
Project: Another World DAO
Platform: Ethereum
Language: Solidity
Date: May 23rd, 2023

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Another World DAO to perform the Security audit of the
Another World DAO smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 23rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The Another World DAO Contracts handle multiple contracts, and all contracts have

different functions.

○ TreasureFragments: Treasure Fragments can be forged to mint another item.

○ MerkleDistributor: Distribute ERC-20 tokens based on Merkle proofs.

● Another World DAO is a NFT smart contract which has functions like withdraw,

claim, _mintBatch, burn, burnBatch, etc.

Audit scope

Name Code Review and Security Analysis Report
for Another World DAO Smart Contracts

Platform Ethereum / Solidity

File 1 MerkleDistributor.sol

File 1 MD5 Hash B5C6297C189CDB0018BB4277068F668D

Updated File 1 MD5 Hash B5235E9E471525341EBDEFA822496008

File 2 TreasureFragments.sol

File 2 MD5 Hash E9FE5B85D69C81626832EFEC85FAD7C4

Github Commit Hash 2cb8921df01912d2d4071e2789279e1f5dde6f51

Updated Github Commit Hash 34627bb929a3c56865e2ef7483031e46bc70cfea

Audit Date May 23rd, 2023

https://github.com/AnotherWorldDAO/Game-Contracts/blob/main/contracts/MerkleDistributor.sol
https://github.com/AnotherWorldDAO/Game-Contracts/blob/main/contracts/TreasureFragments.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 MerkleDistributor.sol
Owner has control over following functions:

● Set the merkle root values.

● Set the reward token address.

● Withdraw tokens.

● Current owner can transfer ownership of the

contract to a new account.

● Deleting ownership will leave the contract without

an owner, removing any owner-only functionality.

YES, This is valid.

File 2 TreasureFragments.sol
● Name: TreasureFragments

● Symbol: FRAG

● Refine Fee: 0.01 ether

Owner has control over following functions:
● Set the mint contract address.

● Set a refine fee.

● Set a URI.

● Set an airdrop value.

● Set the vault operator address.

● Withdraw tokens.

● Current owner can transfer ownership of the

contract to a new account.

● Deleting ownership will leave the contract without

an owner, removing any owner-only functionality.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts does contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.
All the issues have been resolved / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Another World DAO Protocol are part of its logical algorithm. A library is

a different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Another World DAO Protocol.

The Another World DAO team has provided unit test scripts, which helped to determine

the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Another World DAO Protocol smart contract code in the form of a github

web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

TreasureFragments.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 supportsInterface read Passed No Issue
9 uri read Passed No Issue
10 balanceOf read Passed No Issue
11 balanceOfBatch read Passed No Issue
12 setApprovalForAll write Passed No Issue
13 isApprovedForAll read Passed No Issue
14 safeTransferFrom write Passed No Issue
15 safeBatchTransferFrom write Passed No Issue
16 _safeTransferFrom internal Passed No Issue
17 _safeBatchTransferFrom internal Passed No Issue
18 _setURI internal Passed No Issue
19 _mint internal Passed No Issue
20 _mintBatch internal Passed No Issue
21 _burn internal Passed No Issue
21 _burnBatch internal Passed No Issue
22 _setApprovalForAll internal Passed No Issue
23 _beforeTokenTransfer internal Passed No Issue
24 _afterTokenTransfer internal Passed No Issue
25 _doSafeTransferAcceptanceChe

ck
write Passed No Issue

26 _doSafeBatchTransferAcceptan
ceCheck

write Passed No Issue

27 _asSingletonArray write Passed No Issue
28 burn write Passed No Issue
29 burnBatch write Passed No Issue
30 setMintContract external access only Owner No Issue
31 toggleForge external access only Owner No Issue
32 toggleRefinement external access only Owner No Issue
33 setTokenForgingRequirement external access only Owner No Issue
34 checkTokenForgingRequirement read Passed No Issue
35 forge external Passed No Issue
36 refine external Function is

accepting more
Refer to audit

findings

payment than the
require

37 setRefineFee external Owner can set
refineFee without

any limit

Refer to audit
findings

38 setURI external access only Owner No Issue
39 setVaultOperator external access only Owner No Issue
40 toggleAirdrop external access only Owner No Issue
41 uri read Passed No Issue
42 airdrop external Passed No Issue
43 random internal Passed No Issue
44 withdraw external access only Owner No Issue

MerkleDistributor.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 updateMerkleRoot external access only Owner No Issue
9 updateRewardToken external access only Owner No Issue
10 claim external Passed No Issue
11 withdraw external Owner can drain all the

reward tokens
Refer to audit

findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

(1) Owner can set refineFee without any limit: TreasureFragments.sol

Owner is able to set a refine fee without any maximum or minimum range.

Resolution: We suggest using some range for fees.

Status: Acknowledged

(2) Function is accepting more payment than the require: TreasureFragments.sol

While refine, if an user send more amount than the refineFee * amount of tokens, then the

contract does not send back the extra amount to the user.

Resolution: We suggest validating for an exact amount or send back the extra amount to

the user.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:

TreasureFragments.sol

MerkleDistributor.sol

Above functions do not validate the input before resetting the global value.

Resolution: We suggest validating like: numeric values should be greater than 0 and

address type variables should not be address(0).

Status: Fixed for MerkleDistributor.sol

(2) Owner can drain all the reward tokens: MerkleDistributor.sol

Owner is able to withdraw all the rewards tokens from the contract.

Resolution: We suggest confirming if this is required or not.

Status: Acknowledged

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

TreasureFragments.sol
● setMintContract: Mint contract address can be updated by the owner.

● toggleForge: Forge can be toggled by the owner.

● toggleRefinement: Refinement can be toggled by the owner.

● setTokenForgingRequirement: Token forging requirement values can be set by the

owner.

● setRefineFee: RefineFee can be set by the owner.

● setURI: URI can be set by the owner.

● setVaultOperator: Vault Operator address can be set by the owner.

● toggleAirdrop: Airdrop value can be toggled by the owner.

● airdrop: Airdrop value can be set by the owner.

● withdraw: Withdraw token by the owner.

MerkleDistributor.sol
● updateMerkleRoot: Merkle Root values can be updated by the owner.

● updateRewardToken: Reward token address can be updated by the owner.

● withdraw: Withdraw token by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Throws if the sender is not the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github web link. And we have used all

possible tests based on given objects as files. We had observed 2 low severity issues and

some informational issues in the smart contracts, but those are not critical ones. One of

the low issues has been resolved in the revised code and the rest are acknowledged. So,
the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Another World DAO

TreasureFragments Diagram

MerkleDistributor Diagram

Slither Results Log

Slither log >> TreasureFragments.sol

Slither log >> MerkleDistributor.sol

Solidity Static Analysis

TreasureFragments.sol

MerkleDistributor.sol

Solhint Linter

TreasureFragments.sol

TreasureFragments.sol:137:9: Error: Parse error: mismatched input ';'
expecting '('
TreasureFragments.sol:139:18: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:167:56: Error: Parse error: mismatched input
';' expecting '('
TreasureFragments.sol:169:22: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:174:60: Error: Parse error: mismatched input
';' expecting '('
TreasureFragments.sol:176:22: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:185:56: Error: Parse error: mismatched input
';' expecting '('
TreasureFragments.sol:187:22: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:197:67: Error: Parse error: mismatched input
';' expecting '('
TreasureFragments.sol:199:22: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:239:33: Error: Parse error: mismatched input
';' expecting '('
TreasureFragments.sol:241:18: Error: Parse error: missing ';' at '{'
TreasureFragments.sol:247:18: Error: Parse error: missing ';' at '{'

MerkleDistributor.sol

MerkleDistributor.sol:8:1: Error: Compiler version =0.8.17 does not
satisfy the r semver requirement
MerkleDistributor.sol:26:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
MerkleDistributor.sol:26:19: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

