@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Dubai NFT

Platform: Cross-Chain Network
Website: http://dubainfts.ae
Language: Solidity

Date: May 23rd, 2023

http://dubainfts.ae

Table of contents

IO UG ON o e 4
Project BacKgroUNG ... e 4
AUAIE S0P . et 5
Claimed Smart Contract Featureso e 6
AUAIt SUMMIAIY e et e 10
Technical QUICK SEats ..o 11
Code QUAIIRY ... e 12
DOoCUMENTAtION ... e 12
L LT o) D= o= o [T o [12
ASIS OVEIVIEW ..o e 13
Severity DefinitioNS ... 17
AUIt FINAINGS .. e 18
@7 0] o T3 1017 o 30
(@ 0] 1Y/ =1 1 T To [o] 0T) 31
DISCIAIMEIS ... 33
Appendix
o Code FIOW Diagramooiiiii e 34
o Shther RESUIS LOG .. .uuiiii e 40
e Solidity staticanalysis ..o, 44
® SOININt LiNter .o e 52

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by Dubai NFT to perform the Security audit of the Dubai

NFT smart contracts code. The audit has been performed using manual analysis as well

as using automated software tools. This report presents all the findings regarding the audit
performed on May 23rd, 2023.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Dubai NFT Marketplaces are platforms where users can create, buy, sell and resell

non-fungible tokens (NFTs). It is a cross-chain platform, such as NFT marketplaces,

allowing users to choose different blockchains networks such as Binance Smart

Chain, Ethereum, and Polygon to buy, sell, and trade NFTs.

e The Dubai NFT Contracts handle multiple contracts, and all contracts have different

functions.

O

Artcom: It allows managing mint, burn, clearData, airdropTokens, withdrawal,
ethToToken, pauseSale functionality.

Stacking: It allows setting APY and Deposit Amount.

Bridge: It allows a new owner address and update fees, and also sets a
token address.

DubaiNFT: It allows update fees and token addresses

DubaiNfts: It allows to set BaseURI, set Development Fees, update new

admin addresses, set token price, etc.

e DubaiNFT is a NFT smart contract which has functions like burn, mint, Inverst,

withdrawal, airdropTokens, claim, deposit, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Dubai NFT Smart Contracts

Platform Cross-Chain Network / Solidity

File 1 Artcom.sol

File 1 MD5 Hash

756944100572ECEA7601EF9A431CFC17

Updated File 1 MD5 Hash

E2FF772C6A77BE73E1BOD10E5BOFCA3D

File 1 Online code link

0x44e70bd21270f28a0084021bfec87d62206c65de

Updated File 1 Online code link

0xf5e696abd588eb1a8b8e1c9dcef3947e08f6f2ea

File 2

BridgeBSC.sol

File 2 MD5 Hash

E58AF8F50B3822B46269CCA15611E1F2

Updated File 2 MD5 Hash

75F01C8F132DA5SD8AD8A483093FDF1DC

File 2 Online code link

Oxceaf9827cca918181cb6514478c95d693a9ed9ca

Updated File 2 Online code link

0x0ef577e30695372974567c054157c3e9c17adc22

File 3

DubaiNfts.sol

File 3 MD5 Hash

OFE801BA14DAAD2F4E26BA45876482B5

Updated File 3 MD5 Hash

38BDF543BF380F2B8B50280A7F7E1DC8

File 3 Online code link

0x9b0db3098e9ada5d293c6785df8d0b7690ae9300

Updated File 3 Online code link

0xfaa293ab562784c7d513cd8ce8bda3b9959e7786

File 4

DubaiNfts_stacking.sol

File 4 MD5 Hash

59128AFC10AA9DASD447337B16916525

Updated File 4 MD5 Hash

5B339ED668D3AB72767F69FF6AECG60B4

File 4 Online code link

0xa140e762070c8b0e90b478bfe73f630b6ead2b3b

Updated File 4 Online code link

Oxe776b7a5043cabc74d6ab5a46764d62ab53baf9a4

File 5

Stacking.sol

File 5 MD5 Hash

EC392DD2E034A14B419224BE406AACOA

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://testnet.bscscan.com/address/0x44e70bd21270f28a0084021bfec87d62206c65de#code
https://testnet.bscscan.com/address/0xf5e696abd588eb1a8b8e1c9dcef3947e08f6f2ea#code
https://testnet.bscscan.com/address/0xceaf9827cca918181cb6514478c95d693a9ed9ca#code
https://testnet.bscscan.com/address/0x0ef577e30695372974567c054157c3e9c17adc22#code
https://testnet.bscscan.com/address/0x9b0db3098e9ada5d293c6785df8d0b7690ae9300#code
https://testnet.bscscan.com/address/0xfaa293ab562784c7d513cd8ce8bda3b9959e7786#code
https://testnet.bscscan.com/address/0xa140e762070c8b0e90b478bfe73f630b6ea42b3b#code
https://testnet.bscscan.com/address/0xe776b7a5043cabc74d6a5a46764d62ab53baf9a4#code

Updated File 5 MD5 Hash

5BDBB022FD2019F34DDA39916747D00F

File 5 Online code link

0xd25a8df97c0901fff05346d87b07f021ddfccc88

Updated File 5 Online code link

0xe6b67de50dae1f679e99cd8d0618432497aed4fb

File 6

dubaiNFT.sol

File 6 MD5 Hash

A6F2371A0DBAAGBES0B8F3CD8C51CDDF

Updated File 6 MD5 Hash

0CC5864FE74B67F406389D2A5A334C8B

File 6 Online code link

0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd

Updated File 6 Online code link

0xa4EB873e9d10fC18d41978Fbe8Ac6D653Bd4326a

Audit Date

May 23rd, 2023

Revised Audit Date

May 31st, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://testnet.bscscan.com/address/0xd25a8df97c0901fff05346d87b07f021ddfccc88#code
https://testnet.bscscan.com/address/0xe6b67de50dae1f679e99cd8d0618432497aed4fb#code
https://testnet.bscscan.com/address/0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd#code
https://testnet.bscscan.com/address/0xa4EB873e9d10fC18d41978Fbe8Ac6D653Bd4326a#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1 Artcom.sol
e Name: Artcom
e Symbol: ARTCOM
e Decimals: 18
e Total Supply: 5 billion
e Airdrop: 10 ARTCOM
e Rewards: 5% of Airdrop
e Minimum Deposit: 0.0001 ether
e Maximum Deposit: 3 ether
e 1USD: 3 Token

Owner has control over following functions:

e Set the pause the sale.

o Set the Start of the sale.

e Change Price of the token.
e \Withdrawal token.

e Set the Airdrop values.

e mint and burn token.

YES, This is valid.

File 2 BridgeBSC.sol
e Admin Fees: 4%

Owner has control over following functions:
e Set a new owner address.

e Set a new token address.

e Set a new fee value.

YES, This is valid. Owner
wallet’s private key must
be handled very securely.
Because if that is

compromised, then it will

create problems.

File 3 DubaiNfts.sol
e Name: Dubai NFT Marketplace
e Symbol: DubaiNfts

YES, This is valid. Owner
wallet’s private key must

be handled very securely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Admin Fees: 4%

e Floor Price: 0.00 ether

e base Token URI: http://18.212.58.134/metadata/

Owner has control over following functions:
e Set a baseURI.

e Set a start Sale.

e Set a pause Sale.

e Set a Contract Fees.

e Set a new admin address.
e Set a floor price.

e Set a token price.

Because if that is
compromised, then it will

create problems.

File 4 DubaiNfts_stacking.sol
e Tokens Per Second: 0.000001
e CurrentID: 0

Owner has control over following functions:
e Set a start Stacking.

e Set a pause Stacking.

e Set a token Per Second.

YES, This is valid.

File 5 dubaiNFT.sol
o Fees: 1%
e Divider: 10000

Owner has control over following functions:
e Set a new fee value.

e Set a new token address.

YES, This is valid. Owner
wallet’s private key must
be handled very securely.
Because if that is

compromised, then it will

create problems.

File 6 Stacking.sol
e CurrentID: 0

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

http://18.212.58.134/metadata/

e Minimum Deposit Amount: 100 ARTCOM
e Maximum Deposit Amount: 1000 ARTCOM
o APY: 1%

Owner has control over following functions:
e Seta hasStart status.

e Set a Deposit amount.

e Set an APY amount.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are “
Secured”. Also, these contracts do contain owner control, which does not make them fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 0 medium and 1 low and 6 very low level issues.

These all issues are fixed/acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Dubai NFT Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Dubai NFT Protocol.

The Dubai NFT team has provided unit test scripts, which helped to determine the integrity

of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Dubai NFT Protocol smart contract code in the form of a

testnet.bscscan.com web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: http://dubainfts.ae which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://testnet.bscscan.com/address/0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd#code
http://dubainfts.ae

AS-IS overview

Artcom.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | decimals external Passed No Issue
8 | pauseSale external access only Owner No Issue
9 | startiCO write access only Owner No Issue
10 | getLatestPriceEth read Passed No Issue
11 | Inverst write Passed No Issue
12 | changePrice external access only Owner No Issue
13 | checkExitsAddress read Passed No Issue
14 | ethToToken read Passed No Issue
15 | withdrwal write Passed No Issue
16 | setDrop write access only Owner No Issue
17 | airdropTokens write Passed No Issue
18 | clearData write Passed No Issue
19 [symbol external Passed No Issue
20 | name external Passed No Issue
21 | totalSupply external Passed No Issue
21 | burnToken external Passed No Issue
22 | balanceOf external Passed No Issue
23 | transfer external Passed No Issue
24 | allowance external Passed No Issue
25 | approve external Passed No Issue
26 | transferFrom external Passed No Issue
27 | increaseAllowance write Passed No Issue
28 | decreaseAllowance write Passed No Issue
29 [mint write access only Owner No Issue
30 | burn write access only Owner No Issue
31 | transfer internal Passed No Issue
32 | mint internal Passed No Issue
33 [burn internal Passed No Issue
34 | approve internal Passed No Issue
35 | burnFrom internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Stacking.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | toggelStacking write access only Owner No Issue
8 [setDepositeAmount write Passed No Issue
9 | setAPY write access only Owner No Issue
10 | userinfo internal Passed No Issue
11 | deposite write Passed No Issue
12 | calclulateReward read Passed No Issue
13 | withdrawl write Passed No Issue
14 | claim write Passed No Issue

DubaiNfts_stacking.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | startStacking write access only Owner No Issue
8 | pauseStacking write access only Owner No Issue
9 [setTokenPerSecond write access only Owner No Issue
10 | isStakeholder read Passed No Issue
11 | addStakeholder internal Passed No Issue
12 | removeStakeholder internal Passed Removed
13 | userlinfo internal Passed No Issue
14 | deposite write Passed No Issue
15 | calclulateReward read Passed No Issue
16 | withdrawl write Owner can withdraw all | Refer to audit

funds findings

17 | claim write Passed No Issue
18 | getUserStakelds read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

DubaiNFT.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | nonReentrant modifier Passed No Issue
8 [changeFees write Passed No Issue
9 | changeToken write access only Owner No Issue
10 | createMarketltem write Passed No Issue
11 | createMarketSale write Passed No Issue
DubaiNfts.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | supportsinterface read Passed No Issue
3 | tokenOfOwnerBylndex read Passed No Issue
4 | totalSupply read Passed No Issue
5 | tokenBylndex read Passed No Issue
6 beforeTokenTransfer internal Passed No Issue
7 | __addTokenToOwnerEnumerati write Passed No Issue
on
8 | _addTokenToAllTokensEnumer write Passed No Issue
ation
9 | _removeTokenFromOwnerEnu write Passed No Issue
meration
10 | _removeTokenFromAllTokens write Passed No Issue
Enumeration
11 | onlyWhitelisted modifier Passed No Issue
12 | addToWhiteL.ist write access only Owner No Issue
13 [removeToWhiteList write access only Owner No Issue
14 | isWhitelisted read Passed No Issue
15 | onlyAdmin modifier Passed No Issue
16 | setBaseURI write access only Owner No Issue
17 | startSale write access only Owner No Issue
18 | pauseSale write access only Owner No Issue
19 | setContractFees write access only Owner No Issue
20 | updateAdmin write access only Owner No Issue
21 | baseURI internal Passed No Issue
22 | setFloorPrice write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

23 | getBaseURI read Passed No Issue
24 | tokenURI read Passed No Issue
25 | setTokenPrice write Passed No Issue
26 | walletOfOwner read Passed No Issue
27 | mintPublic write Passed No Issue
28 | mint write Passed No Issue
29 | burn write Admin can burn Refer to audit
anyone’s token findings

30 | buy write Passed No Issue

BridgeBSC.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | burn external Passed No Issue
3 | mint external Passed No Issue
4 | updateOwner write Passed No Issue
5 | updateToken write Passed No Issue
6 | updateFees write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the contract code.

High Severity
(1) Subtraction overflow:

DubaiNFTs.sol

Function: buy()

NFO[tokenId].royalties)).div(100));

BridgeBSC.sol

Function: mint()

Total of admin fees and royalties should be less than 100%.

Resolution: We suggest validating the royalties so that the total of admin fees and
royalties should be less than 100%.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Status: This is fixed in the revised smart contract code.

(2) Logical vulnerability : DubaiNFTs.sol

Function: buy()

e.mul (NFTINFO[tokenId].royalties)).div(100));

In the buy function there is no check if that token is already sold or not, users can buy an

already sold token even though it is not open for sale.
There is no check for the price of the token whether it is greater than 0.
Resolution: We suggest adding validation for price and if that token is already sold or not.

Status: This is fixed in the revised smart contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low
(1) Admin can burn anyone’s token: DubaiNFTs.sol
Admin can burn any users’ tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Status: This is acknowledged in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) SafeMath Library: DubaiNFTs.sol, BridgeBSC.sol, DubaiNfts_stacking.sol,
Artcom.sol, Stacking.sol, DubaiNFT.sol

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Status: This is fixed in the revised smart contract code.

(2) Unused variables, Internal function:

DubaiNFTs.sol

There is a MAX_SUPPLY variable defined but not used anywhere.
DubaiNfts_stacking.sol

There are "minimumDepositeAmount" and "maximumDepositeAmount" variables defined

but not used anywhere.

DubaiNfts_stacking.sol

The removeStakeholder function is defined but not used.

Resolution: Remove unused variables and unused functions from the code.

Status: This is fixed in the revised smart contract code.

(3) Owner can set 100% fees: DubaiNFT.sol

Function: changeFees()

changeFees(

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

The Owner can set fees upto 100%. This can cause the trust issue.
Resolution: We suggest adding some range for fees.

Status: This is fixed in the revised smart contract code.

(4) Initialized by default value: DubaiNFTs.sol

Function: constructor()

In solidity the default value of an integer variable is 0. So no need to initialize by 0.

Resolution: We suggest removing this initialization code from the constructor to reduce

gas.

Status: This is fixed in the revised smart contract code.

(5) Spelling mistake:
Artcom.sol

Function: Inverst() -> Inverst word

Inverst()

Spelling mistake in function name. Functions are: Inverst()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

“Inverst” should be “Invest”.

Function: withdrwal() -> withdrwal word

Spelling mistake in function name. Functions are: withdrwal()
“withdrwal” should be “withdrawal”.

Function: Inverst() -> Deposite word

1inimumbDeposite,

cimumDeposite,

s = ethToToken |

« 5Bl '_I'-_" ¥

Spelling mistake in variable and function name.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

“deposite” word should be “deposit”.

DubaiNfts_stacking.sol

Function: claim() -> withdrawl word

Spelling mistake in function name. Functions are: withdrawl() and Also in require

message.
“withdrawl” should be “withdrawal”.

Contract : DubaiNfts_stacking -> Deposite word

DubaiNfts stacking 0
SateBEP20O IBEP20;
SafeMath

tokenPerSecond;

nimumDepositeAmount;

.
’

aximumDepositeAmount;

rewarnm M =1 a B3
ewardToken;

stakedToken;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Functions: deposite(), calclulateReward() -> deposite word

b(depositeTime)) .mul(

Spelling mistake in variable and function name.
“‘deposite” word should be “deposit.”
DubaiNFT.sol

Function: createMarketSale() -> alredy finnished word

arketItem[token][tc

tokenlId].token){

Spelling mistake in require message
“alredy” word should be “already”,
“finnished” word should be “finished”.
Stacking.sol

Function: withdrawl() -> withdrawl word

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Spelling mistake in variable and function name.
Functions are: withdrawl() and Also in require message.
“withdrawl” should be “withdrawal”.

Function: constructor() -> Deposite word

‘uctor(IBEP20 stakedToken) {
minimumDepositeAmount 100;
maximumbDepositeAmount
APY=100;

stakedToken = IBEP20(

Variables: minimumDepositeAmount, maximumDepositeAmount -> Deposite word

minimumPepositeAmount;
maximumDepositeAmount;
[] withdrawTime=[15 minutes, 30 minutes:
stakedToken;
stack {
amount;

userAddress;

withdrwalTime;
depositeTime;

stackld:

Function: calclulateReward() -> Deposite word

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

minimumAmount, maximumAmount)

numDepositeAmount = imumAmount ;
minimumAmount = minimum vt ;

amount, WTime)
r][currentID].amount amount;
r][currentID]. = .sender;
rl{currentID].wit 1Time .timest
r]lcurrentID]. i] I
r][currentID].
r][currentID].ic

mumDepositeAmo
less than

“deposite” word should be “deposit”.
“setDepositeAmount” should be “setDepositAmount”.
Resolution: Correct the spelling.

Status: This is fixed in the revised smart contract code.

(6) Owner can withdraw all funds:

DubaiNfts_stacking.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Function: withdrawl()

.mul(lel8),

Owner can withdraw all the balance of the contract by using the withdrawal function, and

only the owner can call this function.
Stacking.sol

Function: withdrawl()

Owner can withdraw all the balance of the contract by using withdrawl function, and here

are only owner can call this function.

Resolution: If it is a part of the plan then disregard this issue otherwise the owner has to

set charity wallet as excluded from fee.

Status: This is acknowledged in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Artcom.sol
e pauseSale: Pause the sale by the owner.
e startlCO: Start the sale by the owner.
e changePrice: Change Price of the token by the owner.
e withdrwal: Withdrawal token by the owner.
e setDrop: Airdrop values can be set by the owner.
e mint: The owner can create "amount’ tokens and assigns them to "'msg.sender’,
increasing the total supply.

e burn: The owner can burn "amount’ tokens and decrease the total supply.

Stacking.sol
e toggelStacking: The hasStart status can be set by the owner.
e setDepositeAmount: Deposit amount can be set by the owner.
e setAPY: APY amount can be set by the owner.

e withdrawl: Withdrawal token by the owner.

DubaiNfts_stacking.sol
e startStacking: Start Stacking can be set by the owner.
e pauseStacking: Pause Stacking can be set by the owner.
e setTokenPerSecond: Set Token Per Second by the owner.
e deposite: Deposite token by the owner.

e withdrawl: Withdrawal token by the owner.

DubaiNFT.sol
e changeFees: A new fee value can be set by the owner.

e changeToken: A new token address can be set by the owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

DubaiNfts.sol
e setBaseURI: The baseURI can be set by the owner.
e startSale: Start Sale can be set by the owner.
e pauseSale: Pause Sale can be set by the owner.
e setContractFees: Contract Fees can be set by the owner.
e updateAdmin: A new admin address can be set by the owner.
e setFloorPrice: Floor price can be set by the owner.
e setTokenPrice: Token price can be set by the owner.
e mint: The mint tokens by the admin.

e burn: The burn tokens by the admin.

BridgeBSC.sol
e updateOwner: A new owner address can be set by the owner.
e updateFees: A new fee value can be set by the owner.

e updateToken: A new token address can be set by the owner.

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new
account.

e checkOwner: Throws if the sender is not the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a web link. And we have used all possible
tests based on given objects as files. We had observed 2 high severity issues, 1 low
severity issue and 6 informational issues in the smart contracts. These all issues are fixed
/ acknowledged in the revised contract code. So, the smart contracts are ready for the

mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Dubai NFT

Artcom Diagram

© Artcom

Context
IBEP2Q
Ownable

mSafeMath for wint258

address==uirnt256 _balances
address==mapping address=>uit25& _allowances
uirt255 _totalSupply

uirts _decimals

string _symial

string _name

kool hasStart

uirt2558 _burnToken

UWiNt256 airdrop

Uint256 rewards

address _airaddress
address _useraddress
uint256 endDate

uirnt2s6 startDate

uiNMt256 minimumDeposite
uiMt2s6 maximumbDeposite
Uint256 soldToken

uint256 tokenPerlsd

Agaregatory 3interface priceFesdEth @ Aggregatory 3interface

GoeQC00000000000CCCN0O0O0O0NOO000000|0000000000000000000

_ constructor__ ()

. @ Qclecimals()
Qdecimals() @ O cescription()
pauseSale() @ Quversion()
startl”OC)

Q. getl stestPriceEth() g &%?e?;ggr?:éaa?a()

@ lnverst()

changePrice()

O checkExite Address()
CethToToken()
weithedrwal()
setDrop()
aircdropTokens()
clearDatal)

S symbol()

S namel)
AtotalSupply()

A burnToken()

A balanceOf()
transfer()
Qallowance()
approve)
transferFromi)
increaseAllowance()
decreaselllowance()
rirtiy

Exurril)

_transfer()

it}

_burn)

_approve()
_burnFrami)

' .. <]

I: for wint256

[:] | I
1BEFZ0 ! @ Ownable

o StotalSupply() I @ Safeldath Context
@ QburnToken() |
@ Qudecimals()
@ Qsymbol() | g &:Sgg O address _owner
g &Ea:neo o ©aumul) @ _ constructor__()
@ tranas?:r?{? o @ Rdivi) @ Qowner()
@ Qallowance() I < Qumod() @ renounceOwnership()
@ approwel) (@ transferOwnership()
@ transferFrom() y < _transferOwnership()

@ éontex‘t

_ constructor__ ()

L)
< O _msgSender()
< O, _msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Stacking Diagram

© Stacking

Ownable

nSafeBEF2(for IBEP2Q
nSafelath for wint256

O Uint256 minimumDepositeAmourt

O uint256 maximumDepositeAmourt

O uimt256 withcrawTime

2 IBEP20 stakedToken

2 address==mapping uint=>stack Stack
O yint256 APY

< bool hasStart

O Uimt256 currentiD

@ IBEP20

o CtotalSupply()
@ Qecimals()
@ Ssymbaol()

@ S name()

@ QgetOwner()
@ O halance0f()
@ transfer()

@ toggelStacking()

@ setDepositeAmount()
@ setAPY()

< userinfol)

D deposite()

@ QcalclulateReward()
@ withdrawl()

@ claimi)

@ _ constructor__{)

@ Qallowance()
@ approvel)
@ transferFrom()

¥
’

i

P

@ SafeMath

< Qadd()
o Qeubi)
< Gmully
< Odivi)

< Omaod()

s n

-

., fi"or uint256

i

@ O.:.nrnat:ule

Context

O address _owner

@ _ constructor__()
@ CQowner()

@ renouncelwnershipl)
@ transferOwnership)
B _setOwner()

@ t;untext

< 0,_msgSender()
< 0,_msgDatal)

N

'\ for IBEP20
LY

4

<

@ SafeBEF20

nAddress for address

< safeTransfer()

< gafeTransferFrom)

< safelpprover)

< safelncreasedlowance])
< safeDecreasellowance()
B _calOptionalReturni)

|

|

|

:for address
7

\/
@ Address

< QisContract()

< sendValue()

< functionCall()

< functionCallith'alue()
< O functionStaticCall)
< functionDelegateCall()
| G,_verifyCallResult()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

/

Il

3

d

@ SafeMath

DubaiNfts_stacking Diagram

@ Dubaiklfts_stacking

Ownable

WSafeBEP20 for IBEP2D
nvSafeMath for uint256

< Uint256 tokenPerSecond

O Uint256 minimumDeposite Amount
O Uint256 maximumDepositeAmount
O [BEP20 rewardToken

2 [ERCT21 stakedToken

O uint256=>stack Stack

O address stakeholders

< bool hasStart

O uint256 currentlD

@ startStacking()

@ pauseStacking()

@ setTokenPerSecond()
o QisStakeholder()

< addStakeholder()

< removeStakehalder()
< userinfaol)

@ deposite()

@ QealclulateReward()
@ withedrawl()

@ claim()

© _ constructor__{)

r
{

J aifor uint256

© Ownable

Context

< Gadd()
< Qusub()
< gumul()
< adiv()

< Qmod()

O address _owner

@ _ constructor__{)
@ Qowner()

@ renounceOwnership()

@ transferOwnership()
B _setOwner()

@ :;cnten

< Q_msgSender()
< Q_msgDatal)

A\

'\ for IBEP20
\

A
-

<]

@ IERCT21

@ 1BEF20

IERC165

@ Qhalancedf()

@ QownerQOf()

@ safeTransferFrom()
@ transferFromi)

@ approvel)

@ QugetApproved()

@ setApprovalForAllQ)
@ QisApprovedFor AlI()

® SafeBEFZ0

nAddress for address

@ QtotalSupply()
@ Qdecimals()
@ Qeymbol()

@ Qname()

@ QgetOwner()
@ QbalanceCf()
@ transfer()

2 Qallowancel)
@ approve()

@ transferFrom()

< safeTransfer()
< gafeTransferFrom()
< safelpprove()

< safelncreaseAllowance()
< safeDecreaseAllowance()

B _callDptionalReturn()

@ IERCT165

@ Qsupportsinterface()

Ifor address

‘Wi

\/
® Address

< QiisContract()

< sendValue()

< functionCall()

< functionCallithalue()
< @ functionStaticCall()
< functionDelegateCall)
m 9_verifyCallResult()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(@) erc20

o QtotalSupply()
@ S halanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

dubaiNFT Diagram

@ dubailFT

Ownable
ReentrancyGuard

nCounters for Counters. Counter

ivSafeMath for wint256

O Counters Counter _temids
O Counters Counter _temsSold

O uint256 fees
< Uint256 divider
O [ERC20 tokenContract

O address=>mapping wint256=>Marketftem idToMarketftem

;;for Counters. Counter ;'lfor uint256 |

f
f
!

4

@ Counters

< Queurrent()
< increment()
© decrement()
< reset()

&

s

B

@ __econstructor__()
@ changeFees()
@ changeToken()
@ @createMarkettem()
@ dcreateMarketSale()

]
!

%

\
% |
|
y

@ Safelath

© ReentrancyGuard

< Qadd()
< Qsuli)
< aumul()
< Qdiv()

O uint256 WNOT_ENTERED

O uint256 _ENTERED
O uint256 _status

@ _ constructor__()

@ icrerze

IERC163

@ Qhalance0f()

@ Qownerdi()

@ safeTransferFrom()
@ transferFrom()

@ approve()

@ QoetApproved()

@ sethApprovalFor Al
@ QisApprovedFor Al

O agddress _owner

@ :.éﬂcmﬁ

@ _ constructor__()
@ Qowner()

@ renouncelwnership()
@ transferOwnership()
< _setOwner()

@ Qsupportsinterface()

!

@ (;cmext

< Q_msgSender()
< &_msgData()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(€) Dubaints

ERCT21Enumerable
Whitelist

nSafeMath for uint256

© LiInt256 MAX_SUPPLY
O string _baseTokenUR!
© address admin

© bool hasSaleStarted

‘
v

@ V\;hnellsl

® BlackLkisted
< add()
< ausub() o ;
= S acdress=>bool whitsist
< adiv() & addToWhiteList{)
= Qumod() ® removeTovwhiteList()
o QusWhielisted()
v
f
/
1)
f
f
/
/
!
f
|
/
|
LV
@ BlackLkistsd
Ownable
> addres: bool IsBlacklisted
@ blackList()
@ removeFromBlacklist()

@ Owmnable

(@) rercr21Raceiver

DubaiNfts Diagram

® onERC7T21Received()

(©) Ercr21Enumeranie

ERC7Z1
IERCT21Enumeratie

O address=>mal
O WntZ56=>uln256 _ownedT ckensindex
O Wint256 _allTokens

O uint2SB=>uint256 _allT okensindex

UMt 256=>uint256 _ownedTokens

® Qsupportsinterface()
® QtokenOICwnerByindex()

= SrotalSupply()

@ QfokenBylndex()

_beforeTokenTranster()
“addTokenToOwnerEnumeration()
—acidTokenToANTokensEnumeration ()
_remoweTakenFromOwnerEnumeration)
= _removeTokenFromAllTokensEnumeration()

Il

(@) ercrz

Context
ERC165

IERCT21

IER CT21Metadata

MAddress for address
nStrings for uint256

O stiing _name

O string _symbol

O uiM2S6=>address _owners

o ESS--uIN256 _balances

O UMZ56—>address _tokenApprovals

O uiM256==NFT NFTINFO

O address=>mapping address=-bool _operator Approvais

® __constructor__()
© Qsupportsirterface()

® Qgetapproved()

® setApprovalFor Al

® QisApprovedsorAl)

® transferfFrom()

@ safeTransferFrom()

| © _sateTranster(y

7] o Al _exstsgy

© O _isApprovedOrOwner()
d & _sateMint(y

© _mint()

-~ < Tpurnf)

“ _transter()

< _approvec)

B _checkONERCT 21 Received()
< _peforeTokenTransfer()

.] \
s 1 \

‘]

¢ '

,)
,/ for address | for wint256

Context

O sdaress _owner

__constructor__()
& Qowner()
© renounceOwnership()
© transterOwnership()
W _setCwner()

@ Address ‘{7
IERCT 21Metadata

/ | @ s @ |
/ © sendveie() O bytes16 _HEX_SvMBOLS o E

< functionCali() ® Qname()

@ functionCallith\/alue() “ AtoString(y ® Qsymbol()

- >

= CE o T e) < QitoHexString() ® QutokenURI)

= O _verifyCallResuni)

\

. IERCT 21 Enumerable

IERCT21

® QuotalSupply()
QtokenOfOwnerBylndex()
® QtokenByindex()

© ERC165

IERC165

@ Qsupportsinterface()

ApatanceOf()
Quownerofi)
safeTransferFrom{)
transferFrom)
approve()
AgetApproved()
setApprovalFor Al
s ApprovedFor All)

00000000

<

IERC165

@ Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BridgeBSC Diagram

@ BridgeBSC

@ JERCT21

IERC1ES

BridgeBase

@ _ constructor__ ()

@ Qbalancedf()

@ QownerOf()

@ safeTransferFrom{)
@ transferFromi)

@ approvel)

o QgetApproved])

@ sethpprovalFor Al
@ QisspprovedForAll)

@ IToken

@ mirt()
@ burni)

@ BridgeBase

nSafeMath for wint256

O address admin

< address owner

O Uit 256 adminFees
O |Taken token

@ I.;RC‘FEE

@ _ constructor__()
@ burni)

@ @mint()

O updateOwner()

@ updateFees()

@ updateToken()

|
:for wint256
V7

\V
@ SafeMath

< Quadd()
< Qsubi)
< gumully
< Qiv()
< Qmod()

@ Qsupportsinterfacel)
——————————————————————

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> Artcom.sol

Artcom.alle
-

Artcom._a { 2 er (A #727) shadows:
Refere : h i ytic/sli stector-Documentation#local-variable-shadowing

ilcr“Pll-»lLUt,EE (Artcom.so 1-";-‘1E1—51E“::'- should emit an event for:
en F-ILS-“ (Art)

ents-arithmetic

Artcom.Inverst() (Artcom. #446-459) uses timestamp for compariscns

Dar

- re(bool, y <.timestamp < endDate,ICO Completed) (Artcom.sol#449)
Artcom.with] Artcom. £ -::- uses timestamp for comparisons

2 \ ck.timestamp = endDate,ICO Is Not completed
Refere : http b . C ytic/slither/wiki/Detector-Documentation#block

Artcom.Inv
-r

Artcom.atire
s old versions

Parameter d|t':‘.r S‘tcl‘tIcl"L,'Ll t2 endDate (Artcom. = 1 ot in mixedCase
Function . 3) i ¢
Parameter A icef 2 : #461) is not in mixe
Parameter Art citsAddress() e (. #) is not in mi
Parameter Art B en{uin B 3 (Com. #476 ot i1n mixedCase
Parameter Art .5e int256, 256 1 (Artcom. #488) is not in mixedCase
Parameter Art .56 (uin ,ul .50l#488) is not in mix ase
Parameter Art .al kens (ac e 3 ress (Ar .50l#494) is not in mixedCase
\1» d|t' om._ai (.50l is not in mixedCase
COm._USE { 1s not in mixedCase
https://gi .co 3 wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Redundant expression "this (Artcom.sol#121)" inContext {Artcom.sol#111-124)
Refere : https github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements

Artcom.constructor()
- _totalSupp 5 * 18 ** 18 | .
'L-:_.-'slitl er/wiki/Detector D

) should be immutable
name (Artcom. # immutable
_symbol { .) immutable
i : should be i
om.price (Artcom. ; immutable
Referenc i . ytic/sli ki/Detector-Documentation#state-variables-that-could-be-declared-immutable

Eta-:kir-,‘s.th(ILut._.-
_APY 'ctc kin
lither/wiki/Detector-Documentation#miss ing-events-arithmetic
nt&) (Stacking.sol#550-57
dress(this),amount) {Stacking.sol#564
acking.sol#541)
er (Stacki
ck . timestamp wi Time[WTime]) (Stacking.sol#543)
k.timestamp (Sta cki g.sol#544)
c entID (Stacking.so
1 = false (5tacking.
;Lr»:rteti-:l'#l’»:»:l’tl’ar-:;,-'—‘-,-Llr»:rel:iliti»:s—:
) {Stacking.sol#591-604) uses timestamp for comparisons
r|:a|'is-. H)
){block.timestamp = Stack[msg.sender][id].withdrwalTime,Can not withdrwal Amount before Time)

oken.balance0f(address({this)) = lamount,Insufficent Balance) (Stacking.sol#597-6
ki/Detector-Documentatic .' ock- 't'LI"’rSth"’[‘

y withdrawl) {Stacking.

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pragma version8.8.9 (Stacking.sol#5) allows old versiens

solc-8.8.9 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Low lev call in Address.sendValue(address,uint256) (Stacking.sol
{success) = recipient.call{value: amount}{) (Stacking.sol#270)

L ow v call in Address.functionCallwithvalue(address,bytes,uint256,string) (Stacking.sol#306-321):
(success,returndata) = target.call{value: value}(data) (Stacking.sol#317-319)

Low level call in Address.functionstaticCall{address,bytes,str) {5tacking.sol#336-344):
(success,returndata) = target.staticcall{data) (Stacking.sol#342)
call in Address.functionDelegateCall{address,bytes,string) (Stacking.sol#358
{success, returndata) = target.delegatecall(data) (Stacking.sol#364)
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

Stacking.stack (Stacking.sol#511-518) is not in CapWords
Parameter Stacking.toggelStacking(bool)._hasStart (Stacking.sol#525) is not in mixedCase
Parameter Stacking.setAPY(uint8)._APY (Stacking.sol#536) is not in mixedCase
Parameter Stacking.userInfo{uint256,uint256).WTime (Stacking.sol#548) is not in mixedCase
Variable Stacking.Stack ({Stacking.sol# is not in mixedCase
Variable Stacking.APY (Stacking.sol#521) is not in mixedcase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
riable Stacking.maximumDepositeAmount (Stacking.sol#568) is too similar to Stacking.minimumDepositeAmount (Stacking.sol#507)
erence: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar

Stacking.minimumDepos iteAmount (Stacking.sol#507) should be immutable

Stacking.stakedToken (Stacking.sol#518) should be immutable

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immutable
Stacking.sol analyzed (7 contracts with 84 detectors), 35 result(s) found

Slither log >> DubaiNfts_stacking.sol

DubaiNfts_stacking.setTokenPerSecond{uint8) (DubaiNfts_stacking.sol#564-566) should emit an event for:
) - tokenPerSecond = _tokenPerSecond (DubaiNfts_stacking.sol#565)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Reentrancy in DubaiNfts_stacking.deposite(uint256) (DubaiNfts_stacking.sol#599-

External calls:

- stakedToken.transferFrom{msg.sender,address(this),tokenId) (DubaiNfts_stacking.sol#602)

State variables written after the CallfS‘:

- userInfo(tokenId) (DubaiNfts_stacking.sol#603)
Stack[currentID].tokenId = tokenId (DubaiNfts_stacking.sol#589)
Stack[currentID].amount = uint8(1) (DubaiNfts_stacking.sol#598)
Stack[currentID].userAddress = msg.sender (DubaiNfts_stacking.sol#591
Stack[currentID].time = block.timestamp (DubaiNfts stacking. 501*592]
Stack[currentID].stackId = currentID (DubaiNfts_stacking.sol#593)
Stack[currentID].isWithdrawal = false (DubaiNfts_stacking.sol#594)

USQIIHTD'tDkQHIj' (DubaiNfts_stacking.sol#6
- currentID = currentID + 1 {DubaiNfts stacklng s0l#596)
userInfo(tokenId) (DubaiNfts_stacking.sol#663)
- stakeholders.push(_stakeholder) (Dubainfts _stacking.sol#578)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

DubaiNfts_stacking.claim{uint256) (DubaiNfts_stacking.sol#618-627) uses timestamp for comparisons
Dangerous comparisons:) N i
- require{bool,string){rewardToken.balance0f{address{this)) == totalAmount,Insufficent Balance) (DubaiNfts_stacking.so

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

DubaiNfts_stacking.startStacking() (DubaiNfts_stacking.sol#5 compares to a boolean constant:
-require({bool,string){hasStart == false,Stacking Alr ¢ Started) (DubaiNfts_stacking.sol#55

Dubaiths_stacking.pause?tackingi} iDubaiths_stackiﬁg.sol.. 33) compares to a boolean constant:
-require({bool,string){hasStart == true,Stacking Already Paused) (DubaiNfts_stacking.sol#

DubaiNfts_stacking. jﬂp051t91u1nt4=f' {DubaiNfts_stacking.sol#) compares to a boolean constant:
-require({bool,string){hasStart == true,Stacking is not Start yet) (DubaiNfts_stacking.sol#600)

Dubaiwfts_stacking.calclulateR_ d(uint (Dubainfts_stacking.sols 511) compares to a boolean constant:
—requireibool,string]fctack[ij] isWithdrawal == false,Amount Already withdrawl) (DubaiNfts_stacking.sol#606)

DubaiNfts_stacking.claim{uint256) (DubaiNfts_stacking.sol# #618- 27) compares to a boolean constant:
-require{bool,string) tack[lj] isWithdrawal == Talse,uwount Already withdrawl) (DubaiNfts stacking.sol#620)

DubaiNfts_stacking.claim({uint256) (DubaiNfts_stacking.sol#618-627) compares to a boolean constant:
-require(bool,string){hasStart == true,Stacking is not Start yet) (DubaiNfts_stacking.sol#619

erence: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equal ity

Pragma verstio .9 (DubaiNfts_stacking.sol#7) allows old versions
solc-8.8.9 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

ow lewv call in Address.sendValue{address,uint256) {DubaiNfts_stacking.sol#385-389):

{success) recipient.call{value: amount}{) {DubaiNfts_stacking.sol#3

i lev call in Address.functionCallWithValue(add ass bytes ,uint256,string) (DubaiNfts stack1ng sol#403-408) :
(success,returndata) = target.call{value: alunjljata- DubaiNfts_stacking.sol#)

v lev call in Address.functionStaticCall{address,bytes.string) (DubaiNfts_stackin .501?4147413\:
(success,returndata) = target. Statlctallldata‘ IEUbaINTtS _stacking.sol#416)
call in Address. TUHCtIDHDQIQ;atQCaII'ajjlﬂss butﬂs ,string) (DubaiNfts stack ng.sol#424-42
(success, returndata) = target.delegatecall(jaTa' 'EubalNTtS _stacking.sol#42
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level - calls

Contract DubaiNfts_stacking (DubaiNfts_stacking.sol#533-634) is not in CapWords

Struct DubaiNfts_stacking.stack (DubaiNfts_stacking.sol#541-548) 1s not in CapWords

Parameter DubaiNfts_stacking.setTokenPerSecond{uintg)._ tokenPerSecond (DubaiNfts_stacking.sol#564) is not in mixedCase
Parameter DubaiNfts_stacking.isStakeholder(255) ddress (DubaiNfts_stacking.sol#567) 15 not in mixedCase
Parameter DubaiNfts_stacking.addStakeholder(_stakeholder (DubaiNfts_stacking. sol# is not in mixedCase
Parameter DubaiNfts_stacking.remov nctakﬂh)ljnllajjlnss-. staknhbljnr {DubaiNFts stacking. s>1¢“81w is not in mixedCase
variable DubaiNfts_stacking.Stack (DubaiMfts_stacking. sol#) is not in mixedCase

Reference: https://glthub.cow/cryt1c/511ther/w1k1fDetectDr—-Dcuwentat1Dn#c0nfarwance—to—sol1d1ty-nan1ng—convent1Dns

variable DubaiNfts_stacking. Wd/iWUWEQPDSiTQAWDUHT (Dubainfts_stacking.sol#538) is too similar to DubaiNfts_stacking.minimumDep
ositeAmount (DubaiNfts_stacking.sol#

variable DubaiNfts stacking. addstakeho jnllajjlnss-. _stakeholder (DubaiNfts_stacking.sol#575) is too similar to DubaiNfts_stac
king.stakeholders (DubaiNfts_stacking.sol#551)

Variable DubaiNfts_stacking.removeStakeholder{address)._stakeholder (DubaiNfts_stacking.sol#581) is too similar to DubaiNfts_s
tacking. stakeholders (

Reference: https: ffglthub C)WfCIleCfsllthQIf\lkleQTQCTDF Documentation#variable-names-too-similar

and confidential document. No part of this document should
narty without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

) uses literals with too many

[:L,Lc'LI\T‘tS stc-.kl g.maximumDe |‘:~31t»dr’-ut l|:L,| iNfts_stac
1l\‘rts stc
W1 clared-constant

Slither Iog >> dubaiNFT.soI
dubaiNFT.c eFees(3) should emit an event for:
Refere : T 1 ithe wiki/Detector-Documentation#miss ing-events-arithmetic

Reentrancy in dubaiNFT.createMarketSale(255 ,U1iNt256,uint256) (DubaiNft.sol#453-488):

,royaltiesTax) (Dubainft.sol#46
om(msg.sende .owner, .sub(ltiesTax).sub({tax)) (Dub
aiNft.sol#
(oken][tokenId].nftContract).transferFrom{idToMarketItem[token][tokenId].owner,msg.sender,sig
nerID) {DubaiNft.sols)
External '5115 se
255 |) lELLclITt sol#4
MarketTte m[tok d]. (¢) 3)
dToMarketItem[toke e . owne R (= « scope_@). (tax scope (DubaiNft.sol#

rabilities-3

11t| er/wiki/Detector-Documentation#incorrect-versions-of-solidity

Contract dubaiNFT II:LI..slth S0 1-r<r B) is not 1in CapWords

Parameter dubaiNFT.chanc (2 ee (Dubainft. =) is not in mixedCase

Parameter dubain ._ne n (DubaiNft.sol#414) is not in mixedCase

Reference: https: 1 ither/wiki/Detector-Documentation#conformance-to-solidity-naming

Reentrancy in dubaiNFT.createMarketSale({address,uint256,uint256) (DubaiNft.sol#453-488):
External calls:

er
MarketIte . ())
MarketItem[token][toke .0 .transfer((e). (roy esTax_scope_0) b(tax_scope_1)) (Dubainft.sol#

e variables written after t

T rketItem[token][tokenId]. ress(msg.sent
{DubaiNft.
false (DubaiNft.

(DubaiNft.sol#488-483)
oiki C -vulnerabilities-4
er (Dubainf #) onstant

1t\LI .comy i i ki/Detector-Documentation#state-variables-that-could-be-declared-constant
detectors), 18 result{s) found

DubaiNfts .token (uin 'Z- (DubaiNfts.sol#1424) shac 3
- nume Supply (DubaiNfts.sol#1196-1198) unction)
- i 2 alSup (DubaiNnfts.so 1«11-1“ i
DubaiNfts .wa FOu ss)._ol
Reference: 3/ i . % :_. ither/wiki/Detec -Documentation#local-variable-shadow
DubaiNfts .updateAdmin(a ess) (DubaiNfts.sol#1403-1405) should emit an event for:
i iNfts.sol#14
rytic/slither/wiki/Detector-Documentation#missing-events-access-control
(DubaiNfts.sol#1410-1412) should emit an event for:
(DubaiNfts.sol#1411)
ytic/slither ki/Detector-Documentation#miss ing-events-arithmetic
DubaiNfts.updateAdmin{addre .newAdmin (DubaiNfts.sol#1403) lacks a zero-check on
- admin in (Dubainfts.sol#140
Refere : h ://github. crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
b s).retval {DubaiNfts.so 1.,1.,99';.'
|..t»:rtiall'; used before decla

).reason (DubaiNfts.so)' 1in ERC721.
¢ used before de : reason.len

).reason (DubaiNfts.sol#)' in ERC721.
¢ used before declaration: revert{uintz

d,_data) (DubaiNfts.sol#1899-1109

a private and confidential document. No part of this document should
be disclosed to third party without prior written per on of EtherAuthority.

Email: audit@EtherAuthority.io

iNfts.mintPublic({address,uint256,uint256) (DubaiNfts.sol#1451-14
-:clls
der(),from,tokenId,_) (DubaiNfts.sol#1099-1189)

.:Tt er z Ik
= floorPrice (DubaiNfts.sol#1458
alties (DubaiNfts.so 1‘!'1 459)
'[:L,|c'Ll\T‘tS s:l?rl-‘lF

= false (Dub .
ytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

Versions

ic/ slither /wiki/Detector-Documentation#incorrect-versions-of-solidity

rec 1|.1.»| t c cll{,clL»:
855 . TL,I"‘t'LwIC 1lwithv t2 g
) ‘|:L,|c'LlT‘tS sol#551)
'[:L,|c'Ll\TtS sold

(DubaiNfts.
-Documentat iond i vel-calls

ress,uint2s tes)._data (Dubainfts.sol#982) 1is not in mixedCase
is not in mixe _Cas
er {DubaiNfts.sol#1319) is not in mixedCase
)._user (DubaiNfts.sol#1325) i in mixedCase
EELI:all\Tts.s.lfrlz is not in mixedCase
(DubaiNfts.sol#) is not in mixedCase
baiNfts.sol#1354) i in mixedCase
Parameter DubaiNfts.se C = i _selli es (DubaiNfts.sol#13 is not in mixedCase
Parameter DubaiNfts.setF i i) i ':[:L,|3E"Ll'\f‘t5.5-21#141) is not in mixedCase
Parameter DubaiNfts. (e (DubaiNfts.sol#1418) n in mixedCase
ELl:ail-.fts.' 2t0 () - (DubaiNfts.sol#1435) is not in mixedCase
i i/Detector-Documentat ion# ormance-to-solidity-nami

ilities-4

eFees(uint256) (3) should emit an event for:
_fee (Dubainft. :
slltl'-‘r.-'\ iki/Detector-Documentation#missing-events-arithmetic

T.createMarketSale{address,uint256,uint256) (DubaiNft.sol#453-488):

.transfer (.5E s tax) (DubaiNft.
.transfer (msg.se)1 I" etItem[token][t . or, iesTax) (DubaiNft.sol#46
[

).transfer (.5e , idToMarketItem[token] altiesTax).sub(tax

MarketItem[token][tokenId].nftContract).transferFrom{idToMarketItem[token][tokenId].owner,msg.sender
nerID) I'I:LI
(DubaiNft.sol#4

c|k tIte m[toker =nId].crea .transfer(royaltiesTax scope_08) (DubaiNft.sol#474))
MarketItem[toker ce .owner.transfer((msg.value).sub(royaltiesTax scope_0).sub(tax_scope_1)) (DubaiNft.sol#

(DubaiNft.sol#480-483)
wiki/Detector-Documentation#reentrancy-vulnerabilities-3

versions
/wiki/Detector-Documentation#incorrect-versions-of-solidity
is not in Cap!

(Dubainft.sol) is not in mixedCase
|-< en {Dub : 414) is not in mix

»:»:r‘trer-:';,' in :Ll"il-\:_.-:|'»:at»:l-’e|'k»:t§e'l»:[e-:-:r»:ss_.L"LrtEEE_.L"LrtESE} (DubainNft.sol#453-428):
= = . r.transfer(r esTax_ {DubaiNft.sol#474)
-.=||-< tI‘t»r’[t ken][toke ar.transfer({msg.value). (royaltiesTax_scope_8).sub{tax_scope_1)) {DubaiNft.sol#
= variables written after the

MarketItem[tc l -]‘ (msg.se) (DubaiNft.sol#484)

cetlte f .: 26

eentrancy-vulnerabilities-4
(Dubainft.sol#) should nstant
github.com/crytic ki/Detector-Documentation#state-variables-that-could-be-declared-constant
ft sol analyzed (9 contracts \-I'L‘th 84 detectors), 18 result(s) found

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Artcom.sol

Security

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.

Pos: 434:18:

Gas & Economy

Gas costs:

Gas requirement of function Artcom.airdropTokens is infinite: If the gas
reguirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 494:4:

Delete dynamic array:

The "delete" operation when applied to a dynamically sized array in Solidity
generates code to delete each of the elements contained. If the array is large, this
operation can surpass the block gas limit and raise an OOG exception. Also nested
dynamically sized objects can produce the same results.

more

Pos: 491:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations in
a loop can grow beyond the block gas limit which can cause the complete contract
to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot
of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

more

Pos: 467:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

SafeMath.mod(uint256,uint256) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
more

Pos: 254:2:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

more

Pos: 729:4:

Stacking.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address.functionCallWithValue(address,bytes,uint256,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

Pos: 312:4:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 600:16:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function Stacking.claim is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes

clearing or copying arrays in storage)
Pos: 597:4:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more

Pos: 226:4:

Miscellaneous

Constant/View/Pure functions:

Stacking.withdrawl(uint256) : Potentially should be constant/Aview/pure but is not.
Note: Modifiers are currently not considered by this static analysis.
more

Pos: 589:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

more

Pos: 603:8:

DubaiNfts_stacking.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

Address functionCallWithValue(address,bytes,uint256,string): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 403:4:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
DubaiNfts_stacking.deposite(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 599:4:

Low level calls:

Use of "delegatecall": should be avoided whenever possible. External code, that is
called can change the state of the calling contract and send ether from the caller's
balance. If this is wanted behaviour, use the Solidity library feature if possible.
more

Pos: 426:50:

Gas & Economy

Gas costs:

Gas requirement of function DubaiNfts_stacking.isStakeholder is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid Lloops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 567:5:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations in
a loop can grow beyond the block gas limit which can cause the complete contract
to be stalled at a certain point. Additionally, using unbounded loops incurs in a lot
of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

more

Pos: 568:8:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

DubaiNfts_stackingwithdrawl(uint256) : Potentially should be constantiview/pure
but is not. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 613:4:

Similar variable names:

DubaiNfts_stacking.removeStakeholder(address) : Variables have very similar
names "_isStakeholder" and "_stakeholder". Note: Modifiers are currently not
considered by this static analysis.

Pos: 583:12:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

more

Pos: 623:8:

dubaiNFT.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
dubaiNFT.createMarketltem(address,uint256,uint256.bool,uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not
considered by this static analysis.

more

Pos: 393:4:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function dubaiNFT.createMarketSale is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage

(this includes clearing or copying arrays in storage)
Pos: 429:4:

Miscellaneous

Constant/View/Pure functions:

IERC20.transfer(address,uint256) : Potentially should be constant/iview/pure but is

not. Note: Modifiers are currently not considered by this static analysis.
more
Pos: 14:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.

invalid input or a failing external component.
more

Pos: 439:16:

DubaiNfts.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
DubaiNfts.buy(uint256): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

Pos: 1489:4:

Gas & Economy

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function DubaiNfts.walletOfOwner is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas

of storage (this includes clearing or copying arrays in storage)
Pos: 1435:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of
iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many
items at maximum you can pass to such functions to make it successful.

more

Pos: 1343:8:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 1491:8:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the
same. If you want to remove the empty position you need to shift items
manually and update the "length" property.

more

Pos: 1311:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

BridgeBSC.sol

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 344:6:

Gas & Economy

Gas costs:

Gas requirement of function BridgeBase.mint is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 333:2:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 357:8:

Similar variable names:

BridgeBase.mint(address,uint256,address,address,uint256) : Variables have very
similar names "token" and "tokenld".

Pos: 343:6:

Data truncated:

Division of integer values yields an integer value again. That means eg. 10/ 100
= 0 instead of 0.1 since the result is an integer again. This does not hold for

division of (only) literal values since those vyield rational constants.
Pos: 66:16:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Artcom.sol

Artcom.so0l:10:1: Error: Compiler version 0.8.7 does not satisfy the
semver requirement
Artcom.so0l:114:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.sol:114:19: Error: Code contains empty blocks
Artcom.so0l:295:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.sol:378:1: Error: Contract has 19 states declarations but
allowed no more than 15

.s01:401:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.so0l:434:19: Error: Avoid to make time-based decisions in
business logic
Artcom.sol:446:4: Error: Function name must be in mixedCase
Artcom.so0l:449:16: Error: Avoid to make time-based decisions in your
business logic
Artcom.sol:484: : Error: Avoid to make time-based decisions in your
business logic
Artcom.so0l:488:67: Error: Visibility modifier must be first in list
of modifiers
Artcom.sol:494: : Error: Variable name must be in mixedCase

your

4

r

Stacking.sol

or: Parse error: missing

DubaiNfts_stacking.sol

DubaiNfts stacking.sol:506:18:

dubaiNFT.sol

DubaiNft.sol:44:18: Error: Parse error: missing ';

DubaiNft.sol:52:18: Error: Parse error: missing ';

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

DubaiNfts.sol

DubaiNfts.sol:11:1: Error: Compiler version "0.8.15 does not satisfy
the r semver requirement

DubaiNfts.sol:174:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.so0l:452:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

DubaiNfts.so0l:477:28: Error: Avoid using low level calls.
DubaiNfts.sol: : : Error: Avoid using low level calls.
DubaiNfts.sol: : : Error: Avoid using low level calls.
DubaiNfts.sol: : : Error: Avoid using inline assembly. It is
acceptable only in rare cases

DubaiNfts.sol:758:34: Error: Variable name must be in mixedCase
DubaiNfts.sol:763:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.so0l:1105:21: Error: Avoid using inline assembly. It is
acceptable only in cases

DubaiNfts.sol:1133: Error: Code contains empty blocks
DubaiNfts.sol:1317: Error: Explicitly mark visibility of state
DubaiNfts.sol:1333: Error: Explicitly mark visibility of state
DubaiNfts.sol:1372:5: Error: Explicitly mark visibility in function

o o N B
N Q
e

)

(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.s0l:1410:28: Error: Variable name must be in mixedCase

.
()

Error: Compiler version 0.8.16 does not satisfy
irement

Error: Explicitly mark visibility in function
ructors to true if using solidity >=0.7.0)

Error: Avoid to make time-based decisions in

w D

B oo B

(Set ignoreCon
BridgeBSC.sol:
your business

BridgeBSC.sol:
your business

BridgeBSC.sol:
(Set ignoreCons
BridgeBSC.sol:3

)
N F Qe

Error: Avolid to make time-based decisions in

= W~ W
S O

o O

¢ Explicitly mark visibility in function
to true if using solidity >=0.7.0)

rror: Code contains empty blocks

N W

U
ct
wh waQ »>~Q ©

(o))

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

