@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: VeZard Exchange

Website: hitps://vezard.exchange
Platform: ZkSync Era Chain

Language: Solidity
Date: May 8th, 2023

https://vezard.exchange/

Table of contents

IO UG ON o e 4
Project BacKgroUNG ... e 4
AUAIE S0P . et 5
Claimed Smart Contract Featureso e 7
AUAIt SUMMIAIY e et e 11
Technical QUICK SEats ..o 12
Code QUAIIRY ... e 13
DOoCUMENTAtION ... e 13
L LT o) D= o= o [T o [13
ASIS OVEIVIEW ..o e 14
Severity DefinitioNS ... 26
AUIt FINAINGS .. e 27
@7 0] o T3 1017 o 32
(@ 0] 1Y/ =1 1 T To [o] 0T) 33
DISCIAIMEIS ... 35
Appendix
o Code FIOW Diagramooiiiii e 36
o Slither RESUIS LOQG ...uvieiiiii i e 53
e Solidity staticanalysis ..o, 61
® SOININt LiNter .o e 77

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by VeZard Exchange to perform the Security audit of the
VeZard Exchange smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 8th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e veZard Exchange is built on the zkSync Era network using a governance model
called the ve(3,3) system. Purpose of the ve(3,3) structure is to create an
environment where users can actively choose to participate and establish a cycle of
growth that reinforces itself over time.

e The veZard Exchange contract inherits IERC20, TransparentUpgradeableProxy,
SafeERC20, ReentrancyGuard, Ownable, ERC20, OwnableUpgradeable,
SafeMath, IERC721Metadata, IERC721Receiver standard smart contracts from the
OpenZeppelin library.

e These OpenZeppelin contracts are considered community audited and time tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
VeZard Exchange Smart Contracts

Platform ZkSync Era Chain / Solidity

File 1 Bribes.sol

File 1 MD5 Hash 22930973B1EE7005CB48E9400E4CBC4D

File 2 FaucetToken.sol

File 2 MD5 Hash 3CFACF5B2D6E9CCB150911A49ADE6G7D7

File 3 GaugeV2.sol

File 3 MD5 Hash 7A3F2E2A748573CDFB8654A714DCCCFO

File 4 MinterUpgradeable.sol

File 4 MD5 Hash B28E301E4724B23D7396651183B13C2C

File 5 Multicall.sol

File 5 MD5 Hash B31A5401C236F10109672BC3D903C9DA

File 6 Pair.sol

File 6 MD5 Hash 11E9CF8F52D2324B3E1A964D55EFF83C

File 7 PairFees.sol

File 7 MD5 Hash FBEB940CDE074480C2DCBA9D1BF404F1

File 8 RewardsDistributor.sol

File 8 MD5 Hash 708D98975ECODB4DE3ED85C9803BA155

File 9 RouterV2.sol

File 9 MD5 Hash DF5BF916C6DAA34A4D3FAEBFF7BB5AF5

File 10 SwapLibrary.sol

File 10 MD5 Hash B6DBF1D160C62F3CA689D0E38E457075

File 11 VoterV2.sol

File 11 MD5 Hash 111C4D010010BA87915329BC488C63DA

File 12 VotingEscrow.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 12 MD5 Hash FC2AF6575DE1BB2344088C7C123383F4
File 13 Zard.sol

File 13 MD5 Hash 3596FD4176DBCC8F6FB40C53CB2BB6F4
File 14 BribeFactoryV2.sol

File 14 MD5 Hash 11AE5E800B94E9650FD617985B91BACY
File 15 GaugeFactoryV2.sol

File 15 MD5 Hash 10EF53C0D003B7CD9B16E94E981EDD80
File 16 PairFactoryUpgradeable.sol

File 16 MD5 Hash B60C422FA97157362B396A6F31A73BE2
File 17 AdminUpgradeabilityProxy.sol

File 17 MD5 Hash 9DB89ED56B653E26510B7013EFFE47B0
File 18 VeArtProxyUpgradeable.sol

File 18 MD5 Hash 5074D64AF05AB31C410E9431B02FFB65
Audit Date May 8th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 Bribes.sol

e Rewards are released over 7 days

Owner has control over following functions:
e Recover the ERC20 token address with the

amount.
e Set the Voter address.
e Setthe Reward address.
e Set the Minter address.
e Add a reward token address.

e Set a new owner address.

YES, This is valid.

File 2 GaugeV2.sol

Owner has control over following functions:

e Set the distribution address.
e Set the Gauge rewarder address.

e Set the extra rewarder pid.

YES, This is valid.

File 3 import.sol
e Import contract can inherit the

TransparentUpgradeableProxy contract.

YES, This is valid.

File 4 Multicall.sol
e Multicall - Aggregate results from multiple read-only

function calls.

YES, This is valid.

File 5 MinterUpgradeable.sol
Other Specifications:
e MinterUpgradeable is used to codify the minting
rules as per ve(3,3), abstracted from the token to
support any token that allows minting.

e Maximum Team rate: 5%

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Allows minting once per week.

wner h ntrol over following functions:
e Set ateam address.
e Accept the team.
e Set a voter address.
e Set ateam rate.
e Set an emission rate value.
e Set a Rebase rate value.

e Set a reward distributor address.

File 6 Pair.sol
Other Specifications:
e Decimals: 18
e Minimum Liquidity: 1000

e Capture oracle reading every 30 minutes.

YES, This is valid.

File 7 PairFees.sol
e Pair Fees contract is used as a 1:1 pair relationship
to split out fees, this ensures that the curve does

not need to be modified for LP shares.

Owner Specifications:

e claimFeesFor us allow the pair to transfer fees to

users.

YES, This is valid.

File 8 RewardsDistributor.sol
e Instant Rate: 20
Owner has control over following functions:
e check the checkpoint token.
e Set the Depositor.
e A new owner address can be set by the current
Owner.
e Withdraw ERC20 tokens from the contract.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Set an Instant rate.

File 9 RouterV2.sol

Owner has control over following functions:

e RouterV2 : Support for Fee-on-Transfer Tokens.

e Only accept ETH via fallback from the WETH

contract.

YES, This is valid.

File 10 SwapLibrary.sol
e Swaplibrary is used to fetch pair addresses by

token addresses, sort tokens.

YES, This is valid.

File 11 VoterV2.sol
e Rewards are released over 7 days

Owner has control over following functions:

e Set a minter address.
e Set a Governor address.

e Set an emergency council address.

YES, This is valid.

File 12 VotingEscrow.sol
e Name: veZard
e Symbol: veZARD
e Decimals: 18
e version: 1.0.0

Other Specifications:

e \oting Escrow: veNFT implementation that

escrows ERC-20 tokens in the form of an ERC-721

NFT.

Owner has control over following functions:

e Set ateam address.

e Set an art proxy address.

YES, This is valid.

File 13 Zard.sol

e Name: Zard Token

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Symbol: ZARD
e Decimals: 18

wner h ntrol over following functions:
e Set a minter address.

e Owner can mint a token.

File 14 BribeFactoryV2.sol

Owner has control over following functions:

e \/oter owners can create a new Bribe.
e Voter address can be set by Owner.

e Owner can add a new reward address.

YES, This is valid.

File 15 GaugeFactoryV2.sol

Owner has control over following functions:
e Distribution address can be set by Owner.

YES, This is valid.

File 16 PairFactoryUpgradeable.sol
e Maximum Fee: 0.25%
e Stable Fee: 0.02%
e \olatile Fee: 0.2%

Owner has control over following functions:

e Set a Pauser address.
e Seta dibs address.

e Set afee.

YES, This is valid.

File 17 VeArtProxyUpgradeable.sol
e \VeArtProxyUpgradeable contract can inherit

OwnableUpgradeable contract.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and some very low level issues.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result

Contract Solidity version not specified Passed

Programming Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Features claimed Passed

Other programming issues Passed

Code Function visibility not explicitly declared Passed

Specification Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Unused code Passed

Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop

High consumption ‘storage’ storage Passed

Assert() misuse Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 18 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the VeZard Exchange Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the VeZard Exchange Protocol.

The VeZard Exchange team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a VeZard Exchange Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://vezard.exchange which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://vezard.exchange/

AS-IS overview

Bribes.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 reentrancyGuardEntered internal Passed No Issue
6 | onlyOwner modifier Passed No Issue
7 | getEpochStart read Passed No Issue
8 | getNextEpochStart read Passed No Issue
9 [addReward write Passed No Issue
10 | rewardsListLength external Passed No Issue
11 | totalSupply external Passed No Issue
12 | totalSupplyAt external Passed No Issue
13 | balance OfAt read Passed No Issue
14 | balanceOf read Passed No Issue
15 | earned read Passed No Issue
16 | earned internal Passed No Issue
17 | rewardPerToken read Passed No Issue
18 | deposit external Passed No Issue
19 | withdraw write Passed No Issue
20 | getReward external Passed No Issue
21 | getRewardForOwner write Passed No Issue
22 | notifyRewardAmount external Passed No Issue
23 | recoverERC20 external Passed No Issue
24 | setVoter external | access only Owner No Issue
25 | setMinter external | access only Owner No Issue
26 | addRewardToken external | access only Owner No Issue
27 | setOwner external | access only Owner No Issue

GaugeV2.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonReentrant modifier Passed No Issue
3 nonReentrantBefore write Passed No Issue
4 nonReentrantAfter write Passed No Issue
5 | reentrancyGuardEntered internal Passed No Issue
6 | onlyOwner modifier Passed No Issue
7 | owner read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 checkOwner internal Passed No Issue
9 | renounceOwnership write access only Owner No Issue
10 | transferOwnership write access only Owner No Issue
11 | transferOwnership internal Passed No Issue
12 | updateReward modifier Passed No Issue
13 | onlyDistribution modifier Passed No Issue
14 | setDistribution external | access only Owner No Issue
15 | setGaugeRewarder external | access only Owner No Issue
16 | setRewarderPid external | access only Owner No Issue
17 | totalSupply read Passed No Issue
18 | balanceOf external Passed No Issue
19 | lastTimeRewardApplicable read Passed No Issue
20 | rewardPerToken read Passed No Issue
21 | earned read Passed No Issue
22 | rewardForDuration external Passed No Issue
23 | depositAll external Passed No Issue
24 | deposit external Passed No Issue
25 | deposit internal Passed No Issue
26 | withdrawAll external Passed No Issue
27 | withdraw external Passed No Issue
28 | withdraw internal Passed No Issue
29 | withdrawAllAndHarvest external Passed No Issue
30 | getReward write Passed No Issue
31 | periodFinish external Passed No Issue
32 | notifyRewardAmount external access only No Issue
Distribution
33 | claimFees external Passed No Issue
34 | claimFees internal Passed No Issue
import.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ifAdmin modifier Passed No Issue
3 [admin external access if Admin No Issue
4 | implementation external access if Admin No Issue
5 | changeAdmin external access if Admin No Issue
6 | upgradeTo external access if Admin No Issue
7 | upgradeToAndCall external access if Admin No Issue
8 admin internal Passed No Issue
9 beforeFallback internal Passed No Issue
10 | requireZeroValue write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

MinterUpgradeable.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue

Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing

4 [onlyOwner modifier Passed No Issue
5 [owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write initializer No Issue
11 initialize external Passed No Issue
12 | setTeam external Passed No Issue
13 | acceptTeam external Passed No Issue
14 | setVoter external Passed No Issue
15 | setTeamRate external Passed No Issue
16 | setEmission external Passed No Issue
17 | setRebase external Passed No Issue
18 | circulating supply read Passed No Issue
19 | calculate emission read Passed No Issue
20 | weekly emission read Passed No Issue
21 | circulating emission read Passed No Issue
22 | calculate rebate read Passed No Issue
23 | update period external Passed No Issue
24 | check external Passed No Issue
25 | period external Passed No Issue
26 | setRewardDistributor external Passed No Issue

Pair.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | lock modifier Passed No Issue
3 | observationLength external Passed No Issue
4 [lastObservation read Passed No Issue
5 [metadata external Passed No Issue
6 | tokens external Passed No Issue
7 | isStable external Passed No Issue
8 | claimFees external Passed No Issue
9 update0 internal Passed No Issue
10 | update1 internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

11 | updateFor internal Passed No Issue
12 | getReserves read Passed No Issue
13 | update internal Passed No Issue
14 | currentCumulativePrices read Passed No Issue
15 | current external Passed No Issue
16 | quote external Passed No Issue
17 | prices external Passed No Issue
18 | sample read Passed No Issue
19 | mint external Passed No Issue
20 | burn external Passed No Issue
21 | swap external Passed No Issue
22 | skim external Passed No Issue
23 | sync external Passed No Issue
24 | f internal Passed No Issue
25| d internal Passed No Issue
26 | get y internal Passed No Issue
27 | getAmountOut external Passed No Issue
28 | getAmountOut internal Passed No Issue
29 | k internal Passed No Issue
30 | mint internal Passed No Issue
31| burn internal Passed No Issue
32 | approve external Passed No Issue
33 | transfer external Passed No Issue
34 | transferFrom external Passed No Issue
35 | transferTokens internal Passed No Issue
36 | safeTransfer internal Passed No Issue
37 | safeApprove internal Passed No Issue

PairFees.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 safeTransfer internal Passed No Issue
3 | claimFeesFor external Passed No Issue

RewardsDistributor.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | timestamp external Passed No Issue
3 checkpoint token internal Passed No Issue
4 [checkpoint token external Passed No Issue
5 find timestamp epoch internal Passed No Issue
6 | find timestamp user epoch internal Passed No Issue
7 | ve for at external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 checkpoint total supply internal Passed No Issue
9 [checkpoint total supply external Passed No Issue
10 | claim internal Passed No Issue
11 | claimable internal Passed No Issue
12 | claimable external Passed No Issue
13 | claim external Passed No Issue
14 | claim many external Passed No Issue
15 | setDepositor external Passed No Issue
16 | setOwner external Passed No Issue
17 | withdrawERC20 external Passed No Issue
18 | setinstantRate external Passed No Issue
Router.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ensure modifier Passed No Issue
3 | receive external Passed No Issue
4 | sortTokens write Passed No Issue
5 | pairFor read Passed No Issue
6 | quoteLiquidity internal Passed No Issue
7 | getReserves read Passed No Issue
8 | getAmountOut external Passed No Issue
9 [getAmountsOut read Passed No Issue
10 | isPair external Passed No Issue
11 | quoteAddLiquidity external Passed No Issue
12 | addLiquidity internal Passed No Issue
13 | quoteRemoveliquidity external Passed No Issue
14 | addLiquidity external Passed No Issue
15 | addLiquidityETH external Passed No Issue
16 | removeLiquidity write Passed No Issue
17 | removeliquidityETH write Passed No Issue
18 | removelLiquidityWithPermit external Passed No Issue
19 | removeLiquidityETHWithPer | external Passed No Issue
mit
20 | swap internal Passed No Issue
21 | swapExactTokensForTokens | external Passed No Issue
Simple
22 | swapExactTokensForTokens | external Passed No Issue
23 | swapExactETHForTokens external Passed No Issue
24 | swapExactTokensForETH external Passed No Issue
25 | safeTransferETH internal Passed No Issue
26 | safeTransfer internal Passed No Issue
27 | safeTransferFrom internal Passed No Issue
28 | removeliquidityETHSupporti write Passed No Issue

ngFeeOnTransferTokens

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

29 [removelLiquidityETHWithPer | external Passed No Issue
mitSupportingFeeOnTransfer
Tokens
30 | _swapSupportingFeeOnTran | internal Passed No Issue
sferTokens
31 | swapExactTokensForTokens | external Passed No Issue
SupportingFeeOnTransferTo
kens
32 | swapExactETHForTokensSu | external Passed No Issue
pportingFeeOnTransferToken
S
33 | swapExactTokensForETHSu | external Passed No Issue
pportingFeeOnTransferToken
)
SwaplLibrary.sol
Functions
Sl. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 f internal Passed No Issue
3 d internal Passed No Issue
4 get y internal Passed No Issue
5 | getTradeDiff external Passed No Issue
6 | getTradeDiffSimple external Passed No Issue
7 | getTradeDiff2 external Passed No Issue
8 | getTradeDiff3 external Passed No Issue
9 calcSample internal Passed No Issue
10 | getTradeDiff external Passed No Issue
11 | getSample external Passed No Issue
12 | getMinimumValue external Passed No Issue
13 | getAmountOut external Passed No Issue
14 | getAmountOut internal Passed No Issue
15| Kk internal Passed No Issue
16 | getNormalizedReserves external Passed No Issue
17 | pairFor read Passed No Issue
18 | sortTokens write Passed No Issue
VeArtProxyUpgradeable.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | _Ownable_init internal access only No Issue
Initializing

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 [onlyOwner modifier Passed No Issue
5 |[owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write initializer No Issue
11 | toString internal Passed No Issue
12 | tokenURI external Passed No Issue
VoterV2.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 Ownable init internal | access only Initializing No Issue
3 Ownable init unchained | internal | access only Initializing No Issue
4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 ReentrancyGuard init internal | access only Initializing No Issue
11 | __ ReentrancyGuard_init_u | internal | access only Initializing No Issue
nchained
12 | nonReentrant modifier Passed No Issue
13 | nonReentrantBefore write Passed No Issue
14 | nonReentrantAfter write Passed No Issue
15 | reentrancyGuardEntered internal Passed No Issue
16 | initialize write Anyone can initialize Refer to audit
contract findings
17 | _initialize external Infinite loop Refer to audit
findings
18 | setMinter external Passed No Issue
19 | setGovernor write Passed No Issue
20 | setEmergencyCouncil write Passed No Issue
21 | reset external Passed No Issue
22 | reset internal Infinite loop Refer to audit
findings
23 | poke external Infinite loop Refer to audit
findings
24 | vote internal Infinite loop Refer to audit
findings
25 | vote external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

26 | whitelist write Passed No Issue

27 | whitelist internal Passed No Issue

28 | createGauge external Passed No Issue

29 | killGauge external Passed No Issue

30 | reviveGauge external Passed No Issue

31 | length external Passed No Issue

32 | poolVotelLength external Passed No Issue

33 | notifyRewardAmount external Passed No Issue

34 | updateFor external Passed No Issue

35 | updateForRange write Infinite loop Refer to audit
findings

36 | updateAll external Passed No Issue

37 | updateGauge external Passed No Issue

38 | updateFor internal Passed No Issue

39 | claimBribes external Infinite loop Refer to audit
findings

40 | claimFees external Infinite loop Refer to audit
findings

41 | distributeFees external Infinite loop Refer to audit
findings

42 | distribute write Passed No Issue

43 | distributeAll external Passed No Issue

44 | distribute write Passed No Issue

45 | distribute write Passed No Issue

46 | safeTransferFrom internal Passed Fixed

47 | setBribeFactory external Passed No Issue

48 | setGaugeFactory external Passed Fixed

49 | setPairFactory external Passed Fixed

50 | killGaugeTotally external Passed No Issue

51 | whitelist write Passed No Issue

52 | initGauges write Anyone can Refer to audit

initGauges, Infinite loop findings
53 | increaseGaugeApprovals external Passed Fixed
54 | setNewBribe external Passed Fixed
VotingEscrow.sol
Functions

SI. Functions Type Observation Conclusion

1 | constructor write Passed No Issue

2 [nonreentrant modifier Passed No Issue

3 [setTeam external Passed No Issue

4 | setArtProxy external Passed No Issue

5 [tokenURI external Passed No Issue

6 | ownerOf read Passed No Issue

7 balance internal Passed No Issue

8 | balanceOf external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

9 | getApproved external Passed No Issue
10 | isApprovedForAll external Passed No Issue
11 | approve write Passed No Issue
12 | setApprovalForAll external Passed No Issue
13 | clearApproval internal Passed No Issue
14 | isApprovedOrOwner internal Passed No Issue
15 | isApprovedOrOwner external Passed No Issue
16 | transferFrom internal Passed No Issue
17 | transferFrom external Passed No Issue
18 | safeTransferFrom external Passed No Issue
19 | isContract internal Passed No Issue
20 | safeTransferFrom write Passed No Issue
21 | supportsinterface external Passed No Issue
22 | tokenOfOwnerBylndex external Passed No Issue
23 | addTokenToOwnerList internal Passed No Issue
24 | addTokenTo internal Passed No Issue
25 | mint internal Passed No Issue
26 | _removeTokenFromOwnerLi | internal Passed No Issue
st
27 | removeTokenFrom internal Passed No Issue
28 | burn internal Passed No Issue
29 | get last user slope external Passed No Issue
30 | user point history ts external Passed No Issue
31 [locked end external Passed No Issue
32 | checkpoint internal Passed No Issue
33 | deposit for internal Passed No Issue
34 | block number external Passed No Issue
35 | checkpoint external Passed No Issue
36 | deposit for external Passed No Issue
37 | create lock internal Passed No Issue
38 | create lock external Passed No Issue
39 [create lock for external Passed No Issue
40 | increase amount external Passed No Issue
41 | increase unlock time external Passed No Issue
42 | withdraw external Passed No Issue
43 | find block epoch internal Passed No Issue
44 | balanceOfNFT internal Passed No Issue
45 | balanceOfNFT external Passed No Issue
46 | balanceOfNFTAt external Passed No Issue
47 | balanceOfAINFT internal Passed No Issue
48 | balanceOfAINFT external Passed No Issue
49 | totalSupplyAt external Passed No Issue
50 [supply at internal Passed No Issue
51 | totalSupply external Passed No Issue
52 | totalSupplyAtT read Passed No Issue
53 | setVoter external Passed No Issue
54 | voting external Passed No Issue
55 | abstain external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

56 | attach external Passed No Issue
57 | detach external Passed No Issue
58 [merge external Passed No Issue
59 | split external Passed No Issue
60 | delegates read Passed No Issue
61 | getVotes external Passed No Issue
62 | getPastVotesIindex read Passed No Issue
63 | getPastVotes read Passed No Issue
64 | getPastTotalSupply external Passed No Issue
65 | moveTokenDelegates internal Passed No Issue
66 | findWhatCheckpointToWrite | internal Passed No Issue
67 | moveAllDelegates internal Passed No Issue
68 | delegate internal Passed No Issue
69 [delegate write Passed No Issue

Zard.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | setMinter external Passed No Issue
3 | approve external Passed No Issue
4 mint internal Passed No Issue
5 transfer internal Passed No Issue
6 | transfer external Passed No Issue
7 | transferFrom external Passed No Issue
8 | mint external Passed No Issue

BribeFactoryV2.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue

Initializing
3 | _Ownable_init_unchained internal access only No Issue
Initializing

4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write Passed No Issue
11 | createBribe external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

12 | setVoter external Passed No Issue
13 | addReward external Passed No Issue
14 | addRewards external Passed No Issue
GaugeFactoryV2.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 | onlyOwner modifier Passed No Issue
5 | owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | initialize write Passed No Issue
11 | createGaugeV?2 external Passed No Issue
12 | setDistribution external | access only Owner No Issue
PairFactoryUpgradeable.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | _ Ownable_init internal access only No Issue
Initializing
3 | __Ownable_init_unchained internal access only No Issue
Initializing
4 | onlyOwner modifier Passed No Issue
5 |[owner read Passed No Issue
6 checkOwner internal Passed No Issue
7 | renounceOwnership write access only Owner No Issue
8 | transferOwnership write access only Owner No Issue
9 transferOwnership internal Passed No Issue
10 | onlyManager modifier Passed No Issue
11 | initialize write Passed No Issue
12 | allPairsLength external Passed No Issue
13 | pairs external Passed No Issue
14 | setPause external Passed No Issue
15 | setFeeManager external access only No Issue
Manager
16 | acceptFeeManager external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

17 | address _dibs external access only No Issue
Manager

18 | setNftFeeHandler external access only No Issue
Manager

19 | setFee external access only No Issue
Manager

20 | getFee read Passed No Issue

21 | pairCodeHash external Passed No Issue

22 | getlnitializable external Passed No Issue

23 | createPair external Passed No Issue

24 | setSecondFee external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Anyone can initialize contract: VoterV2.sol
The initialize function is public and accessible to anyone. Operator is not set during

contract deployment, So any user can become an operator

Resolution: We suggest always making sure that the contract should be initialized by the

owner.

(2) Anyone can initGauges : VoterV2.sol
The initGauges is a public function, emergencyCouncil can execute this unlimited times.

This might lead to losing vote data.

Resolution: We suggest to re-check the logic and usage limit for this function.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Infinite loop: VoterV2.sol
In below functions ,for loops do not have upper length limit , which costs more gas:
e claimBribes
e claimFees
e distributeFees
e initGauges
e updateForRange

e poke

_reset

_initialize

Resolution: Upper bound poolinfo.length should have a certain limit in for loops.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new
account.

e checkOwner: Thrown when the sender is not the owner.

Bribes.sol
e addReward: Owner can add a new reward address.
e recoverERC20: Owner can recover the ERC20 token address with the amount
e setVoter: Voter address can be set by the Owner.
e setMinter: Minter address can be set by the Owner.
e addRewardToken: Reward token address can be added by the Owner.

e setOwner: A new owner address can be set by the Owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

GaugeV2.sol
e setDistribution: Distribution address can be set by the Owner.
e setGaugeRewarder: Gauge rewarder address can be set by the Owner.

e setRewarderPid: Extra rewarder pid can be set by the Owner.

MinterUpgradeable.sol
e setTeam: Team address can be set by the Owner.
e acceptTeam: Owner can accept the team.
e setVoter: Voter address can be set by the Owner.
e setTeamRate: Team rate value can be set by the Owner.
e setEmission: Emission rate can be set by the Owner.
e setRebase: Rebase rate can be set by the Owner.

e setRewardDistributor: Reward Distributor address can be set by the Owner.

RewardsDistributor.sol
e setDepositor: The Depositor can be set by the Owner.
e setOwner: A new owner address can be set by the current Owner.
e withdrawERC20: Owner can withdraw ERC20 tokens from the contract.

e setinstantRate: Owner can set an instant rate.

VoterV2.sol
e _initialize: Minter owner or EmergencyCouncil owner can initialize token addresses.
e setMinter: EmergencyCouncil owner can set minter address.
e setGovernor: Owner can set a new governor address.
e setEmergencyCouncil: Owner can set a new emergencyCouncil address.
e whitelist: Owner can add token address in whitelist.
e killGauge: Owner can kill gauge address.
e reviveGauge: Owner can revive gauge address.
e setBribeFactory: Owner can set a bribe factory address.
e setGaugeFactory: Owner can set a gauge factory address.
e setPairFactory: Owner can set a pair factory address.
e killGaugeTotally: Owner can kill gauge addresses.
e whitelist: Owner can add token address in the whitelist.

e initGauges: Owner can initialize gauges addresses.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e increaseGaugeApprovals: Owners can increase gauge approval addresses.

e setNewBribe: Owners can set new bribe addresses.

VotingEscrow.sol
e setTeam: Team address can be set by the Owner.
e setArtProxy: Proxy address can be set by the Owner.
e setVoter: Voter address can be set by the team Owner.
e voting: Voting tokenld can be set by the Voter Owner.
e abstain: Abstain tokenld can be set by the Voter Owner.
e attach: Attach tokenld can be set by the Voter Owner.
e detach: Detach tokenld can be set by the Voter Owner.

e delegate: Delegate votes from owner to "delegatee’.

BribeFactoryV2.sol
e createBribe: Voter owners can create a new Bribe.
e setVoter: Voter address can be set by the Owner.
e addReward: Owner can add a new reward address.

e addRewards: Owner can add multiple new reward addresses.

GaugeFactoryV2.sol

e setDistribution: Distribution address can be set by Owner.

PairFactoryUpgradeable.sol
e setPause: Pauser address can be set by the Owner.
e setFeeManager: Manager Owner can set a Fee Manager address.
e acceptFeeManager: Manager Owner can accept fee manager.
e setDibs: Manager Owner can set dibs address.
e setNftFeeHandler: Fee Manager Owner can set Nft fee.
e setSecondFee: Fee Manager Owner can set a second fee.

e setFee: Manager Owner can set a fee.

VeArtProxyUpgradeable.sol

e checkOwner: Thrown when the sender is not the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new
account.
Import.sol
e admin: Admin can return the current admin address.
e implementation: Admin can return the current implementation.
e changeAdmin: Admin can change the admin of the proxy.
e upgradeTo: Admin can upgrade the implementation of the proxy.
e upgradeToAndCall: Admin can upgrade the implementation of the proxy, and then
call a function from the new implementation as specified data.
PairFees.sol
e claimFeesFor: Owner can allow the pair to transfer fees to users.
Zard.sol
e setMinter: Owner can set the minter address.
e mint: Owner can mint a token from the address.
Multicall.sol
e aggregate: Owner can aggregate results from multiple function calls.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests
based on given objects as files. We had observed some informational severity issues in
the smart contracts, but those are not critical ones. So, the smart contracts are ready for

the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ IMinter

@ update_perioc()
@ Ccheck()

@ Qperiod()

@ Quactive_period()

(&) matn

Code Flow Diagram - VeZard Exchange

@ IVotingEscrow

@ create_lock_for()

@ Qlocked()

@ QtokenOfOwnerBylndex()
@ Qtoken()

@ team()

@ Qepoch()

@ O point_history()

@ Quuser_point_history()
@ Quuser_point_epoch()
@ QownerOf()

@ QisApprovedOrOwner()
@ transferFrom{)

@ Qvoted()

@ Quattachments()

@ voting()

@ abstain()

@ attach()

@ detach()

@ checkpoirt()

@ deposit_for()

@ QhalanceOfNFT()

@ QbalanceOf()

@ QotalSupply()

@ Qsupply()

@ Quecimals()

@ console

< address CONSOLE_ADDRESS

B Q_sendLogPayload()
< Qlogl)

© Qloglnt()

< QlagUint()

© QlogStringl)
< QlogBool()

< QogAddress()
0 QlogBytes()
 QlogBytes1()
< QogBytes2()
 QlogBytes3()
< QlogBytes4()
¥ QlogBytess()
< QlogBytese()
 QlogBytesT()
¥ QlogBytess()
< QlogBytesa()

< Qmax()
< aming)
< Qsgrt()
< Qehrt()

< QlogBytes10()
© QlogBytes11()
< QogBytes2()
< QogBytes13()
¥ QlogBytes14()
< QlogBytes15()
< QlogBytes16()
© QlogBytes17()
¥ QlogBytes18()
0 QlogBytes19()
© QlogBytes20()
< QogBytes21()
< QlogBytes22()
© QlogBytes23()
¥ QlogBytes24()
< QlogBytes25()
© QlogBytes26()
¥ QlogBytes27()
O QlogBytes28()
< QlogBytes29()
© QlogBytes30()
< QogBytes31()

Bribes Diagram

(©) Brie

@ woter

Q_wel)

Qugovernor()
Qgauges()
Qfactory()

Cyminter()
QemergencyCouncil()
QisWhitelisted()
notifyRewardAmount()
distribute()

distribute Al
distributeFees()
Qinternal_kribes()
Qexternal_bribes()
QusedWeights{)
Qlast'/oted()
Qpoolvote()
Quotes()
Qpoolvotelength()

o000 O0O0OOCOOOOOOOROOO

uirt256 WEEK

uint256 firstBribeTimestamp
address=>ma|
address==bool isRewardToken

address rewardTokens

address voter

address bribeFactory

address minter

address ve

address owner

string TYPE

uint256=>mapping address=>uint256 userTi

ReentrancyGuard

WSafeERC20 for IERC20

ing uint==Reward rewardData

@ Ownable

uint25

uint256 _totalSupply
uint256=>mapping uint 256==Lint256 _balances

20000000090 C0R00POOQ0O® (000000000000 00

__constructor__()
QgetEpochStart()
QgetNextEpochStart()
addReward()

A rewardsListLength()
QtotalSupply()
QtotalSupply At()

O balanceOfAL()
QbalanceOf()
Qearned()
Q,_earned()
QrewardPerToken()
_deposit()
_withdraw()
getReward()
getRewardForOwner()
notifyRewardAmount()
recoverERC20()
setVoter()

setMinter()
addRewardToken()
setOwner()

Context

O address _owner

@ _ _constructor__ ()
@ Quowner()

@ O, _checkOwner()

@ renounceCwnership()
@ transferOwnership()
@ _transferOwnership()

7
|/

foriERC20 |

@ IERC20

(®) sarecrc20

© ReentrancyGuard

mnAddress for address

@ QotalSupply()
@ QbalanceOf()
@ transfer()
@ Quallowance()
@ approve()
@ transferFrom()

< QlogBytes32()

< safeTransfer()

@ safeTransferFrom()

< safeApprove()

© safelncreaseAllowance()
“ safeDecreasedllowance()
B _callOptionalReturn()

O uirt256 _NOT_ENTERED
O uirt256 _ENTERED
O uint256 _status

@ __constructor__()

B _nonReentrantBefore()

B _nonReentrantAfter()

< Q_reentrancyGuardEntered()

:for address
\wi

V
@ Address

< QisContract()

< gendvalue()

< functionCall()

@ functionCallWith'/alue()
< QfunctionStaticCall()
< QuerifyCallResult()

© (;cnte:d

< a_msgSender()
< ,_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(@) et

@ 1Bribe

< Qmax()
< amin()
< Qsgrt()
< Qehrt)

@ _deposit()

@ _withdraw()

@ getRewardForOwner()
@ notifyRewardAmount()
@ Qleft()

@ IERC20

@ CetalSupply()
@ Qhalance0f()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

@ IRewarder|

@ onRewarcl()

GaugeV2 Diagram

@ rPair

© Qmetadata()

@ claimFees()

© Qtokens()

@ transferFrom()
@ swap()

@ burn()

@ mint()

© QgetReserves()
© QgetAmountOut()
@ SQname()

© Qsymbol()

© QotalSupply()
@ Qdecimals()

© Qclaimallen()
© Qclaimabled()
© QisStable()

@ GaugeV2
IGauge

ReentrancyGuard
Ownable

mnSateMath for yint256
WSafeERC20 for IERCZ0

© hool isForPair

© [ERC20 rewardToken

© [ERC20 _VE

© IERC20 TOKEN

© gddress DISTRIBUTION

© address gaugeRewarder

© gddress internal_bribe

© address external_kribe

© uint256 rewarderPid

© uint258 DURATION

© uint256 periodFinish

© uint256 rewardRate

© uirt256 lastUpdateTime

© uint256 rewardPerTokenStored
© gddress==Lint256 userRewardPerTokenPaid
© address==Lint256 rewards

© uint256 _totalSupply

© gddress==UIMt256 _halances

@ 1Gauge

@ __constructor__()

@ setDistribution()

@ setGaugeRewarder()
@ setRewarderPid()

@ QtotalSupply()

@ Qhalancefi)

@ QastTimeRewardApplicable()
@ QrewardPerToken()
@ Qearned()

@ QrewardForDuration()
@ depositAl()

@ deposit()

/| © _deposit()

@ withdrawaAl()
@ withcraw()

© _withdraw()

@ withdrawAlAndHarvest()
@ getReward()

@ Q_periodFinish()

@ notifyRewardAmount()

@ claimFees()

i

< _claimFees()
T

}

for vint256 for IERC20

v

© Ownable

@ notifyRewardAmount()
@ getReward()

@ claimFees()

@ SrewardRate)

@ QbalanceOf()

@ QisForPair()

@ QtotalSupply()

@ Qearned()

@ setDistribution()

& QryAdd()
& QrySub()
< QtryMul(y
< QiryDiv()
< QtryMod()
< Qadd()
& Qsub()
< amul()
< Qiv()
< Qmod()

@ SafeERC20

inAddress for address
< safeTransfer()

Context

O address _owner

@ ReentrancyGuard

< safeTransferFrom()
< gafelpprove()
< safelncreaseAllowance()
< safeDecreaseAllowance()
B _callOptionalReturn()

T

@ __constructor__()
@ Qowner()

& Q,_checkOwner()

@ renounceOwnership()
@ transferCwnership()
< _transferOwnership()

O uint256 _NOT_ENTERED
O uint256 _ENTERED
O uint256 _status

@ __constructor__()

B _ronReertrantBefore()

B _nonReentrantAfter()

@ 0,_reentrancyGuardEntered()

I
I
ifor address
]

vl

@ Address

© QisContract()

< sendvalue()

< functionCall{)

< functionCallithalue()
< O functionStaticCall()
< QuerifyCalResutt()

© C.ontext

< Q_msgSender()
& &_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

MinterUpgradeable Diagram

@ IRewardsDistributor

@ zara

@ checkpoint_token()

@ Qvoting_escrowi)

@ checkpoint_total_supply()
@ Qelaimable()

o QtotalSupply()
@ QbalanceOf()
@ approvel)

@ transfer()

@ transferFrom()
o mint()

@ minter()

@ IVoter

o Q_vel)

@ Qgovernor()

@ Qgauges()

@ Qfactory()

@ Qminter()

@ QemergencyCouncil()
® Qis\Whitelisted()

@ notifyReward Amourt()
@ distribute()

@ distributeAll()

@ distributeFees()

@ Qinternal_kribes()

@ Qexternal_bribes()
@ Qusedeights()

® QastVoted()

@ Qpoolvote()

@ Quotes()

@ QpoolveteLength()

© MinterUpgradeable

@ IVotingEscrow

© create_lock_for()

@ Qlocked()

@ QiokenOfOwnerByindexi)
@ Qtoken()

@ team()

@ Qepoch()

@ Qpoint_history()

@ Quser_point_history()
@ Quser_point_epochi)
@ QownerOf()

@ QisApprovedOrowner()
@ transferFrom()

@ Quvoted()

@ Quattachments()

@ woting()

@ ahstain()

@ attach()

@ detach()

@ checkpoint()

@ deposit_for()

@ QbalanceOfNFT()

@ QbalanceOf()

@ QtotalSupply()

© Qsupply()

@ Qdecimals()

IMinter
OwnablelUpgradeable

© bool isFirsthint

O uint EMISSION

O uint TAIL_EMISSION

@ uint REBASEMAX

© uint PRECISION

O uint teamRate

O uint MAX_TEAM _RATE
O wint WEEK

O uirt weekly

O uint active_period

© uint LOCK

< address _initislizer

O address team

© address pendingTeam
O |Zard _zard

O Voter _woter

O IWotingEscrow _ve
O |RewardsDistributor _rewards_distributor

@ _ _constructor__()

@ initialize()

@ _inttialize()

@ setTeam()

@ acceptTeam()

@ setVater()

@ setTeamRate()

@ zetEmission()

@ setRebase()

@& Qcirculating_supply()
@ Qcalculate_emission()
@ Qweekly_emission()
@ Qeirculating_emission()
® Qcalculate_rebate()
@ update_period()

@ Qecheck()

@ Qperiod()

@ setRewardDistrikutor()

(@) matn

@ AddressUpgradeable

< Cumax()
< auming)
& Gusgrt()
< Quehrt()

< QisContract()

< sendvalue()

< functionCall()

& functionCallith'alue()

© QfunctionStaticCall()

< QverifyCalResutFromTarget()
< QuerifyCalResult()

B Q_revert()

@ .f.r‘..\.fmfer

@ update_period{)
© Qcheck()
@ Qperioc()

@ Qactive_period()

I © OwnahblelUpgradeable

Initializable
ContextUpgradeable

O address _owner
O uint256 _ gap

“ __Ownable_init()

< _ Ownable_int_unchained()
@ Quowner()

< Q_checkQwner()

@ renounceXwnership()

@ transferOwnership()

< _transferOwnership()

© ContextUpgradeahble

Initializable

| O uirt256 __gap

& _ Context_init{)

| & __ Context_init_unchained()
| < O,_msgSender()

| © Q_msgData()

A ¥

J [
(©) nitialzable

O uintd _intialized
O bool _inttializing

< _disablelnitializers()
< O_getinitialized\ersion()
< Q_jsinitializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Multicall Diagram

@ Multicall

@ aggregate()

@ O getBthBalance()

@ O getBlockHash()

@ O, getlastBlockHashi)

@ QgetCurrentBlack Timestamp()
@ QgetCurrentBlackDifficutty()
o O getCurrentBlockGasLimit()
@ QgetCurrentBlackCoinbase()

PairFees Diagram

@ ERC20 © FPairFees

o QtotalSupply()
@ transfer()
@ Qdecimals()

< address pair
“ address tokend
 address token

@ Qsymbaol()

@ QhalanceOf() @ _constructor__()
@ transferFrom() < _safeTransfer()

@ Qallowance() @ claimFeesFor()

D@ approvel)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pair Diagram

(@) rPairFactory

(T) 1Paircaniee

@ hook()

fodoo00OOOODOOO

QallPairsLengthi)
isPair()

S allPairs()

QL pairCodeHash()
getPair()
createPair()
Qgetinitializakle()
Adibs()
SreferralFee()

S nftFeeHandler()
S nftFee()
QisPaused()
QgetFees()

(R) matn

IPair

string name

string symbol

uints decimals

bool stable

uirt totalSupply
address==mapping address=>uint allowance
address==uint balancelf
“Cuint MINIMURM_LISUIDIT
address tokenO

address token

address fees

address factory

uirt periocdSize

Dhservation ohservations
uint cecimals0

uint decimals1

uint reserved

uint reservel

uint blockTimestamplLast
uint reservelCumulativelast
uint reservel Cumulativel ast
uint index0

uirit inclesxl

address==uint supplylndexO
address==uint supplylndexi
address==uint claimabkled
address==uint claimable
uint _unlocked

0000000

< Oumax()
 Guming)
O Qsgri()
< Schrt()

__constructor___{)
QobservationLength()
QlastObservation()
Smetadatal)
Stokens()
QisStablel)
claimFees()
_updated)
_update1 ()
_updateFaor()
QgetReserves()
_update()

A ourrertCumulativePrices()
Sourrent()

S guote])

Qprices()

S sample)

ity

burmil)

swap()

shkim{)

sync()

Q_f()

S _d)

S _get_y()
QgetAmourtOut)

o _getAmountOut()

0000000000000 000 0000000000 |00000000000040000000

@ transfer()

@ transferFrom()

< _transferTokens()
< _safeTransfer()
< _safelpprove)

Il

@ rPair
@ Sumetadatal)
@ claimFees()
@ IERCZ20 @ PairFess @ Qtokens()
@ transferFromi)
@ IDibs g SitotalSupply () < address pair - =munrspf)
transfert) <* address token0 @ burni)
@ Qcecimals() % T o] @ i)
@ reward() @ Queymbol() — @ QgetReserves()
@ O findTotalRewardFor() @ Qbalanced() @ _ constructor__ () @ QgetAmourtOut()
@ transferFrom() < _safeTransfer() @ Qnamel)
@ Qallowance() @ claimFeesFor() @ Qsymbol)
@ approve) @ QtotalSupply ()
@ Qdecimals()
@ Qelaimable0])
@ Quelaimakblet ()
@ QisStable()

This is a private and confidential document. No part of this
be disclosed to third party without prior written permission

Email: audit@EtherAuthority.io

document should
of EtherAuthority.

RewardsDistributor Diagram

@ RewardsDistributor

@ IERC20

@ Math

< Cumax()
2 Cming)
< Qusgri()
< Quhrt()

@ QtotalSupply()
@ transfer()

@ Qdecimals()
@ Qesymbol()

@ Qbalancedf()
@ transferFromi)
@ Qallowance()
@ approve()

IRewardsDistributor

< uirt WEEK

uint start_time

uint time_cursor
vint==uint time_cursor_of
uint==uint user_espoch_of
uirt last_token_time

uint tokens_per_week
uint token_last_balance
uint ve_supply

address owner

address voting_escrow
address token

address depositor
Uirt256 instant_rate

@ IVotingEscrow

@ create_lock_for()

@ Qlocked()

@ QtokenOfOwnerBylndex()
@ Qtoken()

@ team()

@ Qepochi)

@ Qpoint_history()

@ Quser_point_history()
@ Quser_point_epochi()
@ QownerOf()

@ QizApprovedOrOwner()
@ transferFrom()

@ Quyoted()

@ O attachments()

@ wating()

@ abstain()

@ attach()

@ detachi)

@ checkpoint()

@ deposit_for()

@ QbalanceOfNFT()

@ Qbalancef()

@ QtotalSupply()

@ Qsupply()

@ Qdecimals()

__constructor__ ()
Ctimestamp)
_checkpoirt_token()
checkpoint_token()

2, _find_timestamp_epoch()
Q,_find_timestamp_user_epochi)
Que_for_at()
_checkpoint_total_supply()
checkpoirt_total_supply()

< _glaim()

& O_claimable()

@ Gclaimable()
@ claim()

@ claim_many()
@ setDepositor()
[]
[]
[]

e LUe 08 | 0000000000000

setOwner()
witherawERC20()
setinstantRate()

@ IRewardsDistributor

@ checkpoint_token()

@ Quvoting_escrow()

© checkpoirt_total_supply()
@ Qelaimaklel)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IBaseV 1 Factory

@ QallPairsLength()
@ O isPair()

@ QpairCodeHash()
@ QgetPair()

@ createPair()

@ erc20

@ StotalSupply()
@ transfer()

® Qdecimalz()
@ Qsymbaol()

@ Qbalancedf()
@ transferFrom()
@ approvel)

RouterV2 Diagram

(©) Routerva

inMath for wint

O address factory
o MWWETH wETH
< uint MINIMUR_LIQUIDITY

@ IBaseV1Fair

@ transferFrom()

@ permit()

@ swap()

@ burni)

@ mint()

@ QoetReserves()
@ O getAmountOut()

@ IWETH

@ ddeposit()
@ transfer()
@ withdraw()

@ &__constructor__()

@ OsortTokens()

@ QpairFor()

G guoteLiguidityi)

© QgetReserves()

@ O getAmountOut)

@ O getAmountsOut()

@ QisPair()

© QguoteAddliguidity()

@ O guateRemaoveliguidity()

 _addLiguidity()

@ addLiguicity()

@ @addLiguidityETH()

@ removeliguidity()

@ removeliguidityETHI)

@ removeliguidityWithPermit()

@ removeliguidityETHWIthPermit)

@ _swap()

@ swapExactTokensForTokensSimple()

@ swapExactTokensForTokens()

@ dswapExactETHForTakens()

@ swapExactTokensForETH()

@ UNSAFE_swapExactTokensForTokens()

< _safeTransferETH()

< _safeTransfer()

< _safeTransferFrom()

@ removeliguidityETHSupportingFeeCnTransferTokens()

@ removeliguidityETHWIthPermitSupportingFeeCnTransferTokens()
< _swapSupportingFee0nTransferTokens()

@ swapExactTokensForTokensSupportingFeeOnTransferTokens()
© dswapExactETHF orTokensSupportingFeeOnTransferTokens()
@ swapExactTokensForETHSupportingFeeCnTransferTokens()

|
|
:for uint

|
|
Wi
y
@ Math
< gumin()

< Osgrt()
< Qsub()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

SwaplLibrary Diagram

@ IPairFactory

@ QalPairsLength)
@ QisPair()

@ QallPairs()

@ O pairCodeHash()
@ QgetPair()

@ createPair()

o O getintializable()
o Odibs()

@ QreferralFes()
@ nftFeeHandler()

(@) math

@ IRouter
= Qmax()

@ GpairFor() < guming)
@ Qfactory() o Qegrt()
< Qebrt()

@ OnftFeel)
@ QisPaused()
@ QgetFee()

@ 1Pair

@ SwapLibrary

@ S metadatal)

@ claimFees()

@ Qtokens()

@ transferFrom()
@ swap()

@ burn()

© mint()

@ QgetReserves()
@ O getAmountOuty)
@ Qname()

@ Qsymbaol()

@ QtatalSupply()
o Qdecimals()

@ Qelaimabled()
@ Qclaimablet()
@ QisStable()

O address factory
O |Router router

@ _ constructor__()
Ca_f()

“a_dp

o Q_get_y()

o O getTradeDiff()

@ QgetTradeDiffSimplz()
@ QgetTradeDiff2()

@ QgetTradeDiff3))

o 0,_calcSamplel)

@ QgetSample()

@ QgetMinimumy/alus)
@ O getAmountOut])

O, _getAmountOut()

T Q_kD

@ QgethormalizedReserves()
@ QpairFor()

@ QAsortTokens()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

. IBribeFactory

. IGaugeFactory|

(@) 1,airFactor

© QalPairsLength()

® QsPair()

® QalPairs()
QpairCodeHash()

createlnternalBribe()

‘AgetPair()

© createBribe()

. Ininter

°)
@ createGaugeV2()

Qgetinitializable()
dibs()

°
°
@ createPair()
°
° q
°

Qr:'etralF:e()
® QnftFesHander()

VoterV2 Diagram

@ rizrcz0

© QctalSupply()
© transfer()

© Qbalance0f(y
@ transferfrom()
© Qallowance()
® approve(y

@© voten2

Noter

OwnableUpgradeable

uint

isVhitelisted

00000000000000000G0

® setEmergencyCounci()
® reset()

@ _reset()

© poke()

© _vote()

© vote()

© whitelst()

© _whitelist()
cresteGauge()
VillGauge()
reviveGauge()
Qlength()
‘Qpoolvatel engthi)
notifyRewar dAmourt()
updateFor()
updateF orRange()
updateAl()
updateGauge()
_updateFor()
claimBribes()
claimFees()
distributeFees()
astribute()
distribute AN)
_safeTransferFrom()
setBriveFactory()
setGaugeFactory()
setPairFactory()
KillGaugeTotaly()
nitGauges()
increaseGaugeApprovals()
© settlewBribe()

sees00s000

@ reanr

. Ivoter

. IGauge

@ ssiive

© Qmetadatar)
© claimF ees()

© Quokens()

© notifyRewardAmount()

© getReward()

update_period()
Qcheck()

Qperiod()
© Qactive_period()

@ _deposit()
@ _wil

aw()
© getRewardorowner()
St

ey

® Qeft()

® Qi)
® QotalSuppiy()

@ rvotingescrow

@ create_lock_for()

® Qiacked()

@ QiokenOfOwnerBylndex()
® Qtoken(y

® team()

® Qepoch()
Qupoint_history()
Quser_pori_histary()

QisAppravedOrOwner()
transferFrom()
Quoted()
Quattachments()
voting()

abstan()

attach()

detach()
checkpaint()
deposit_for()
q.belm:echFT()

Qudecimals()

® Qearned()
© setDistribution()

® Q_ve)

© Qgovernor()

© Qgauges()

® Qfactory(y

Qminter()
QemergencyCouncil()
QisWVhitelisted()
notify Rewar damourt()
distribute()

. QJHMISLIDBMJ

@ console

< address CONSOLE_ADDRESS

m Q_sendLogPayload()
< Qog()

< Sogrt()

< QagUinte)

<> '-'Uuﬁmsﬁ(]

(®) matn

<> Qbﬁv‘“ﬁn

& Qmax()
< Gmin()
© Qsart()
@ Qebi()

© Qeiesing
< QogBytes11()
< QagBytes12()
© QogBytes13()
< QogBytes140)
© QogBytes15()
< QlogBytes16()
< QogBytes17()
< QagBytes18()
© QogBytes15()

© QogBytes23()

© QUogBytes32()

3 q,:l-n-uan()
® Qelaimable ()
@ QisStable()

)
distributeFees()
® Qinternal_bribes()
® Qexternal_bribes()
® QusedVVeights()}
® QastVoted()
® Qpoolvate()
& Quotes()
© QpoolvoteLength()

@ ownableUpgradeable

Initalizabie
ContextUpgradeable

O address _owner
O uird256 __gap

< _Ownable_inft()

© __Ownable_init_unchained()
® Qowner()

@ Q_checkOwner()

@ renounceCwnership()

° n-arﬁl:rown:rshb()

< _transterGwnership(

(®) acdressupgradeable

& QusContract()

© sendVaiue()

“ functionCall()

© functionCalliithalue()

© QfunctionStaticCall()

© QuerifyCallResultFromTarget()
© QerifyCallResul()

m Q_revert()

@ Contextl

(©) ReentrancyduardUpgradeable

Inttializable

O wint256 __gap

O uirk256 TERED

O wird256 ENTERED
O Link256 _status

& &_msgSender()
& _msgDataf)

© T ReentrancyGuar
mmmmmaume()

< _disabieinitializers()
o itializedersion()
< Q_jslnitializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@) rvotingsEscrow

creote_lock_for()

i sApprowec OrOwner()
trE s e o)
Ch vrote)

- Oy _todosnilRICY

VotingEscrow Diagram

CptotalSup Ry ()

trarvs Ter()

A decimals)

b S T=R L]

Cy balmrce ORC)

Ar s ferf roand)
e LA L=]

approwved)

(@) remcrz1 Recener

@ cnERCT21Recsived ()

000(000

@ WotingE S C row
ERCTET

NERC T2 Metadats

mcldress token
Address wober

bytes4 ERC7F21_INTERFACE_ D
Eytesd ERCF21_METADATA INTERFOACE D
it tokenicl

ToMNFTokenCourt
mimt——address idTofARprovals
Adaress—smapping acdoress==hool owrer ToOp-Srators
LTt o e s hep_changs
e s s—mEpping uint=-uEt owner TobF Tokenlcl kst
= Laet tokoen T OO e e =

it AL TIFLIER
i et et s
mint==lroo] woted
bBytes32 DOMAR_ T v PEHASH
bytes32 DELEGATION T rPEHASH
address—raddiess _delegates

s

checkpaoirts

S et SupErowe c()

A im ppr o wecFor SUB
AR owel)

A Do s or A

_transferFromoy
EransferFrom)
safeTransferFrom)

_mcad T okem T oCw merl st
“mcadTokenTol)

i
_remoweTokenFromCwmerlist(y
_remoweTolenFromd)

sy
e

deposit_for()
_create_locki)
create ook}
creste_bock__Toel)

W IR T @)
S _fimd_block _spochi)
o, balancedo TC»

T _balanceO fathF T

T balmrie e CrfaHhF T
CtotalSurhy A0

S sy st)
SAtotalSupPRiy ()

ot Supphy STT)
setwoter()

wetEna ()

alstaind)

attachil)

detachii)

o)

=R

Dcelegatesi)

Qget otes)

S gt Past ot esinde s ()
A getPast otes])

L getPast TotalSuppiy ()
_mow e TokeniD ebe o aste s
T _findvihat Chec lpairt T ol itesd)

(@D reRC 721 Nsetadata)
I ERCyeT

-G e)
- Ly o)
e S L

ApProwe()
sSerApprovalF or A
ChgetADprowedi)

e e e e e

il

(X rerc1es

- Qusupportsintesface()

<
-
-
- treens e Fromicy
o
-
-
o

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Zard Diagram

@ Zard

I1Zard

O string name

© string symbol
O uintg decimals

O uint totalSupply

O address==uint balanceOf

O address=>mapping address==uirt allowance
2 address minter

@ constructor__{)
D@ zetMirter()

@ approve()

< mint()

< _transfer()

@ transfer()

2 transferFrom()

@ mirt)

!

@ T.fzard

@ CtotalSupply()
@ Qhalancedf()
D approve()

@ transfer()

2 transferFrom()
@ mirt()

@ minter()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BribeFactoryV2 Diagram

© Bribe

Reentrancy Guard

NSafeERC20 for [ERC20

© unt256 WEEK
© U256 firstBrieTimestamp
@ [CErEEHE © address=>mapping vint=>Reward rewardData
© address=>hool isRewardToken
© create_jock_for() © address rewardTokens
© Qocked() @ worer © address voter
© QokendIO) dex() © address bribeFactory
© Qoken() o © address minter
© team() - © address ve
o Gepocniy $ Savermny e © ownave @ presracon:
© Qpaint_histor © string TYPE
o Quser J:u\m_ﬁtory() @ Qactory() O Uint236=>mapping address=>uint255 userTimestamp Context Orauitipciadz sl
@ iMinter © Quser_poirt_epoch() : 32:;;&“@”“” @ wint256 _totalSupply
9 :;:::;uo:(e)dorowner() B 0 uint256=>mapping uinl256=>unl256 _balances T T S
© update_period() Ot © notifyRewardAmourt() © _constructor_() | O address owner | © address voter
© Qeheck() O © distribute() © QgetEpochStart() © _constructor_() e T
© Qperiod() O G © distribuieAl() © QgethextEpochStart() © Qowner() O
© Qactive_period() O ot © distributeFees() © addReward() © Q_checkDwner() Do
o © Qirternal_bribes() © QrewardsListLengih() © renounceOwnership() O
® atiach() © Quexternal_bribes() o QtotalSupply() © transferOwnership() © addRewsrci)
B Gy © QusediVeights() © QotalSupplyAl() % _transferOwnership() e
e © QuastVoted() © QpalanceOfAl()
B © Qpoolvote() © Qpalance0f()
© QalanceOMET() © Quotes(y © Qearned()
S A, © QpoolvateLength() © Q_earned()
© QrewardPerToken()
© QotalSupply() o=
@ Asupplv) © “withdraw()
© Qecimals()]

© getRewardForowner()

© notifyRewardAmount()

© recoverERC20()

© setVoter()

© sethiinter()

© addRewardToken()

© setOwner()
T "
' |

foriERC20 |

@ console P |
© address CONSOLE_ADDRESS s |

| Q_sendLogPayload()
© Qlog()
© Qlogint() ! |
© Qoglint() |
© QogString() !
© QlogBool() ! |
© QogAddress()
© QogBytes()
© QlogBytest() |
© QogBytes2() !
© QlogBytes3() !
© QlogBytesd() v \
\
g ::::g;‘::gg Initializable
e @ T @ SafeERC20 @ ReentrancyGuard 7 Contextiingradeable
@M‘?"’ © QogBytesB() VAddress for address O wint256_NOT_ENTERED
< QogBytess() © QtotalSupply() O wint256 _ENTERED @ e O gddress _owner
© Qmax() © QlogBytes100) © Qbalance0T() © safeTransfer() O Uint256 _status O Uint256 __gap
& Qing) < QlogBytes11() © transfer() < safeTransferFrom() = BIersen uint2o6
© Qugi) © QogBytes12() O Crhrg < safeApprove() © __constructor_() B e < _Ownable_init()
Gty © QogBytes13() oo < safelncreaseAllowance() | nonReentrantBefore() 2 < _Ownable_int_unchained()
< QogBytes14() o PP < safeDecreaseAllowance() B _nonResrtrartAfter() © Qowner()
< QogBytes15() transferFrom() B _callOptionalReturn() © @_resntrancyGuardEntered() Q_checkOwner()
© QogBytes16() T © renounceOwnership()
© QogBytes17() © transferOwnership()
© QogBytes18() < _transferOwnership()

|

|

© QogBytes19() |
© QlogBytes20() |
© QogBytes21() |
© QlogBytes22() |
© QogBytes23() |
© QogBytes24() |
© QlogBytes25() |
|

|

|

|

|

|

|

|

|

@ OwnableUpgradeable

© QlogBytes26()
< QlogBytes27()
© QogBytes28()
© QlogBytes29()
© QlogBytes30()
< QogBytes31()
© QogBytes32()

:for address

7

© ContextUparadeable

@ AddressUpgradeable —
@ Address

Initializable

< QisCortract()
<O>senu\/alue() @ 1Bribe g QisContract()
functionCal() sendValue()

© functionCalAahvalue(— © tunctoncall) .

< QfunctionStaticCall() BddExverd) < functionCallAithY alue() & Context_int()

< QuerifyCalResutFromTarget() < QunctionStaticCal() || © Zcontext_int_unchained(

& QuerifyCalResult() & QerifyCallResutt() <O> Q,_msgSender()
Q_msgData()

B Q_revert() ‘

@ Initializakle

O uintg _initialized
O hool nitializing

< _disablelnttializers()
< Q_getintializedVersion()
< Q sintializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@) wan

@ rse

© Qmax()

< Qcbrt()

© _depost()
® _withdraw()

© getRewardForOwner()
© notifyRewardAmourt()
© Qeft)

@) reroz0

© Qrotaisupply(y
© Qualanc=01()
© transter()

®

® orReward()

@ rear

@ Qmetadata()
© claimFees()

© Qokens()

© transferFrom()
© swap()

© burn()

 mint()

@ QgefReserves()

© Qeiamabied)
© Qclaimable! ()
& QsStable()

GaugeFactoryV2 Diagram

©) caugevz

IGauge
Reentrancy Guard
Ounable

mSafeMath for wint256
MSafeERC20 for JERC20

© boolisForPair
© [ERC20 rewardToken

© [ERC20_VE

© [ERC20 TOKEN

© addrese DISTREUTION
© address gaugeRewarder
© address inernal_bribe

© address external_bribe
© UNk258 rewarderPid

© uini253 DURATION

© address

_ 0
© seiDistribution()
© setGaugeRewarder()

© QastTimeRewardApplicable()
© QrewardPerToken()
© Qeared()
© QrewardForDuration(y
© depostall)
© depost))
© _depostl
/| Wancrawaig
© withdraw()
© withdraw()
© withdrawAlIANdHarvest()
/ © getReward()
© Q_periodFinishe)
© nolifyRewardAmaurt()
© clanFees()
© _clanFees()

For uint256 for IERG20

'
!

V \vi

@ roause

@

< @sContract()
© senavalue()

© tunetioncall)

© functionCallAth alus ()
i

© approve()
© transferFrom)

< GuerifyCalResutFromTarget()
< QuerifyCalResut()
B R reveri()

© notifyRewardamour()
© getReward()

\
©) ownable

(@) safetatn]
@) sarecrc20

& QryAdd()

& QtrySub() nAddress for address

© Qb

2 anong S o

g &":;"“0 © safeApprove

Seee © safehereaseAlowance()
¢ a safeDecreascAlowance()
& Qav) L] 7CBHOD\IDHB‘\REIIAW()

& Qmod()

I
I
I
I
\for address

|
w7

Context

(©) ReentrancyGuard

O address _owner

constructor_()

O UNt256_NOT_ENTERED
O Unt256 _ENTERED

O Lnt256 _status

(©) caugsFactanyv2

IGaugeFactory
Ownablelpgradeable

@ _constructor__()
© intialize()

© createGaugeV2()
© setDistribution()

© address last_gauge

@ OwnableUpgradeable

Initializable
Contextpgradeable

0 address_owner
0 unt256 _gap

© __constructor_()
m

© createGaugeV2()

°_
© Qowner()
© 8

L 0
© Q_seertrancyGuardEntered()

3)
© transferownership()
© _transferOwnership()

@) Aauress

© QsCortract()

& function

Calll)
© functionCalWithValue()
©

(©) context

© Q_msgSender()
© Q_megData()

© QueriyCalResut))

> _Ownable_inf()
> —ownable ind_unchained()
& Qowner

© _checkowner()

© renounceCwnership()

© transterOwnership()

< _transferownership()

|| @) contextupgradsavie

Initializable

|| = unt2se _gap
| ¢ Zcontext inty

© _cantext_int_unchained()
© @ _msgsender()

[[aZmsgpatay

(©) intaizable

O unts _nitialized
O bool intisizing

© _dsablehntiaizers()
© B _geliniializedVersion()
% Qsiiializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(@) paircaties

(@) watn

@ hook()

< Cymax()
< aumini)
@ Qusart)
< Quchrt()

@ ierczo

PairFactoryUpgradeable Diagram

@ roms

@ reward()
@ A findTotalRewardFor()

@ PairFactorylUpgradeable

IPairFactory

Ownablelpgradeabie

© bool isPaused

© uint256 stableFee

O uint256 volatileFee
O uint256 referralFee
O uint256 nftFee

O uint256 MaxX_FEE

© address feeManager

© address pendingFeeManager

O address dbs

O address nfiFesHandler
O address==mapping address==mapping bool==address getPair

O address allPairs

O address==hool isPair
< address _temp0

< address _temp1

< bool _temp

@©) par

IPair

@ string name

@ string symbaol
@ uintd decimals
@ bool stable

@ uint totalSupply
© address=>mapping address==uint alowance
© address=>uint balanceOf
 vint MINMIMUM_LIQUIDITY

© address token0

© address tokent

© address fees

< address factory

 uint periodSize

© Observation ohservations
© vint decimals0

< uint decimals1

uint reservel

uint reservel

wuint blockTimestamplLast
uint reserve0Cumulativel ast
uint reservel Cumulativel ast

0C0QC0Q000Q0C0QC0000

uint claimable
< uint _unlocked

@ __constructor__()
© inttialize()

@ QallPairsLength()
@ Qpairs()

@ setPause()

@ setFeeManager()

© acceptFeesManager()
® setDibs()

@ setNftFeeHandler()
© setSecondFes()

© setFee()

© QgetFee()

©® QpairCodeHash()
@ Qgetinitializable()

© createPair()

@ _ _constructor__()
@ QobservationLength()
@ QlastObservation()
@ Oumetadatal)

@ Qtokens()

@ QsStable)

@ claimFees()

< _update()

< _updated ()

< _updateFor()

@ QgetReserves()

< _update()
QeurrentCumulativePrices()
Qeurrent()
Quate()
Qprices{)
Qsample()

mint()

burn()

swap()

skim()

eoo0o0O0OQO®OQOOO

< O,_getAmountOut()
ki)

< _mint()

< _burn()

@ approve()

@ transfer()

@ transferFrom()

< _transferTokens()
< _safeTransfer()

< _safeApprove()

@) rpairractory

(©) ownableUpgradeable

@ OtotalSupply()
@ transfer()

@ Quedecimals()
@ Qsymbol()

@ QbalanceOf()
@ transferFrom()
® Qalowance()
@ approve()

@ PairFees

@ AddressUpgradeable

< address pair
 address token0
> address token1

< QisContract()

< gendvalue()

< functionCall()

< functionCallVith aluet)

@ __constructor__()
< _safeTransfer()
@ claimFeesFor()

< QfunctionStaticCall()
< QuuerifyCallResuttFromTarget()
< QuerifyCallResut()

B Q_revert()

QallPairsLength()
QigPair()
QallPairs()

A pairCodeHash()
A getPair()
createPair()
Qgetinitializable()
Qibs()
QreferralFee()
AnftFeeHandler()
QnftFee()
QisPaused()
QuetFee()

0000000000000

Initializable
ContexiUpgradeabie

0O address _owner
0O uint256 _ gap

< __Ownable_init()

< __Ownable_int_unchained()
@ Qowner()

< A _checkOQwner()

@ renounceOwnership()

@ transferOwnership()

< _transferOwnership()

|

@ rPair

© Qmetadata()

@ claimFees()

@ Qtokens()

@ transferFrom()
@ swap()

@ burn)

@ mirt()

@ QgetReserves()
@ QgetAmountOut)
@ Qname()

@ Qsymbol()

© QtotalSupply()
® Qdecimals()

@ Qclaimable0()
© Qclaimable1 ()
® QisStable()

@ ContextUpgradeahble

| Initializable

O uwint256 _ gap

|| © _cortext_intt()

< __Context_int_unchained()
< Q_msgSender()

| < Q_msgData()

2

b

(@) nitializable

O uintd _inttialized
0O bool _initializing

< _disableintializers()
< Q_getintialized\ersion()

< Q_isinitializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AdminUpgradeabilityProxy Diagram

@ Address

@ Storagesiot

o QisContract()

< sendValuel)

2 functionCall()

2 functionCallith alue)
< G functionStaticCall()
2 functionDelegateCall)

< QverifyCallResultFromTarget()

< QyerifyCallResult)
B 4 revert()

& QugetAddressSiot() @Admanpgradeabmtmew

< O,getBoaleanSlot()
< QgetBytes32SIot()

TransparentUpgradeableProxy

< O,getUint256SIot]) @ @ __constructor__()

< O,getStringSlot()
< QgetBytesSlat()

@TransparentupgradeahlePrnxy

ERC1967 Proxy

@ IBeacon

& __constructor__()

@ IERC1822Praxiable &admin()

@implementation()

@ Qimplementation()

& changeAdming)

@ QproxiableUUID)) BupgradeTo()

200000

dupgradeToAndCall()
< G _admin()

< _peforeFallback()

B _reguireZeroValue()

@ ERC1967Proxy

Proxy
ERC1967 Upgrade

@ & __constructor__()
g jmplemertation()

.Ir 1.

|--.-':
F
s
15

@ ERC1967Upgrade

O bytes32 ROLLBACK _SLOT

< bytes32 _IMPLEMEMTATION_SLOT
< bytes32 _ADMIN_SLOT

< bytes32 _BEACOMN_SLOT

< 4,_getimplementation|)

B _setlmplementation()

< _upgradeTa()

< _upgradeToAndCall()

< _upgradeToAndCallUUPS()
& Q_getAdmin)

B _setAdming

< _changeAdming)

< Q,_getBeacon()

B _setBeacon()

< _upgradeBeaconToAndCall()

e

<
© P oy

_delegate()

< G,_implementation()
2 _fallback()

@ &__constructor__()
< _peforeFallback()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VeArtProxyUpgradeable Diagram

@ AddressUpgradeable
@H-"EMPrunypgradeable
5 < QiisContract
@ EEEE T lveAn: < sv.=:nn::i‘-ufaluv.‘:l{}lﬂI
S OwnableUngradeable & functionCall()
ST TR @ __constructor__{) © functionCallWith'aluel)
o Qencodel) @ initialize() ¢ O functionStaticCall)
< QtoString() < QyerifyCallResultFromTarget()
o 4 tokenURI() < QverifyCallResult()
T v B Q_revert()

@ OwnableUpgradeahle

Initializable
Contextlipgradeable

I-;
e
i

@ IWeArProxy O address _owner
O uint256 _ gap

@ O_tokenURI() & Ownable_init()
< Ownable_init_unchained)
@ Qowner()

© 0,_checkOwner()

@ renounceOwnershipl)
@ fransferOwnership()
<+ _transferOwnership()

=1
1-\.

[|

| ~

| @ ContextUpgradeable

[Initializable

| O uirt256 _ gap

| < Context_init()

| < Context_init_unchained()
[o O_msgSender()

\ < G, msgDatal)

r
I

|
y
@ Initializable

O uintg _initialized
O kool _initializing

< _disableintializers()
o Q_getintialized"ersion()
< 8 sInttializing()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ SafeMath

FaucetToken Diagram

< Qadd()
< Qusubl)
o gmull)
= Qdivi()

< Smod()
< gming)
< Qusgrt()

@ Address

<+ QiisContract()

O gencdWalue()

< functionCall()

= functionCallwithy aluel)
B _functionCallithalue()

O uintd _decimals

@ _ constructor__()

2 faucet()

@ ERC20
Context
IERC2D

IER C20Metadata

O address==uint256 _balances

O address=>mapping addregs=>uint256 _allowances
O uint256 _totalSupply

O string _name

O string _symbol

@ _ constructor__ ()
@ QtotalSupply()

@ QbalanceOf()

@ transter()

@ Qallowance()

@ approvel)

@ transferFrom()

@ increaselllowance()
@ decreasefllowance()
< _transfer(}

< mint()

“_burn()

< _approvel)

< _spendAllowancel)
¢ _peforeTokenTransfer()
< _afterTokenTransfer()

T
I

<

@ t;antext I

@ IERC20Metadata

{ IERCZ20
o Q,_msgSender() @ Qnamel)
\ < g,_msgDatal) @ QO symboll)

@ Qdecimals()

-

T
4
\-\" R

f: (@) ierc2o

totalSupply()
O.decimals()

Q. symbol()
O.name()

O getOwner()
O.balancedf()
transfer()
Callowance()
@ approve()

@ transferFrom()

I RN NN NNN]

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Sllther log >> Bribes. soI

ctio)
Refere ector-Documentation# ocal-variable-shadowing
Bribe.se (255)) should emit an event for:
hub. wiki/Detector-Documentation#miss ing-events-access-control

= IMinter{minter).active_

Reference:
Timestamp =

rned{uint25 {Bribes.sol#2249-2274) has external calls inside a loop:
IBllL_ .
3 .comfcrytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop

eentrancy

firstBr tBrihes.sclsz
er-Eete[g rdsT n][_startTimestamp].rew
dDatal_ n][_startTimestamp]. 1cstL =T ime ck. tlr-SthL (Bribes.so
I Stclt ime stcr|] i estamp + WEEK (Bribes.s
/ d sentrancy-vulnerabilities-2

sions-of-solidity

ribes.sol#1842-18

aticcal
slither/wiki/ De t»-t-l—E--Lr»lt tio

not in
-LF'Tl is not in rl/:rtcs»
Paramete) not in mixedCase

|-t1
s |-t in mixedCase

is not in mixedCase
is not in mixedCase

is not in mi
is not in mixe

7 N rlfcrccs»
is not in mixedCase

is not in mixedCase

ter (Bribes.so
_minter (Bribes.so

not in mixedCase
is not in mixedCase
is not in mix

fB|iI es.so 1#2

cumentation#conformance-to-solidity-naming

inBribe (Bri
/wiki/De M #redundant-statements

riable Bribe.getReward{uint256,address[])._rewardToken (Bribes.sol# too similar to Bribe.rewardTokens (Bribes.sol#21
|1=|1- Bribe._earned{uint256,address,uint256) ardToken (Bribes.sol# is too similar to Bribe.rewardTokens (Bribes.so
strllc| to Bribe.rewardTokens

is too strllcr to Bribe.rew

wiki/Detector-Documentation#variable-names-too-similar

irrLt'ble
2 immutable
ared- immutable

V2.se tE15t|1|Lt1-|l ress) [2 #20 12) should emit an event for:
DISTRIBUTION = _ c 811)
itFLh.ccr; ki/Detector-Documentation#miss ing-events-access-control

2-826) should emit an event f

ik i/Detector-Documentation#miss ing-events-arithmetic

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

s,address,address,address,address,address,b)._distribution (Gauge

- DISTRIBUTION = _distribution {Gau
constructor{address,address,address,address re 5 ess ,bot }._il"t»:rrel_\:ril:»: [Gau

- internal_bribe = _internal_bribe 3
.-:-:rstrL-:t-:rlja-:-:ress.a-:-:r-:ss address,address, ress, 255 ,D). external bribe (Gaut

) uses timestamp for comparisons

sard too high) (Gaug
ck -t imes tamp

.Ca = cr’- un t:
/ Ccll.altl Value
ccess, returndata) = target.call{:
in A .|-:ss.fL|"t1.-|Ct aticCa U.I

Paramete .setDi b (255) (:) is not in mixedCase
Parar’»t-‘r a .setGa = re geRewn 2r | .50) is not in mixedCase
) (; mixedCase
mixedCase
not ir mixedCase
:) is not in mixedCase
.DISTRIBUTION (Gs c :) is not 1in mixedCase
.internal_bri (Ga is not in mixedCase
.external_bribe { 3 is not in mixedCase
.DURATION (Ga : is not in mixedCase
1 69) is not in mixedCase
is not in mixedCase
wik i/Detector-Documentation#conformance-to-solidity-naming-conventions

be immutable
. 3 immutable
E (Gau . ; be immutable
ctterna (1 should be immutable
(should be immutable
be immutable
he immutable
viki/Detector-Documentation#state-variables-that-could-be-declared-immutable

i
(13 contracts m.th 84 detectors), 66 result(s) found

MinterUpgradeable.setTeamRate{uint256) b #6549-653) should emit an event for:
- r’Rc = = _teamRate (Min 3
Minteruy .setEmission(uint inte ble. 559) should emit an event for:
= _emission {Min 3
MinterUpgradeabl -‘tR base(uint256) (Minte cable. #662-666) should emit an event for
- REBASE B .
Reference: https://gi b Jerytic/sli ; i/Dete r-Documentation#miss ing-events-arithmetic
MinterUpgradeable.

Reference: https ith Jeryticy 14 / k_. etec cumentation#missing-zero = validation

l1|t-|L| ._initialize(ss[],uint256[],uint256) (MinterUg ble.sol#615-631) has external calls inside a loc
; 3 c'LI"cI‘tS['L] (MinterUpg able.s

in Minte |L|“|"-“'| le.update_period{) (MinterUpgradeable.sol#702-

istributor.chec _ L|: ra
istributor. i y 1in t erUpg

Refere
MinterUp e. e_| i) {MinterUpgradeab) uses timestamp for comparisens
Minteru

{MinterUpgradeable.sol#741)
ck -t imestamp

allows old versions

ct-versions-of-solid

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Parameter MinterUy e 255,83 255, = . er (Minte .) o 1 ase
Parameter MinteruUp { £ e =
Parameter MinterUs de =.initialize(address,a eSS, ress). rards_ ibutor (Minte gradeable.sol# is not in mi
xedCase
Function Minterupe 2.1 ialize ess[],uint256[],uint256) (Minte dea . J is not in mixedCase
Parameter MinteruUy =.setTeam()._team (MinterlUpg i
Parameter Minterus .56 = = . er (Minte eable. 3) 1 ot in FI/-FCcS~
Parameter Minterus eamRate (Minter 9) is not in mixedCase
Parameter Minteruy E 155 1 (M1 655) is not in mixedCase
Parameter MinterUy =b 256) . _ ase (Minte E 66 ot in mixedCase
Function Minteru 2. C1 5 pp) (MinterUpgra = 5 7 is not in mi
Function MinterU = | Il1|t |L| = . £)} 1s not in
Function Minteru & <ly_emission() erUp e : 6581) is not in mixe
Function MinterU = culating_emission{) (Minte adeable. #684-686) not in mixedCase
Function Minteru = ulate (Ui #6) is not in mixedCase
er Mint alculate ate(uint2 week Z 2 gr 1) is not in mixedCase
n Minter .) i 2 i i i
er Minteruy e .56 (255) i b) is not in mixedCase
e Minteru (M1 e
is not in rix
is not in mixedCa
71) is not 1in
initiali (M1 . :) is not in mix
zard (Minteru 2. # is not in mixedCase
oter (MinterUpgrade =, 5013) 1s not in mixedCase
Illlt erUpgr 2.50 I. is not in mixe
stribute (M gra I 2. y in mixedCase
i o-solidity

.aggre ({Multicall.sol#13-21) has external calls inside a loop: (success,ret) = calls[i].target
call{calls[1] 1lData) (Multicall.sol#17)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop

rsions
wiki/Detector-Documentation#incorrect-versions-of-solidity

(Multicall.call[]) (Multicall.sol#13-21)
rget.call{calls[i].callData) (Multicall.s
Tither/wiki/Detector-Documentation#low-leve

)._token® (Pair.sol#114) lacks
i ol#116)
1 'Pclr sol#114) lacks

ress-validation

Pair._update(ui ,uint256,uint256,uint256) (Pair.sol#367-384) uses timestamp for comparisons
ET; rra|15 ns:
- timeElapsed = _re B & ervel != 0 (Pair.sol#370)
- timeElaps i
Pair.currentCumulat rices | # ‘ uses timestamp for comparisons
us comparisons:
kTimestampLast != |1“'P imestamp (Patir.sol#394)
255,Uint256) .s50l#403-414) uses timestamp for comparisons
Us COMPArisons :
i vation.timestamp (Pair.sol#4086)
, r.sol#417-424) uses timestamp for comparisons
c rpc|is ns:
tI 'Pclr 50 1*
(Pair.sol#431-451) uses timestamp for comparisons

-534) uses timestamp for comparisons

= k{_resery _rese).K) (Pair
uses timestamp for comparisons

wiki/Detector-Documentation#block-timestamp
versions
wiki/Detector-Documentation#incorrect-versions-of-solidity
decimals@ (Pair.sol#162) should be immutable
imalsl (Pair.sol# should be immutable

be immutable
irrLt \1»

/slither lel Detector-Documentation#state-variables-that-could-be-declared- immutable
.sol analyzed (8 contracts thh 84 detectors), 67 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> PairFees.sol

/ersions
viki/Detector-Documentation#incorrec

255, a-"-“r ss, Lilt 256) I'Pcir:-‘-‘s S0 1.

hould be immutable
should be immutable

ed- immutable

RewardsDistributor.se tI| stan tRct»lLu t256) { ElS‘tI1| utor.so 1#461-465) should emit an event for:
instant_r

https .com/ c/slither/wiki/Detec _Documentatio n#missing-events-arithmetic
_token {RewardsDistributor.sol#155) lacks a zero-check on

Zero-c
_.-'slltl er/w 1k1 Detec
_find_timestamp
ous comparisons:
= _timesta

ibutor. find tlr-stcrL _'7. chi ess,uint256,uint256 ,uint256) (RewardsDistributor. ’35) uses timestamp

COMPaEriSons :

{RewardsDistrib L,t"l']) i
't total_supply() 5-266) uses timestamp for comparisons

Dar

-t =)
RewardsDistr ar._c 255 ,U1in 5) (RewardsDistributor.sol#2) uses timestamp for comparisons
Dar

sDistribut
Distributor.s
Distribu
(Distributor.sol#301)
rdsDistributor.sol#312)

{RewardsDistributor.sol#32 78) uses timestamp for comparisons

sDistributor
sDistribut
n_time (R

" sDistributor.s
(Rew 1

(R "SE'LSTI"L|2L.T-)
y(uint256[]) (RewardsDistributor. 3 442) e imestamp for comparisons

time_cursor (Re
timestamp (R
ytic/slith

mixedCase
6 is not in mixec

ardsDistributo f { 256, u1 . 1 1 E) is |'“t in mi
dsDistributo D

Distribute
ardsDistribut
ardsDistribut
dsDistribu
ardsDistribut
ardsDistributo
ardsDistributor
ardsDistr 'L|"L‘t- rowi (.
setInstantRa 3) 1s not in mixedCase
.start_time (R

sDistributor.start tlr’» (dsDistributor.sol#134) should be immutable

sDistributor an (Rew Distributor.sol#146) 1 immutable

dsDistributor i < ¢ {RewardsDistributor.sol#1¢ hou'ld immutable
=fe https / c/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
RewardsDistributer.sol analyzed (5 contracts with 84 detectors), 102 result(s) found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither log >> RouterV2 sol

Route construc

Refere : h tt|:

Contract erc (= . -) i t in Ca
Struct Route (i

similar to
,_10

Refer
Routerva.

Detector-Documenta ‘(1-

is not in mixedCase
to-solidity-naming-co

Swalebrary sol analyzed (5 contracts with 84 detectors) 19 result(s) found

.sol

lacks a zero

WL L

zero-check on
cumentation#missing-zero-address-validation
_external_bribe (VoterV2.sol#2432) is too similar to Vot > external_bribes {
_internal_bribe {Voterv2. #2429) is too similar to VoterV2.internal_bribes ({Voterv2
ress[],uint256[])._usedWeight erv2.sol#2362) is too similar to VoterVW2.usedWeights
ress[],address[])._external_bribe arvy2. #2635) 1s too similar to VoterV2.external_bribes
.in itGauges(address[],address[])._internal_bribe ({voterv2.sol#2633) is too similar to VoterV2.internal_bribes
ytic/slither/wiki/Detector-Documentatio riable-names-too-similar

I nu variable
Votervz. sol analyzed (18 contracts thh a4 detectors), 535 result(s) 'Found

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> VotlngEscrow sol

VotingEscrow.c ctor(a 255, 3 '. oken_ s 1|_'"Es-:|-:\-.-.s-:lfr:“:f.‘—::-
VotingEscrow.
VotingEsc

VotingEsc

ed ance) (VotingEscrow.sol#306-941) uses timest

ckedBalance, Vot ingEscrow.Depos itT) (VotingEscr

VotingEscrow _for(256,uint256) (V tu-Es row.sol#993-1005) uses timestamp for comparisons
Dar C i
- ol, i block.timestamp,Cannot add to expired lock. Withd) tingEscrow.sol#
VotingEscre = (ui ,ui . 255) tingEscrow.sol#1011-1824) uses timestamp for comparisons
Dar a
unlock_time = block.timestamp,Can only k until time in the future) tingEsc .s0l#1615)
unlock_time == block.timestamp + MA ME,Voting lock can be 2 years max) tingEs .s0l#1016

.50l#16008) is too similar to VotingE

row.sol#1529) 1is too similar to Votin

ess)._minter (Zar
i - minter minter (Za ol
Reference: https://github rytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

.13 (Zard.
is |-.t recomme i
i ector-Documentation#incorrect-versions-of-solidity

is not in mixedCase

: : () is not in mixedCase
Pcrar’»t .8 ,ui 2 3 is not in mix
Paramet E { o] i 1s not in mixe =
Parameter Zard.transter ,uint256) . _value (is not in mixedCase
Parameter Zard.transfer (2s5,address,uin _from (zard #70) is not in mixedCase
Parameter Zard.transferFr { 855,3 ress, 0 'Lcr- s0l3 not in mixedCase
Par Zard.transferFrom(855, 855, U1 (Zard.sol? is not in mi Case
Ref : https github vt 1'Lt|'~‘l'.-"\ ik1i/Detector- _Docum i onformance-to-solidity-naming-ce
Zard.sol analyzed (2 contracts \-n.th 84 detectors), 11 result(s) found

arsion™0.5. (#2) allows old versions
8.13 is n 2 f y)
https: 1 b.com/crytic, ither/wiki/Detector-Documentation#incorrect rsions-of-solidity

Low level call in ess . functionCallwi o oss, byte ibeFac 2.sol#1842

Low
Low
Low
Low
Referen

Bribe {Bri C : 413) should inherit from IBribe (Brib
Refe -H Ittr //qi Jeryticy ar/wiki/Detector-Documentati

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Redundant expression “k (Bri

"i (Brib) (
/Detector- I:- cumentation

6,address[])._rewardToken (BribeFact #2329) 1is too similar to Bribe.rewardTokens (Bribe
er{uint256,address[])._rewardToken (BribeFactoryv2.sol#2346) is too similar to Bribe.rewardToken
_rewardToken (BribeFacteryV2.sol#2249) is toe similar to Bribe ardTokens (BribeFacto

uint256,address ,uint2 rewardToken (BribeFacto . #2) is too similar to Bribe.rewardTokens

) allows old versions

hle.s
11{value: amount} y
eable. functionCallWithVa (255, bytes ,ui 6, i (geFac .sol#1127-1136) :
_t.-:all{'-,-‘ah»;: /) =Fa :)

)._ve (GaugeFactory

Parameter Ga C createGaug ess, 255, 3 255, 255, 3 255, s5,b00 ::-._t-:k-:r (GaugeFact
1s not 1in
Parameter Ga C createGa 255, 255, address, ess ,address, 255,)._distribution {GaugeFact
#1436) is
Parameter ,.": eateGaugeV2(B55 , 255 ,address, 255 ,address, 255,00 ::-._irt»:rral_l:ril:: (GaugeFacto
ol#1436) 1

,address, ess,address, ess,bool)._external_bribe (GaugeFacto
ol#1436)
Parameter Ga y cr 255, 255, address, res 255, 255,)._isPair (GaugeFactoryV2.sol#1436)
is not in
Parameter Ga C setDistribution Ia-“r 5 255) ge (Gaug 2.50l#1441) is not in mixedCase
Parar’»:t-:r Gaug se ‘tl:'LS‘tI'L|L‘t'L (2SS, 255 .-EistriI.Ltlw.r 3 Fac sol#1441) is not in mixedCase
Variable Gaug (Gaug yv2. #1428) is not in mi S
Reference: https github.c ytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming entions

Gau .DURATION (Gau .) should be immutable
Gau .TOKEN (c be immutable
Gau
Gau
Gau -in t-lral b
Gau E |P01|- (Gau
GcL
declared-immutable

92)

uses literals with too many digits:
S0 1«-113)

) should be immutable
2. 3 should be immutable
.facto (Pai C 2. :) should be immutable
.fees | C = 2. z) be immutable
= (Pai immutable

be immutable
-Documentation#state iables-that-could-be-declared- immutable
zed (13 contracts with 84 de ectors), 118 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Iog >> VeArtPronypgradeable sol
Basebd.er rtPr)
) uses assembly

r-Documentat ion#assembly-usage

act-versions-of-solidity
ble.sol#121-126):

ble. functionCallwith = = 25 ,uint256 i eArtProxylpgradeable.sol#185-194):
- (success,returndata et.call{value: v e}(data) (Ve =able. #192)
vel call in Addre le. functionStaticCall({addre 25, pgradeable.so
(rnda t.staticcall(data)
lither/wiki/Detecto

Function V «yUpg eable._tokenURI{uint256,uint256,uint256,uint256) (VeArtProxyUpgradeable.sol#517-526) is not in mixedC
ase
Parameter VeArtProxyUpgradeable._tokenURI{uint256,uint256,uint256,uint256)._tokenId {VeArtProxyUpgradeable.sol#517) is not in
mixedCase
Parameter VeArtProxyUpgradeable._tokenURI{uint256,uint256,uint256,uint256)._balance0f (VeArtProxylUpc
n mixedCas
Paramet ArtProxyUpgradeable._tokenURI{uint256,uint256,uint256,uint256)._loc end (VeArtProxyUpgradeable.sol#517) is not
in mix
Parameter VeArtProxyUpgradeable._ tokenURI(uint256,uint256,uint256,uint256)._value (VeArtProxylUpgra 2. #517) is not in mi
xedCase

://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming
VeArtPronypgradeable sol analyzed (7 contracts with 84 detectors), 4@ result(s) found

! kl De th-t r-Documentation
r revertReference: https:/

sion”™0.
8.13 is n

{import.sol#123-132):
,returndata 1 Q)
ess . functi 855, 25, ing) IIFL rt.sol#158-157
eturndata a (1

Ittp
meort sol analyzed

cetToken.sol#513) shadows:
13) shadows:

cal -variable-shadowing

{success I-tLIIL:tc
https

aucetToken.
8 |ttr

expression "this (FaucetToken.sol#191)" inContext (FaucetToken.sol#185-194)
i yti nt-statements

Reference:
FaucetT ima i e) should be immutable

Referen i b yti wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
FaucetToken. sol analyzed (7 contracts thh 84 detectors), 31 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Bribes.sol
Security

Check-effects-interaction:

Fotential violation of Checks-Effects-Interaction pattern in Bribe.

Modifiers are currently not considered by this static analysis.

Fos: 57:4:

Block timestamp:

= of "block timestamp": "blocktimestamp® can be influenced by miners to a certain degree.

Use of ;
That means that a miner can "choose" the block timestamp, to a certain degree, to change the

outcome of a transaction in the mined block

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on

block gas limit which can cause the complete conftract to be stalled at a certain point.
ts. Carefully test how

Additionally, using unbounded loops incurs in a lot of avoidable gas cos

many items at maximum you can pass to such functions to make it successfu
Pos: 191:8:

Miscellaneous

Constant/View/Pure functions:
-

Minter.update_period() : Potentially should be constz
dered by this static analysis.

are currently not cons

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Fyou never ever want x to be false, not in any circumstance (apart from a bug

1 your code). Use "require(x)" if x can be false, due to eg. invalid input or a failing external

GaugeV2.sol

STy

Block timestamp:
Use of "block timestamp": "block timestamp™ can be influenced by miners to a certain degree.
That means that a miner can "choose" the block times to a certain degree, to change the

outcome of a transaction in the mined block.

Gas & Economy

(Gas costs:
Gas requirement of function GaugeV/2.rewardToken is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays

fyou never ever want x to be false, not in any circumnstance (apart from a bug
ode). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

component.

a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

MinterUpgradeable.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
W |'1L':r.JLn;;|'aueab_E_ nitialize{address, address address): Could potentially lead to re-entrancy

vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pas: 44:4:

Block timestamp:

Use of "block timestamp”: "blocktimestamp” can be influenced by miners to a certain -L'J'L—‘f__j“:i—‘.
That means that a miner can "choose" the block t

outcome of a transaction in the mined block.

(;as costs:

as requirement of function MinterUpgradeable _initialize is infinite: If the gas requirement of

a function is higher than the block gas Limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of age (this includes clearing or copying arrays

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
e to be used carefully. Due to the block gas limit, transactions can only
1 amount of gas. The number of iterations in a loop can grow beyond the
block gas limit which can cause the complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a Lot of avoidable gas costs. Carefully test how

ATy |_":"I“]'-_- at maximum you can pass to such functions to make it successful.

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug
in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

component.

- 10731793
Pos: 182:12:

Multicall.sol

Security

Block timestamp:

Usze of "block timestamp"™: "block timestamp” can be influenced by miners to a certain degree.
That means that a miner can "choose" the block times degree, to change the

outcome of a transaction in the mined block.

L ow level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected be
return value is not handled properly. Please use Direct Calls via specifying the called

cemEract e intkarfase
contract's interface.

Pos: 17:47:

Economy

(Gas costs:

Gas reqguirement of function Multicall.aggregate is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in yvour functions
or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 13:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on

!

hawve to be used carefully. Due to the block gas limit, transactions can only

3 certain amount of gas. The number of iterations in a loop can grow beyond the
block gas limit which can cause the complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test how

terms at maximum YOU Can pass to such functions to make it successful.

Pos: 16:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

r1 .-i\..-|_|__.l 120U5

Guard conditions:

any circumstance (apart from a I_‘._I'.'_.'_l

nt x to be false, not in any

assert(x)" if you never ever wa
_invalid input or a failing external

ur code). Use "require(x)" if x can be false, due to e.

component.

Pos: 18:12:

Pair.sol

Low level calls:

of "call”: should be avoided whenever possible. It can lead to unexpected behavio
return value is not handled properly. Please use Direct Calls via specifying the called
contract's interface.

reguirement of function Pairquote is infinite: If the gas requirement of a function is higher
1 the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
wdify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 296:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on
values, have to be used f_';'j[v':"'_l\.";,-'. Due to the block gas Limit, transactions can only

storage v
of iterations in a |

ntract to be stalled at a certain point.

2rtain amount of gd s. The number COp Can grow ?_')E";.-""_':"'-.’_'J the

block gas limit which can cause the complete co
Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
terms at maximurm 1 functions to make it successful.

t's "decimals" function should hawe nt8" as return type

a private and confidential document. No part of this document should

be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

(Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug
in your code). Use "require(x)" if x can be false, due to eq. invalid input or a failing external

component.

Pos: 27:8:

PairFees.sol

L

Security

Low level calls:

y. Please use Direct Calls via specifying the called

-
daCe.

5 INter

— r

Gas & Economy

(5as costs:

Gas requirement of function PairFees claimFeesFor is infinite: If the gas requirement of a
function is higher than the block gas Llimit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays

ERCZ20 contract's "decimals” function should have "uint8" as return type

Pos: 7:4:

Miscellaneous

Constant/View/Pure functions:

ERCZ0 transfer(address,uint256) : Potentially should be constant/view/pure but is not.

D e oA
os: 6:4

LB X

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RewardsDistributor.sol

Block timestamp:

F "block timestamp™ ':Jl-;)-:w’..L|*1esLa'T'p' can be influenced by miners to a certain degree.
ans that a miner can "choose" the block timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

1as & Economy

(Gas costs:
requirement of function RewardsDistributor.checkpoint_token is infin f the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
functions or actions that modify large areas of storage (this includes clearing or

storage)

ert{x)" if you never ever want x to be false, not in any circumstance (apart from a bug

e]. Use "require(x)" if x can be false, due to eqg. invalid input or a failing external

RouterV2.sol

Block timestamp:

Use of "block timestamp”: "block timestamp” can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Gas & Economy

a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(Gas costs:

Gas requirement of function Routerv2 quoteRemoveliquidity is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in
vour functions or actions that modify large areas of storage (this includes clearing or copying
arrays in storage)

Pos: 185:4:

For loop over dynamic array:

P

Loops that do not have a fixed number of iterations, for example, loops that depend on

storage values, have to be used carefully. Due to the block gas limit, transactions can only
sume a certain amount of gas. The number of iterations in a loop can grow beyond the

block gas limit which can cause the complete contract to be stalled at a certain point.

Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test how

many items at maximum you can pass to such functions to make it successful.

Pos: 140:8:

Guard conditions:

Use " "if you never ever want x to be false, not in any circumstance (apart from a bug

in your code). Use "require(x)" if x can be false, due to eg. invalid input or a failing external

component.

SwaplLibrary.sol

Gas & Economy

(Gas costs:

Gas requiremnent of function SwapLibrary.factory is infinite: If the gas requirement of a function

is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(Guard conditions:

r ever want x to be false, not in any circumstance (apart from a bug

1 your code). Use "require(x)" if x can be false, due to eg. invalid input or a failing external

oy
dCe.

(Gas costs:

Gas reguirement of function VoterV2Z.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 693:4:

2 =

For loop over dynamic array:

Loops that do not have a fixed number of
rage values, have to be used carefully.
ain amount of gas. The number of iterations in a loop can grow beyond the
block gas limit which can cause the complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully test how

tems at maximum you can pass to such functions to make it successful.

Similar variable names:

;

VoterV'2 _vote(uint256,address[] . uint256[]) : Variables have very similar names

its” and "_usedWeight". Note: Modifiers are currently not considered by this static

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VotingEscrow.sol

Block timestamp:
Use of "blocktimestamp": "block timestamp” can be influenced by miners to a certain degree.
That means that a miner can "choose" the blo

outcome of a transaction in the mined block.

«e 9.7 .
Pos: 1298:26:

1as & Economy

Gas costs:
Gas requirermnent of function VotingEscrow totalSupply is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in yvour

functions or actions that modify large areas of storage (this includes clearing or copying arrays

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on
age values, have to be used carefully. Due to the block gas limit, transactions can only

1 certain amount of gas. The number of iterations in a loop can grow beyond the

block gas limit which can cause the complete contract to be stalled at a certain point.
]

as costs. Carefully test how

Additionally, using unbounded loops incurs in a lot of avoidable ¢
mary items at maximum you can pass to such functions to make it successful.

Pos: 1353:16:

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

reguirement of function Zard. mint is infinite: If the gas requirement of a function is higher
the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
modify large areas of storage (this includes clearing or copying arrays in storage)

o 204
e N

(Juard conditions:

assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug
n your code). Use "require(x)" if x can be false, due to eg. invalid input or a failing external

companent.

Pos: 69:8:

L)

BribeFactoryV2.sol
Security
Check-effects-interaction:

Fotential violation of Checks-Effects-Interaction pattern in
AddressUpgradeable functionCallWWithValueladdress bytes, uint256,string): Could potentially

to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static

(Gas costs:

Gas requirement of function BribeFactory2 addRe

function is

functions or actions that modify large areas

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

AddressUpgradeable functionStaticCall{address bytes) - Is constant but potentially should not

be. Mote: Modifiers are currently not considered by this static analysis.

Pos: 145:4:

Guard conditions:

Fyou never ever want x to be false, not in any circumnstance (apart from a bug

equire(x)" if x can be false, due to e.q. invalid input or a failing external

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static

alysis modules do not parse inline Asser]_JL this can lead to NMIONg dnalysls results.

Ly 3l

Block timestamp:

Use of "block timestamp": "block timestamp” can be influenced by miners to a certain degree.

That means that a miner can "choose" the block timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 124:24:

conomy
(Gas costs:

as requirement of function GaugeFactoryV2 createGaugeV?2 is infinite: If the gas requirement

f a function is higher than the block gas limit, it cannot be executed. Please avoid loops in

rour functions or actions that modify Large areas of storage (this includes clearing or
n storage)

copying

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

ever want x to be false, not in any circumstance (apart from a L._IJ

2. Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

sible. It can lead to unexpected behavior if

use Direct Calls via specifying the callec

o

dCe.

(Gas costs:

Gas requiremnent of function PairFees claimFeesFor is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in vour
functions or actions that modify large areas of storage (this includes ¢

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on
age values, have to be used carefully. Due to the block gas limit, transactions can only
ume a certain amount of gas. The number of iterations in a loop can grow beyond the

block gas limit which can cause the complete contract to be stalled at a certain point.

Additionally, using unbounded loops incurs in a lot of avoidable gas costs.
successful.

many items at maximum you can pass to such functions to make it

a private and confidential document. No part of this document should

be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

es clearing or copying arrays

Carefully test how

Miscellaneous

Data truncated:

fa

Division of integer values yields an integer value again. That means eg. 10/ 100 = 0 instead
of 0.1 since the result is an integer again. This does not hold for division of (only) literal values

since those yield rational constants.

Pos: 346:33:

AdminUpgradeabilityProxy.sol

Low level calls:

1T0E -
Pos: 185:50:

Gas & Economy

(;as costs:

Fallback function of contract AdminUpgradeabilityProxy requires too much gas (infinite). If the

fallback function requires more than 2300 gas, the contract cannot receive Ether.
Pos: 75

e L

Miscellaneous

(Guard conditions:

" if you never ever want x to be false, not in any circumstance (apart from a bug

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VeArtProxyUpgradeable.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

AddressUpgradeable functionCallWithvalue(address, bytes,uint256,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static

analysis.

Miscellaneous

Constant/View/Pure functions:

AddressUpgradeable. functionStaticCall{address bytes) : |s constant but potentially should not

be. Maote: Madifiers are currently not considered by this static analysis.

Pos: 145:4:

Guard conditions:

assert(x)" if you never ever want x to be false, not in any circumnstance (apart from a bug
inyour code]. Use "require(x)" if x can be false, due to e.q. invalid input or a failing external
component.

Pos: 61:8:

.

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FaucetToken.sol

Constant/View/Pure functions:

Potentially should be

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Bribes.sol

Bribes.sol:2:1: Error: Compiler version 7~0.8.13 does not satisfy the
r semver requirement

Bribes.so0l:5:8: Error: Use double quotes for string literals
Bribes.sol:15:8: Error: Use double quotes for string literals
Bribes.sol:41:19: Error: Variable name must be in mixedCase

Bribes.so0l:57:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Bribes.so0l:232:69: Error: Avoid to make time-based decisions in your
business logic

Bribes.sol:246:23: Error: Variable name must be in mixedCase

GaugeV2.sol

GaugeV2.s0l:2:1: Error: Compiler version 0.8.13 do not
r semver requirement
GaugeV2.s01:13:8: Error: Use double quotes for string literals
2.501:27:1: Error: Contract has 18 states declarations but
no more than 15
.8s01:44:20: Error: Variable name must be in mixedCase
V2.s01:77:5: Error: Explicitly mark visibility in function (Set

ignoreConstructors to true if using solidity >=0.7.0)
GaugeV2.s01:77:88: Error: Variable name must be in mixedCase
GaugeV2.s0l1:77:113: Error: Variable name must be in mixedCase
GaugeV2.s501:235:50: Error: Avoid to make time-based decisions in your
business logic
GaugeV2.s01:247:26: Error: Avoid to make time-based decisions in your
business logic
GaugeV2.s0l:248:24: : id to make time-based decisions in your
business logic

MinterUpgradeable.sol

MinterUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement

MinterUpgradeable.sol:146:5: Error: Function name must be
mixedCase

MinterUpgradeable.so0l:159:5: Error: Function name must be in

mixedCase

MinterUpgradeable.so0l:198:17: Error: Avoid to make time-based
decisions in your business logic
MinterUpgradeable.sol:202:16: Error: Avoid to make time-based
decisions in your business logic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Multicall.sol

:3:1: Error: Compiler version >=0.5.0 does not satisfy

semver requirement
Multicall.sol:17:48: Error: Avoid using low level calls.

Multicall.sol:33:21: Error: Avoid to make time-based decisions in
your business logic

Pair.sol

Error: Parse error: missing ';' at '{'

PairFees.sol

PairFees.sol:2:1: Error: Compiler version 0.8.13 does not satisfy the
r semver requirement

PairFees.so0l:4:8: Error: Use double quotes for string literals
PairFees.so0l:13:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
PairFees.so0l:21:45: Error: Avoid using low level calls.

RewardsDistributor.sol

RewardsDistributor.sol:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement

RewardsDistributor.sol:4:8: Error: Use double quotes for string
literals

RewardsDistributor.sol:5:8: o : Use double quotes for strin
literals

RewardsDistributor. CERCE r: Use double quotes for string
literalsmixedCase

RewardsDistributor. :247:9: Error: Variable name must be in
mixedCase

RewardsDistributor. :253:9: Error: Variable name must be in

mixedCase

RewardsDistributor. : : : Error: Variable name must be in
mixedCase

RewardsDistributor.s 3 & 3 3 ‘ : Variable name must be in
mixedCase

RewardsDistributor.sol:: :13: : Possible reentrancy
vulnerabilities. Avoid s ‘ : after transfer.

RouterV2.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

.s0l:2:1: Error: C
requirement
.s0l1:82:46: Error:
.s0l1:86:5: Error:

ignoreConstructors to true

RouterV2.sol:137:37:

RouterV2.so0l:228:55:

RouterV2.s0l:233:55:

SwaplLibrary.sol

SwapLibrary.sol:3:1:
the r semver requirement
SwapLibrary.sol:15:3: Erro
(Set ignoreConstructors to
.801:28:3: Erro
.s01:30:7: Erro
.s0l1:176:31: Er
.s01:178:35: Er

VoterV2.sol

VoterV2.sol:2:1: Error: Co
r semver requirementError:
(Set ignoreConstructors to
VoterV2.s01:67:19: Error:
VoterV2.s501:69:105: Error:
of modifiers
VoterV2.s01:1009:
business logic
VoterV2.s01:196:
business logic
.s0l1:227:
.s01:230:
.s01:377:
.s01:431:
.s01:433:

Error:

Error:

Error:

Error:

Error:
Error:
Error:

VotingEscrow.sol

VotingkEscrow.sol:2:1: Erro
the r semver requirement
Votingkscrow.sol:17:1: Err
allowed no more than 15
VotingEscrow.so0l:1118:9:
VotingEscrow.so0l:1119:31:
in your business logic
VotingEscrow.so0l:1120:59:

E

Thi
be disclosed to thi

s is a private and confidential document. No part of this document should
rd party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Error:
Error:
Error:

Error:

ompiler version 0.8.13 does not satisfy the

Use double quotes for string literals
Explicitly mark visibility in function
if using solidity >=0.7.0)

Use double quotes for string

Use double quotes for string

Use double quotes for string

(Set

literals
literals
literals

Compiler version 0.8.13 does not satisfy

r: Explicitly mark visibility in function
true if using solidity >=0.7.0)

r: Function name must be in mixedCase

r: Variable name must be in mixedCase

ror: Use double quotes for string literals
ror: Use double quotes for string literals

mpiler version 0.8.13 does not satisfy the
Explicitly mark visibility in function
true if using solidity >=0.7.0)
Code contains empty blocks
Visibility modifier must be first in list

Avoid to make time-based decisions in your

Avoid to make time-based decisions in your
Variable name must be in mixedCase

Variable name must be in mixedCase

Avoid using low level calls.

Variable name must be in mixedCase
Variable name must be in mixedCase

r: Compiler version 0.8.13 does not satisfy

or: Contract has 26 states declarations but

rror:
Error:

Variable name must be in mixedCase
Avoid to make time-based decisions

Error: Use double quotes for string

literals

)

VotingEscrow.so0l:1298
i

:27: Error: Avoid to make time-based decisions

in your business logic

Zard.sol

Error:
Error:

BribeFactoryV2.s0l:2:1: Error: Compiler version "~0.8.11 does not
satisfy the r semver quirement

BribeFactoryV2.s0l1:13:20: Error: Variable name must be in mixedCase
BribeFactoryV2.s0l:16:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
BribeFactoryV2.s01:16:19: Error: Code contains empty blocks
BribeFactoryV2.s0l:17:54: Error: Visibility modifier must be first in
list of modifiers

BribeFactoryV2.s0l:23:63: Error: Use double quotes for string
literals

BribeFactoryV2.: : :23: Error: Variable name must be
BribeFactoryV2.: : :40: Error: Use double quotes for string
literals

GaugeFactoryV2.sol

GaugeFactoryV2.s0l:2:1: Error: Compiler version 0.8.13 does not
satisfy the r semver requirement

GaugeFactoryV2.s0l:5:8: Error: Use double quotes for string literals
GaugeFactory .801:10:20: Error: Variable name must be in mixedCase
GaugeFactoryV2.s0l:12:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
GaugeFactoryV2.sol: :19: Error: Code contains empty blocks
GaugeFactoryV2.sol:14: : Error: Visibility modifier must be first in
list of modifiers

GaugeFactoryV2.sol: :99: Error: Variable name must be in mixedCase
GaugeFactory\ 3:124: Error: Variable name must be in mixedCase

PairFactoryUpgradeable.sol

PairFactoryUpgradeable.sol:2:1: Error: Compiler version 0.8. S

not satisfy the r semver requirementPairFactoryUpgradeable. :
Error: Use double quotes for string literals
PairFactoryUpgradeable.sol:39:5: Error: Explicitly mark visibility in

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

function (Set i eConstructors to true if using solidity >=0.7.0)
PairFactoryUpg :39:19: Error: Code contains empty blocks

r

PairFactoryUpgra le. :40:40: Error: Visibility modifier must be
first in list of modifiers

PairFactoryUpgradeable.sol: :35: Error: Use double quotes for
string literals

PairFactoryUpgradeable. :114:39: Error: Use double quotes for
string literals
PairFactoryUpgradeable.sol: :64: Error: Use double quotes for
string literals

AdminUpgradeabilityProxy.sol

import.sol:2:1: Error: Compiler version 70.8.0 does not satisfy the r
semver requirement

import.so0l:8:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
import.so0l:8:122: Error: Code contains empty blocks

VeArtProxyUpgradeable.sol

VeArtProxyUpgradeable.sol:2:1: Error: Compiler version 0.8.13 does

not satisfy the r semver requirement

VeArtProxyUpgradeable.sol:12:5: Error: Explicitly mark visibility in

function (Set ignoreConstructors to true if using solidity >=0.7.0)
ArtProxyUpgradeable.sol:12:19: Error: Code contains empty blocks

VeArtProxyUpgradeable.sol:14:39: Error: Visibility modifier must be

first in list of modifiers

VeArtProxyUpgradeable.sol:48:275: Error: Use double quotes for string

literals

VeArtProxyUpgradeable.sol:49:42: Error: Use double quotes for string

literals

FaucetToken.sol

FaucetToken.sol:3:1: Error: Compiler version 0.8.13 does not satisfy
the r semver requirement

=

FaucetToken.so0l:8:5: Error: Explicitly mark visibility of state
FaucetToken.s0l:10:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true 1f using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

