
Project: Dubai NFT
Platform: Cross-Chain Network
Website: http://dubainfts.ae
Language: Solidity
Date: May 23rd, 2023

http://dubainfts.ae

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….10

Technical Quick Stats …..……………………………………………………………………… 11

Code Quality ……………………………………………………………………………………. 12

Documentation …………………………………………………………………………………..12

Use of Dependencies ……………………………………………………………………………12

AS-IS overview ………………………………………………………………………………….. 13

Severity Definitions ……………………………………………………………………………... 17

Audit Findings …………………………………………………………………………………… 18

Conclusion ………………………………………………………………………………………. 30

Our Methodology ………………………………………………………………………………... 31

Disclaimers ………………………………………………………………………………………. 33

Appendix

● Code Flow Diagram ……………………………………………………………………... 34

● Slither Results Log ………………………………………………………………………. 40

● Solidity static analysis ….……………………………………………………………….. 44

● Solhint Linter …………………………………………………………………….……….. 52

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Dubai NFT to perform the Security audit of the Dubai
NFT smart contracts code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on May 23rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Dubai NFT Marketplaces are platforms where users can create, buy, sell and resell

non-fungible tokens (NFTs). It is a cross-chain platform, such as NFT marketplaces,

allowing users to choose different blockchains networks such as Binance Smart

Chain, Ethereum, and Polygon to buy, sell, and trade NFTs.

● The Dubai NFT Contracts handle multiple contracts, and all contracts have different

functions.

○ Artcom: It allows managing mint, burn, clearData, airdropTokens, withdrawal,

ethToToken, pauseSale functionality.

○ Stacking: It allows setting APY and Deposit Amount.

○ Bridge: It allows a new owner address and update fees, and also sets a

token address.

○ DubaiNFT: It allows update fees and token addresses

○ DubaiNfts: It allows to set BaseURI, set Development Fees, update new

admin addresses, set token price, etc.

● DubaiNFT is a NFT smart contract which has functions like burn, mint, Inverst,

withdrawal, airdropTokens, claim, deposit, etc.

Audit scope

Name Code Review and Security Analysis Report for
Dubai NFT Smart Contracts

Platform Cross-Chain Network / Solidity

File 1 Artcom.sol

File 1 MD5 Hash 756944100572ECEA7601EF9A431CFC17

Updated File 1 MD5 Hash E2FF772C6A77BE73E1B0D10E5B9FCA3D

File 1 Online code link 0x44e70bd21270f28a0084021bfec87d62206c65de

Updated File 1 Online code link 0xf5e696abd588eb1a8b8e1c9dcef3947e08f6f2ea

File 2 BridgeBSC.sol

File 2 MD5 Hash E58AF8F50B3822B46269CCA15611E1F2

Updated File 2 MD5 Hash 75F01C8F132DA5D8AD8A483093FDF1DC

File 2 Online code link 0xceaf9827cca918181cb6514478c95d693a9ed9ca

Updated File 2 Online code link 0x0ef577e30695372974567c054157c3e9c17adc22

File 3 DubaiNfts.sol

File 3 MD5 Hash 0FE801BA14DAAD2F4E26BA45876482B5

Updated File 3 MD5 Hash 38BDF543BF380F2B8B50280A7F7E1DC8

File 3 Online code link 0x9b0db3098e9ada5d293c6785df8d0b7690ae9300

Updated File 3 Online code link 0xfaa293ab562784c7d513cd8ce8bda3b9959e7786

File 4 DubaiNfts_stacking.sol

File 4 MD5 Hash 59128AFC10AA9DA5D447337B16916525

Updated File 4 MD5 Hash 5B339ED668D3AB72767F69FF6AEC60B4

File 4 Online code link 0xa140e762070c8b0e90b478bfe73f630b6ea42b3b

Updated File 4 Online code link 0xe776b7a5043cabc74d6a5a46764d62ab53baf9a4

File 5 Stacking.sol

File 5 MD5 Hash EC392DD2E034A14B419224BE406AAC0A

https://testnet.bscscan.com/address/0x44e70bd21270f28a0084021bfec87d62206c65de#code
https://testnet.bscscan.com/address/0xf5e696abd588eb1a8b8e1c9dcef3947e08f6f2ea#code
https://testnet.bscscan.com/address/0xceaf9827cca918181cb6514478c95d693a9ed9ca#code
https://testnet.bscscan.com/address/0x0ef577e30695372974567c054157c3e9c17adc22#code
https://testnet.bscscan.com/address/0x9b0db3098e9ada5d293c6785df8d0b7690ae9300#code
https://testnet.bscscan.com/address/0xfaa293ab562784c7d513cd8ce8bda3b9959e7786#code
https://testnet.bscscan.com/address/0xa140e762070c8b0e90b478bfe73f630b6ea42b3b#code
https://testnet.bscscan.com/address/0xe776b7a5043cabc74d6a5a46764d62ab53baf9a4#code

Updated File 5 MD5 Hash 5BDBB022FD2019F34DDA39916747D00F

File 5 Online code link 0xd25a8df97c0901fff05346d87b07f021ddfccc88

Updated File 5 Online code link 0xe6b67de50dae1f679e99cd8d0618432497aed4fb

File 6 dubaiNFT.sol

File 6 MD5 Hash A6F2371A0DBAA68E90B8F3CD8C51CDDF

Updated File 6 MD5 Hash 0CC5864FE74B67F406389D2A5A334C8B

File 6 Online code link 0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd

Updated File 6 Online code link 0xa4EB873e9d10fC18d41978Fbe8Ac6D653Bd4326a

Audit Date May 23rd, 2023

Revised Audit Date May 31st, 2023

https://testnet.bscscan.com/address/0xd25a8df97c0901fff05346d87b07f021ddfccc88#code
https://testnet.bscscan.com/address/0xe6b67de50dae1f679e99cd8d0618432497aed4fb#code
https://testnet.bscscan.com/address/0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd#code
https://testnet.bscscan.com/address/0xa4EB873e9d10fC18d41978Fbe8Ac6D653Bd4326a#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Artcom.sol
● Name: Artcom

● Symbol: ARTCOM

● Decimals: 18

● Total Supply: 5 billion

● Airdrop: 10 ARTCOM

● Rewards: 5% of Airdrop

● Minimum Deposit: 0.0001 ether

● Maximum Deposit: 3 ether

● 1USD: 3 Token

Owner has control over following functions:
● Set the pause the sale.

● Set the Start of the sale.

● Change Price of the token.

● Withdrawal token.

● Set the Airdrop values.

● mint and burn token.

YES, This is valid.

File 2 BridgeBSC.sol
● Admin Fees: 4%

Owner has control over following functions:
● Set a new owner address.

● Set a new token address.

● Set a new fee value.

YES, This is valid. Owner
wallet’s private key must
be handled very securely.
Because if that is
compromised, then it will
create problems.

File 3 DubaiNfts.sol
● Name: Dubai NFT Marketplace

● Symbol: DubaiNfts

YES, This is valid. Owner
wallet’s private key must
be handled very securely.

● Admin Fees: 4%

● Floor Price: 0.00 ether

● _base Token URI: http://18.212.58.134/metadata/

Owner has control over following functions:
● Set a baseURI.

● Set a start Sale.

● Set a pause Sale.

● Set a Contract Fees.

● Set a new admin address.

● Set a floor price.

● Set a token price.

Because if that is
compromised, then it will
create problems.

File 4 DubaiNfts_stacking.sol
● Tokens Per Second: 0.000001

● Current ID: 0

Owner has control over following functions:
● Set a start Stacking.

● Set a pause Stacking.

● Set a token Per Second.

YES, This is valid.

File 5 dubaiNFT.sol
● Fees: 1%

● Divider: 10000

Owner has control over following functions:
● Set a new fee value.

● Set a new token address.

YES, This is valid. Owner
wallet’s private key must
be handled very securely.
Because if that is
compromised, then it will
create problems.

File 6 Stacking.sol
● Current ID: 0

YES, This is valid.

http://18.212.58.134/metadata/

● Minimum Deposit Amount: 100 ARTCOM

● Maximum Deposit Amount: 1000 ARTCOM

● APY: 1%

Owner has control over following functions:
● Set a _hasStart status.

● Set a Deposit amount.

● Set an APY amount.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are “
Secured”. Also, these contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 2 high, 0 medium and 1 low and 6 very low level issues.
These all issues are fixed/acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Dubai NFT Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Dubai NFT Protocol.

The Dubai NFT team has provided unit test scripts, which helped to determine the integrity

of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Dubai NFT Protocol smart contract code in the form of a

testnet.bscscan.com web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: http://dubainfts.ae which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://testnet.bscscan.com/address/0x51152bEE1fdcCeEfBBa4DB6F6a845a6068B9ecDd#code
http://dubainfts.ae

AS-IS overview

Artcom.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 decimals external Passed No Issue
8 pauseSale external access only Owner No Issue
9 startICO write access only Owner No Issue
10 getLatestPriceEth read Passed No Issue
11 Inverst write Passed No Issue
12 changePrice external access only Owner No Issue
13 checkExitsAddress read Passed No Issue
14 ethToToken read Passed No Issue
15 withdrwal write Passed No Issue
16 setDrop write access only Owner No Issue
17 airdropTokens write Passed No Issue
18 clearData write Passed No Issue
19 symbol external Passed No Issue
20 name external Passed No Issue
21 totalSupply external Passed No Issue
21 burnToken external Passed No Issue
22 balanceOf external Passed No Issue
23 transfer external Passed No Issue
24 allowance external Passed No Issue
25 approve external Passed No Issue
26 transferFrom external Passed No Issue
27 increaseAllowance write Passed No Issue
28 decreaseAllowance write Passed No Issue
29 mint write access only Owner No Issue
30 burn write access only Owner No Issue
31 _transfer internal Passed No Issue
32 _mint internal Passed No Issue
33 _burn internal Passed No Issue
34 _approve internal Passed No Issue
35 _burnFrom internal Passed No Issue

Stacking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 toggelStacking write access only Owner No Issue
8 setDepositeAmount write Passed No Issue
9 setAPY write access only Owner No Issue
10 userInfo internal Passed No Issue
11 deposite write Passed No Issue
12 calclulateReward read Passed No Issue
13 withdrawl write Passed No Issue
14 claim write Passed No Issue

DubaiNfts_stacking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 startStacking write access only Owner No Issue
8 pauseStacking write access only Owner No Issue
9 setTokenPerSecond write access only Owner No Issue
10 isStakeholder read Passed No Issue
11 addStakeholder internal Passed No Issue
12 removeStakeholder internal Passed Removed
13 userInfo internal Passed No Issue
14 deposite write Passed No Issue
15 calclulateReward read Passed No Issue
16 withdrawl write Owner can withdraw all

funds
Refer to audit

findings
17 claim write Passed No Issue
18 getUserStakeIds read Passed No Issue

DubaiNFT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 changeFees write Passed No Issue
9 changeToken write access only Owner No Issue
10 createMarketItem write Passed No Issue
11 createMarketSale write Passed No Issue

DubaiNfts.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 tokenOfOwnerByIndex read Passed No Issue
4 totalSupply read Passed No Issue
5 tokenByIndex read Passed No Issue
6 _beforeTokenTransfer internal Passed No Issue
7 _addTokenToOwnerEnumerati

on
write Passed No Issue

8 _addTokenToAllTokensEnumer
ation

write Passed No Issue

9 _removeTokenFromOwnerEnu
meration

write Passed No Issue

10 _removeTokenFromAllTokens
Enumeration

write Passed No Issue

11 onlyWhitelisted modifier Passed No Issue
12 addToWhiteList write access only Owner No Issue
13 removeToWhiteList write access only Owner No Issue
14 isWhitelisted read Passed No Issue
15 onlyAdmin modifier Passed No Issue
16 setBaseURI write access only Owner No Issue
17 startSale write access only Owner No Issue
18 pauseSale write access only Owner No Issue
19 setContractFees write access only Owner No Issue
20 updateAdmin write access only Owner No Issue
21 _baseURI internal Passed No Issue
22 setFloorPrice write access only Owner No Issue

23 getBaseURI read Passed No Issue
24 tokenURI read Passed No Issue
25 setTokenPrice write Passed No Issue
26 walletOfOwner read Passed No Issue
27 mintPublic write Passed No Issue
28 mint write Passed No Issue
29 burn write Admin can burn

anyone’s token
Refer to audit

findings
30 buy write Passed No Issue

BridgeBSC.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn external Passed No Issue
3 mint external Passed No Issue
4 updateOwner write Passed No Issue
5 updateToken write Passed No Issue
6 updateFees write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found in the contract code.

High Severity

(1) Subtraction overflow:

DubaiNFTs.sol

Function: buy()

BridgeBSC.sol

Function: mint()

Total of admin fees and royalties should be less than 100%.

Resolution: We suggest validating the royalties so that the total of admin fees and

royalties should be less than 100%.

Status: This is fixed in the revised smart contract code.

(2) Logical vulnerability : DubaiNFTs.sol

Function: buy()

In the buy function there is no check if that token is already sold or not, users can buy an

already sold token even though it is not open for sale.

There is no check for the price of the token whether it is greater than 0.

Resolution: We suggest adding validation for price and if that token is already sold or not.

Status: This is fixed in the revised smart contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

(1) Admin can burn anyone’s token: DubaiNFTs.sol

Admin can burn any users’ tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Status: This is acknowledged in the revised smart contract code.

Very Low / Informational / Best practices:

(1) SafeMath Library: DubaiNFTs.sol, BridgeBSC.sol, DubaiNfts_stacking.sol,
Artcom.sol, Stacking.sol, DubaiNFT.sol

SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Status: This is fixed in the revised smart contract code.

(2) Unused variables, Internal function:

DubaiNFTs.sol

There is a MAX_SUPPLY variable defined but not used anywhere.

DubaiNfts_stacking.sol

There are "minimumDepositeAmount" and "maximumDepositeAmount" variables defined

but not used anywhere.

DubaiNfts_stacking.sol

The removeStakeholder function is defined but not used.

Resolution: Remove unused variables and unused functions from the code.

Status: This is fixed in the revised smart contract code.

(3) Owner can set 100% fees: DubaiNFT.sol

Function: changeFees()

The Owner can set fees upto 100%. This can cause the trust issue.

Resolution: We suggest adding some range for fees.

Status: This is fixed in the revised smart contract code.

(4) Initialized by default value: DubaiNFTs.sol

Function: constructor()

In solidity the default value of an integer variable is 0. So no need to initialize by 0.

Resolution: We suggest removing this initialization code from the constructor to reduce

gas.

Status: This is fixed in the revised smart contract code.

(5) Spelling mistake:

Artcom.sol

Function: Inverst() -> Inverst word

Spelling mistake in function name. Functions are: Inverst()

“Inverst” should be “Invest”.

Function: withdrwal() -> withdrwal word

Spelling mistake in function name. Functions are: withdrwal()

“withdrwal” should be “withdrawal”.

Function: Inverst() -> Deposite word

Function: constructor() -> Deposite word

Spelling mistake in variable and function name.

“deposite” word should be “deposit”.

DubaiNfts_stacking.sol

Function: claim() -> withdrawl word

Function: calclulateReward() -> withdrawl word

Function: withdrawl() -> withdrawl word

Spelling mistake in function name. Functions are: withdrawl() and Also in require

message.

“withdrawl” should be “withdrawal”.

Contract : DubaiNfts_stacking -> Deposite word

Functions: deposite(), calclulateReward() -> deposite word

Spelling mistake in variable and function name.

“deposite” word should be “deposit.”

DubaiNFT.sol

Function: createMarketSale() -> alredy finnished word

Spelling mistake in require message

“alredy” word should be “already”,

“finnished” word should be “finished”.

Stacking.sol

Function: withdrawl() -> withdrawl word

Spelling mistake in variable and function name.

Functions are: withdrawl() and Also in require message.

“withdrawl” should be “withdrawal”.

Function: constructor() -> Deposite word

Variables: minimumDepositeAmount, maximumDepositeAmount -> Deposite word

Function: calclulateReward() -> Deposite word

Functions: setDepositeAmount(), deposite(), userInfo() -> Deposite word

“deposite” word should be “deposit”.

“setDepositeAmount” should be “setDepositAmount”.

Resolution: Correct the spelling.

Status: This is fixed in the revised smart contract code.

(6) Owner can withdraw all funds:

DubaiNfts_stacking.sol

Function: withdrawl()

Owner can withdraw all the balance of the contract by using the withdrawal function, and

only the owner can call this function.

Stacking.sol

Function: withdrawl()

Owner can withdraw all the balance of the contract by using withdrawl function, and here

are only owner can call this function.

Resolution: If it is a part of the plan then disregard this issue otherwise the owner has to

set charity wallet as excluded from fee.

Status: This is acknowledged in the revised smart contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Artcom.sol
● pauseSale: Pause the sale by the owner.

● startICO: Start the sale by the owner.

● changePrice: Change Price of the token by the owner.

● withdrwal: Withdrawal token by the owner.

● setDrop: Airdrop values can be set by the owner.

● mint: The owner can create `amount` tokens and assigns them to `msg.sender`,

increasing the total supply.

● burn: The owner can burn `amount` tokens and decrease the total supply.

Stacking.sol
● toggelStacking: The _hasStart status can be set by the owner.

● setDepositeAmount: Deposit amount can be set by the owner.

● setAPY: APY amount can be set by the owner.

● withdrawl: Withdrawal token by the owner.

DubaiNfts_stacking.sol
● startStacking: Start Stacking can be set by the owner.

● pauseStacking: Pause Stacking can be set by the owner.

● setTokenPerSecond: Set Token Per Second by the owner.

● deposite: Deposite token by the owner.

● withdrawl: Withdrawal token by the owner.

DubaiNFT.sol
● changeFees: A new fee value can be set by the owner.

● changeToken: A new token address can be set by the owner.

DubaiNfts.sol
● setBaseURI: The baseURI can be set by the owner.

● startSale: Start Sale can be set by the owner.

● pauseSale: Pause Sale can be set by the owner.

● setContractFees: Contract Fees can be set by the owner.

● updateAdmin: A new admin address can be set by the owner.

● setFloorPrice: Floor price can be set by the owner.

● setTokenPrice: Token price can be set by the owner.

● mint: The mint tokens by the admin.

● burn: The burn tokens by the admin.

BridgeBSC.sol
● updateOwner: A new owner address can be set by the owner.

● updateFees: A new fee value can be set by the owner.

● updateToken: A new token address can be set by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Throws if the sender is not the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a web link. And we have used all possible

tests based on given objects as files. We had observed 2 high severity issues, 1 low

severity issue and 6 informational issues in the smart contracts. These all issues are fixed

/ acknowledged in the revised contract code. So, the smart contracts are ready for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Dubai NFT

Artcom Diagram

Stacking Diagram

DubaiNfts_stacking Diagram

dubaiNFT Diagram

DubaiNfts Diagram

BridgeBSC Diagram

Slither Results Log

Slither log >> Artcom.sol

Slither log >> Stacking.sol

Slither log >> DubaiNfts_stacking.sol

Slither log >> dubaiNFT.sol

Slither log >> DubaiNfts.sol

Slither log >> BridgeBSC.sol

Solidity Static Analysis

Artcom.sol

Stacking.sol

DubaiNfts_stacking.sol

dubaiNFT.sol

DubaiNfts.sol

BridgeBSC.sol

Solhint Linter

Artcom.sol

Artcom.sol:10:1: Error: Compiler version 0.8.7 does not satisfy the r
semver requirement
Artcom.sol:114:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.sol:114:19: Error: Code contains empty blocks
Artcom.sol:295:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.sol:378:1: Error: Contract has 19 states declarations but
allowed no more than 15
Artcom.sol:401:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Artcom.sol:434:19: Error: Avoid to make time-based decisions in your
business logic
Artcom.sol:446:4: Error: Function name must be in mixedCase
Artcom.sol:449:16: Error: Avoid to make time-based decisions in your
business logic
Artcom.sol:484:17: Error: Avoid to make time-based decisions in your
business logic
Artcom.sol:488:67: Error: Visibility modifier must be first in list
of modifiers
Artcom.sol:494:28: Error: Variable name must be in mixedCase

Stacking.sol

Stacking.sol:466:18: Error: Parse error: missing ';' at '{'

DubaiNfts_stacking.sol

DubaiNfts_stacking.sol:506:18: Error: Parse error: missing ';' at '{'

dubaiNFT.sol

DubaiNft.sol:44:18: Error: Parse error: missing ';' at '{'
DubaiNft.sol:52:18: Error: Parse error: missing ';' at '{'

DubaiNfts.sol

DubaiNfts.sol:11:1: Error: Compiler version ^0.8.15 does not satisfy
the r semver requirement
DubaiNfts.sol:174:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.sol:452:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DubaiNfts.sol:477:28: Error: Avoid using low level calls.
DubaiNfts.sol:551:51: Error: Avoid using low level calls.
DubaiNfts.sol:605:51: Error: Avoid using low level calls.
DubaiNfts.sol:621:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DubaiNfts.sol:758:34: Error: Variable name must be in mixedCase
DubaiNfts.sol:763:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.sol:1105:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
DubaiNfts.sol:1133:24: Error: Code contains empty blocks
DubaiNfts.sol:1317:5: Error: Explicitly mark visibility of state
DubaiNfts.sol:1333:5: Error: Explicitly mark visibility of state
DubaiNfts.sol:1372:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DubaiNfts.sol:1410:28: Error: Variable name must be in mixedCase

BridgeBSC.sol

BridgeBSC.sol:6:1: Error: Compiler version 0.8.16 does not satisfy
the r semver requirement
BridgeBSC.sol:316:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
BridgeBSC.sol:328:7: Error: Avoid to make time-based decisions in
your business logic
BridgeBSC.sol:344:7: Error: Avoid to make time-based decisions in
your business logic
BridgeBSC.sol:363:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
BridgeBSC.sol:363:48: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

