Passed No Issue
13 getAmountOut external Passed No Issue
14 _getAmountOut internal Passed No Issue
15 _k internal Passed No Issue
16 getNormalizedReserves external Passed No Issue
17 pairFor read Passed No Issue
18 sortTokens write Passed No Issue

VeArtProxyUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write initializer No Issue
11 toString internal Passed No Issue
12 _tokenURI external Passed No Issue

VoterV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only Initializing No Issue
3 __Ownable_init_unchained internal access only Initializing No Issue
4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 __ReentrancyGuard_init internal access only Initializing No Issue
11 __ReentrancyGuard_init_u

nchained
internal access only Initializing No Issue

12 nonReentrant modifier Passed No Issue
13 _nonReentrantBefore write Passed No Issue
14 _nonReentrantAfter write Passed No Issue
15 _reentrancyGuardEntered internal Passed No Issue
16 initialize write Anyone can initialize

contract
Refer to audit

findings
17 _initialize external Infinite loop Refer to audit

findings
18 setMinter external Passed No Issue
19 setGovernor write Passed No Issue
20 setEmergencyCouncil write Passed No Issue
21 reset external Passed No Issue
22 _reset internal Infinite loop Refer to audit

findings
23 poke external Infinite loop Refer to audit

findings
24 _vote internal Infinite loop Refer to audit

findings
25 vote external Passed No Issue

26 whitelist write Passed No Issue
27 _whitelist internal Passed No Issue
28 createGauge external Passed No Issue
29 killGauge external Passed No Issue
30 reviveGauge external Passed No Issue
31 length external Passed No Issue
32 poolVoteLength external Passed No Issue
33 notifyRewardAmount external Passed No Issue
34 updateFor external Passed No Issue
35 updateForRange write Infinite loop Refer to audit

findings
36 updateAll external Passed No Issue
37 updateGauge external Passed No Issue
38 _updateFor internal Passed No Issue
39 claimBribes external Infinite loop Refer to audit

findings
40 claimFees external Infinite loop Refer to audit

findings
41 distributeFees external Infinite loop Refer to audit

findings
42 distribute write Passed No Issue
43 distributeAll external Passed No Issue
44 distribute write Passed No Issue
45 distribute write Passed No Issue
46 _safeTransferFrom internal Passed Fixed
47 setBribeFactory external Passed No Issue
48 setGaugeFactory external Passed Fixed
49 setPairFactory external Passed Fixed
50 killGaugeTotally external Passed No Issue
51 whitelist write Passed No Issue
52 initGauges write Anyone can

initGauges, Infinite loop
Refer to audit

findings
53 increaseGaugeApprovals external Passed Fixed
54 setNewBribe external Passed Fixed

VotingEscrow.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonreentrant modifier Passed No Issue
3 setTeam external Passed No Issue
4 setArtProxy external Passed No Issue
5 tokenURI external Passed No Issue
6 ownerOf read Passed No Issue
7 _balance internal Passed No Issue
8 balanceOf external Passed No Issue

9 getApproved external Passed No Issue
10 isApprovedForAll external Passed No Issue
11 approve write Passed No Issue
12 setApprovalForAll external Passed No Issue
13 _clearApproval internal Passed No Issue
14 _isApprovedOrOwner internal Passed No Issue
15 isApprovedOrOwner external Passed No Issue
16 _transferFrom internal Passed No Issue
17 transferFrom external Passed No Issue
18 safeTransferFrom external Passed No Issue
19 _isContract internal Passed No Issue
20 safeTransferFrom write Passed No Issue
21 supportsInterface external Passed No Issue
22 tokenOfOwnerByIndex external Passed No Issue
23 _addTokenToOwnerList internal Passed No Issue
24 _addTokenTo internal Passed No Issue
25 _mint internal Passed No Issue
26 _removeTokenFromOwnerLi

st
internal Passed No Issue

27 _removeTokenFrom internal Passed No Issue
28 _burn internal Passed No Issue
29 get_last_user_slope external Passed No Issue
30 user_point_history__ts external Passed No Issue
31 locked__end external Passed No Issue
32 _checkpoint internal Passed No Issue
33 _deposit_for internal Passed No Issue
34 block_number external Passed No Issue
35 checkpoint external Passed No Issue
36 deposit_for external Passed No Issue
37 _create_lock internal Passed No Issue
38 create_lock external Passed No Issue
39 create_lock_for external Passed No Issue
40 increase_amount external Passed No Issue
41 increase_unlock_time external Passed No Issue
42 withdraw external Passed No Issue
43 _find_block_epoch internal Passed No Issue
44 _balanceOfNFT internal Passed No Issue
45 balanceOfNFT external Passed No Issue
46 balanceOfNFTAt external Passed No Issue
47 _balanceOfAtNFT internal Passed No Issue
48 balanceOfAtNFT external Passed No Issue
49 totalSupplyAt external Passed No Issue
50 _supply_at internal Passed No Issue
51 totalSupply external Passed No Issue
52 totalSupplyAtT read Passed No Issue
53 setVoter external Passed No Issue
54 voting external Passed No Issue
55 abstain external Passed No Issue

56 attach external Passed No Issue
57 detach external Passed No Issue
58 merge external Passed No Issue
59 split external Passed No Issue
60 delegates read Passed No Issue
61 getVotes external Passed No Issue
62 getPastVotesIndex read Passed No Issue
63 getPastVotes read Passed No Issue
64 getPastTotalSupply external Passed No Issue
65 _moveTokenDelegates internal Passed No Issue
66 _findWhatCheckpointToWrite internal Passed No Issue
67 _moveAllDelegates internal Passed No Issue
68 _delegate internal Passed No Issue
69 delegate write Passed No Issue

Zard.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setMinter external Passed No Issue
3 approve external Passed No Issue
4 _mint internal Passed No Issue
5 _transfer internal Passed No Issue
6 transfer external Passed No Issue
7 transferFrom external Passed No Issue
8 mint external Passed No Issue

BribeFactoryV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write Passed No Issue
11 createBribe external Passed No Issue

12 setVoter external Passed No Issue
13 addReward external Passed No Issue
14 addRewards external Passed No Issue

GaugeFactoryV2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 initialize write Passed No Issue
11 createGaugeV2 external Passed No Issue
12 setDistribution external access only Owner No Issue

PairFactoryUpgradeable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 __Ownable_init internal access only

Initializing
No Issue

3 __Ownable_init_unchained internal access only
Initializing

No Issue

4 onlyOwner modifier Passed No Issue
5 owner read Passed No Issue
6 _checkOwner internal Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 _transferOwnership internal Passed No Issue
10 onlyManager modifier Passed No Issue
11 initialize write Passed No Issue
12 allPairsLength external Passed No Issue
13 pairs external Passed No Issue
14 setPause external Passed No Issue
15 setFeeManager external access only

Manager
No Issue

16 acceptFeeManager external Passed No Issue

17 address _dibs external access only
Manager

No Issue

18 setNftFeeHandler external access only
Manager

No Issue

19 setFee external access only
Manager

No Issue

20 getFee read Passed No Issue
21 pairCodeHash external Passed No Issue
22 getInitializable external Passed No Issue
23 createPair external Passed No Issue
24 setSecondFee external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract: VoterV2.sol
The initialize function is public and accessible to anyone. Operator is not set during

contract deployment, So any user can become an operator

Resolution: We suggest always making sure that the contract should be initialized by the

owner.

(2) Anyone can initGauges : VoterV2.sol
The initGauges is a public function, emergencyCouncil can execute this unlimited times.

This might lead to losing vote data.

Resolution: We suggest to re-check the logic and usage limit for this function.

(3) Infinite loop: VoterV2.sol
In below functions ,for loops do not have upper length limit , which costs more gas:

● claimBribes

● claimFees

● distributeFees

● initGauges

● updateForRange

● poke

● _reset

● _initialize

Resolution: Upper bound poolInfo.length should have a certain limit in for loops.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Thrown when the sender is not the owner.

Bribes.sol
● addReward: Owner can add a new reward address.

● recoverERC20: Owner can recover the ERC20 token address with the amount

● setVoter: Voter address can be set by the Owner.

● setMinter: Minter address can be set by the Owner.

● addRewardToken: Reward token address can be added by the Owner.

● setOwner: A new owner address can be set by the Owner.

GaugeV2.sol
● setDistribution: Distribution address can be set by the Owner.

● setGaugeRewarder: Gauge rewarder address can be set by the Owner.

● setRewarderPid: Extra rewarder pid can be set by the Owner.

MinterUpgradeable.sol
● setTeam: Team address can be set by the Owner.

● acceptTeam: Owner can accept the team.

● setVoter: Voter address can be set by the Owner.

● setTeamRate: Team rate value can be set by the Owner.

● setEmission: Emission rate can be set by the Owner.

● setRebase: Rebase rate can be set by the Owner.

● setRewardDistributor: Reward Distributor address can be set by the Owner.

RewardsDistributor.sol
● setDepositor: The Depositor can be set by the Owner.

● setOwner: A new owner address can be set by the current Owner.

● withdrawERC20: Owner can withdraw ERC20 tokens from the contract.

● setInstantRate: Owner can set an instant rate.

VoterV2.sol
● _initialize: Minter owner or EmergencyCouncil owner can initialize token addresses.

● setMinter: EmergencyCouncil owner can set minter address.

● setGovernor: Owner can set a new governor address.

● setEmergencyCouncil: Owner can set a new emergencyCouncil address.

● whitelist: Owner can add token address in whitelist.

● killGauge: Owner can kill gauge address.

● reviveGauge: Owner can revive gauge address.

● setBribeFactory: Owner can set a bribe factory address.

● setGaugeFactory: Owner can set a gauge factory address.

● setPairFactory: Owner can set a pair factory address.

● killGaugeTotally: Owner can kill gauge addresses.

● whitelist: Owner can add token address in the whitelist.

● initGauges: Owner can initialize gauges addresses.

● increaseGaugeApprovals: Owners can increase gauge approval addresses.

● setNewBribe: Owners can set new bribe addresses.

VotingEscrow.sol
● setTeam: Team address can be set by the Owner.

● setArtProxy: Proxy address can be set by the Owner.

● setVoter: Voter address can be set by the team Owner.

● voting: Voting tokenId can be set by the Voter Owner.

● abstain: Abstain tokenId can be set by the Voter Owner.

● attach: Attach tokenId can be set by the Voter Owner.

● detach: Detach tokenId can be set by the Voter Owner.

● delegate: Delegate votes from owner to `delegatee`.

BribeFactoryV2.sol
● createBribe: Voter owners can create a new Bribe.

● setVoter: Voter address can be set by the Owner.

● addReward: Owner can add a new reward address.

● addRewards: Owner can add multiple new reward addresses.

GaugeFactoryV2.sol
● setDistribution: Distribution address can be set by Owner.

PairFactoryUpgradeable.sol
● setPause: Pauser address can be set by the Owner.

● setFeeManager: Manager Owner can set a Fee Manager address.

● acceptFeeManager: Manager Owner can accept fee manager.

● setDibs: Manager Owner can set dibs address.

● setNftFeeHandler: Fee Manager Owner can set Nft fee.

● setSecondFee: Fee Manager Owner can set a second fee.

● setFee: Manager Owner can set a fee.

VeArtProxyUpgradeable.sol
● _checkOwner: Thrown when the sender is not the owner.

● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

Import.sol
● admin: Admin can return the current admin address.

● implementation: Admin can return the current implementation.

● changeAdmin: Admin can change the admin of the proxy.

● upgradeTo: Admin can upgrade the implementation of the proxy.

● upgradeToAndCall: Admin can upgrade the implementation of the proxy, and then

call a function from the new implementation as specified data.

PairFees.sol
● claimFeesFor: Owner can allow the pair to transfer fees to users.

Zard.sol
● setMinter: Owner can set the minter address.

● mint: Owner can mint a token from the address.

Multicall.sol
● aggregate: Owner can aggregate results from multiple function calls.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed some informational severity issues in

the smart contracts, but those are not critical ones. So, the smart contracts are ready for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - VeZard Exchange

Bribes Diagram

GaugeV2 Diagram

MinterUpgradeable Diagram

Multicall Diagram

PairFees Diagram

Pair Diagram

RewardsDistributor Diagram

RouterV2 Diagram

SwapLibrary Diagram

VoterV2 Diagram

VotingEscrow Diagram

Zard Diagram

BribeFactoryV2 Diagram

GaugeFactoryV2 Diagram

PairFactoryUpgradeable Diagram

AdminUpgradeabilityProxy Diagram

VeArtProxyUpgradeable Diagram

FaucetToken Diagram

Slither Results Log

Slither log >> Bribes.sol

Slither log >> GaugeV2.sol

Slither log >> MinterUpgradeable.sol

Slither log >> Multicall.sol

Slither log >> Pair.sol

Slither log >> PairFees.sol

Slither log >> RewardsDistributor.sol

Slither log >> RouterV2.sol

Slither log >> SwapLibrary.sol

Slither log >> VoterV2.sol

Slither log >> VotingEscrow.sol

Slither log >> Zard.sol

Slither log >> BribeFactoryV2.sol

Slither log >> GaugeFactoryV2.sol

Slither log >> PairFactoryUpgradeable.sol

Slither log >> VeArtProxyUpgradeable.sol

Slither log >> import.sol

Slither log >> FaucetToken.sol

Solidity Static Analysis

Bribes.sol

GaugeV2.sol

MinterUpgradeable.sol

Multicall.sol

Pair.sol

PairFees.sol

RewardsDistributor.sol

RouterV2.sol

SwapLibrary.sol

VoterV2.sol

VotingEscrow.sol

Zard.sol

BribeFactoryV2.sol

GaugeFactoryV2.sol

PairFactoryUpgradeable.sol

AdminUpgradeabilityProxy.sol

VeArtProxyUpgradeable.sol

FaucetToken.sol

Solhint Linter

Bribes.sol

Bribes.sol:2:1: Error: Compiler version ^0.8.13 does not satisfy the
r semver requirement
Bribes.sol:5:8: Error: Use double quotes for string literals
Bribes.sol:15:8: Error: Use double quotes for string literals
Bribes.sol:41:19: Error: Variable name must be in mixedCase
Bribes.sol:57:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Bribes.sol:232:69: Error: Avoid to make time-based decisions in your
business logic
Bribes.sol:246:23: Error: Variable name must be in mixedCase

GaugeV2.sol

GaugeV2.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement
GaugeV2.sol:13:8: Error: Use double quotes for string literals
GaugeV2.sol:27:1: Error: Contract has 18 states declarations but
allowed no more than 15
GaugeV2.sol:44:20: Error: Variable name must be in mixedCase
GaugeV2.sol:77:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
GaugeV2.sol:77:88: Error: Variable name must be in mixedCase
GaugeV2.sol:77:113: Error: Variable name must be in mixedCase
GaugeV2.sol:235:50: Error: Avoid to make time-based decisions in your
business logic
GaugeV2.sol:247:26: Error: Avoid to make time-based decisions in your
business logic
GaugeV2.sol:248:24: Error: Avoid to make time-based decisions in your
business logic

MinterUpgradeable.sol

MinterUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement
MinterUpgradeable.sol:146:5: Error: Function name must be in
mixedCase
MinterUpgradeable.sol:159:5: Error: Function name must be in
mixedCase
MinterUpgradeable.sol:198:17: Error: Avoid to make time-based
decisions in your business logic
MinterUpgradeable.sol:202:16: Error: Avoid to make time-based
decisions in your business logic

Multicall.sol

Multicall.sol:3:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.
Multicall.sol:33:21: Error: Avoid to make time-based decisions in
your business logic

Pair.sol

Pair.sol:325:22: Error: Parse error: missing ';' at '{'

PairFees.sol

PairFees.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement
PairFees.sol:4:8: Error: Use double quotes for string literals
PairFees.sol:13:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
PairFees.sol:21:45: Error: Avoid using low level calls.

RewardsDistributor.sol

RewardsDistributor.sol:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement
RewardsDistributor.sol:4:8: Error: Use double quotes for string
literals
RewardsDistributor.sol:5:8: Error: Use double quotes for string
literals
RewardsDistributor.sol:6:8: Error: Use double quotes for string
literalsmixedCase
RewardsDistributor.sol:247:9: Error: Variable name must be in
mixedCase
RewardsDistributor.sol:253:9: Error: Variable name must be in
mixedCase
RewardsDistributor.sol:268:17: Error: Variable name must be in
mixedCase
RewardsDistributor.sol:327:21: Error: Variable name must be in
mixedCase
RewardsDistributor.sol:338:13: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.

RouterV2.sol

RouterV2.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement
RouterV2.sol:82:46: Error: Use double quotes for string literals
RouterV2.sol:86:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
RouterV2.sol:137:37: Error: Use double quotes for string literals
RouterV2.sol:228:55: Error: Use double quotes for string literals
RouterV2.sol:233:55: Error: Use double quotes for string literals

SwapLibrary.sol

SwapLibrary.sol:3:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirement
SwapLibrary.sol:15:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
SwapLibrary.sol:28:3: Error: Function name must be in mixedCase
SwapLibrary.sol:30:7: Error: Variable name must be in mixedCase
SwapLibrary.sol:176:31: Error: Use double quotes for string literals
SwapLibrary.sol:178:35: Error: Use double quotes for string literals

VoterV2.sol

VoterV2.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirementError: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
VoterV2.sol:67:19: Error: Code contains empty blocks
VoterV2.sol:69:105: Error: Visibility modifier must be first in list
of modifiers
VoterV2.sol:109:31: Error: Avoid to make time-based decisions in your
business logic
VoterV2.sol:196:31: Error: Avoid to make time-based decisions in your
business logic
VoterV2.sol:227:9: Error: Variable name must be in mixedCase
VoterV2.sol:230:9: Error: Variable name must be in mixedCase
VoterV2.sol:377:9: Error: Avoid using low level calls.
VoterV2.sol:431:13: Error: Variable name must be in mixedCase
VoterV2.sol:433:13: Error: Variable name must be in mixedCase

VotingEscrow.sol

VotingEscrow.sol:2:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirement
VotingEscrow.sol:17:1: Error: Contract has 26 states declarations but
allowed no more than 15
VotingEscrow.sol:1118:9: Error: Variable name must be in mixedCase
VotingEscrow.sol:1119:31: Error: Avoid to make time-based decisions
in your business logic
VotingEscrow.sol:1120:59: Error: Use double quotes for string

literals
VotingEscrow.sol:1298:27: Error: Avoid to make time-based decisions
in your business logic

Zard.sol

Zard.sol:40:18: Error: Parse error: missing ';' at '{'
Zard.sol:49:18: Error: Parse error: missing ';' at '{'

BribeFactoryV2.sol

BribeFactoryV2.sol:2:1: Error: Compiler version ^0.8.11 does not
satisfy the r semver requirement
BribeFactoryV2.sol:13:20: Error: Variable name must be in mixedCase
BribeFactoryV2.sol:16:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
BribeFactoryV2.sol:16:19: Error: Code contains empty blocks
BribeFactoryV2.sol:17:54: Error: Visibility modifier must be first in
list of modifiers
BribeFactoryV2.sol:23:63: Error: Use double quotes for string
literals
BribeFactoryV2.sol:31:23: Error: Variable name must be in mixedCase
BribeFactoryV2.sol:47:40: Error: Use double quotes for string
literals

GaugeFactoryV2.sol

GaugeFactoryV2.sol:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement
GaugeFactoryV2.sol:5:8: Error: Use double quotes for string literals
GaugeFactoryV2.sol:10:20: Error: Variable name must be in mixedCase
GaugeFactoryV2.sol:12:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
GaugeFactoryV2.sol:12:19: Error: Code contains empty blocks
GaugeFactoryV2.sol:14:40: Error: Visibility modifier must be first in
list of modifiers
GaugeFactoryV2.sol:18:99: Error: Variable name must be in mixedCase
GaugeFactoryV2.sol:18:124: Error: Variable name must be in mixedCase

PairFactoryUpgradeable.sol

PairFactoryUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does
not satisfy the r semver requirementPairFactoryUpgradeable.sol:5:8:
Error: Use double quotes for string literals
PairFactoryUpgradeable.sol:39:5: Error: Explicitly mark visibility in

function (Set ignoreConstructors to true if using solidity >=0.7.0)
PairFactoryUpgradeable.sol:39:19: Error: Code contains empty blocks
PairFactoryUpgradeable.sol:40:40: Error: Visibility modifier must be
first in list of modifiers
PairFactoryUpgradeable.sol:112:35: Error: Use double quotes for
string literals
PairFactoryUpgradeable.sol:114:39: Error: Use double quotes for
string literals
PairFactoryUpgradeable.sol:115:64: Error: Use double quotes for
string literals

AdminUpgradeabilityProxy.sol

import.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy the r
semver requirement
import.sol:8:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
import.sol:8:122: Error: Code contains empty blocks

VeArtProxyUpgradeable.sol

VeArtProxyUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does
not satisfy the r semver requirement
VeArtProxyUpgradeable.sol:12:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
VeArtProxyUpgradeable.sol:12:19: Error: Code contains empty blocks
VeArtProxyUpgradeable.sol:14:39: Error: Visibility modifier must be
first in list of modifiers
VeArtProxyUpgradeable.sol:48:275: Error: Use double quotes for string
literals
VeArtProxyUpgradeable.sol:49:42: Error: Use double quotes for string
literals

FaucetToken.sol

FaucetToken.sol:3:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirement
FaucetToken.sol:8:5: Error: Explicitly mark visibility of state
FaucetToken.sol:10:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

