
Project: LunaFi VLFI Token
Website: https://lunafi.io
Platform: Polygon
Language: Solidity
Date: June 4th, 2023

https://lunafi.io


Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
EtherAuthority was contracted by the LunaFi team to perform the Security audit of the
VLFI Token smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on June 4th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● LunaFi is a gaming smart contract which has functions stake, unStake,

updateFarm, updateBets, storeBets, ceil, etc

● LunaFi contract inherits the ERC20Upgradeable, AccessControlUpgradeable,

SignatureChecker, draft-EIP712Upgradeable, draft-ERC20PermitUpgradeable,

ERC20VotesUpgradeable, SafeERC20 standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
LunaFi Token Smart Contract

Platform Polygon / Solidity

File VLFI.sol

File MD5 Hash 41ADA3D302F5D886BB1767CECD5DE28D

Revised File MD5 Hash 1A44CD3DEFA59CD5EAC000E7904E361C

Audit Date June 5th, 2023

Revision Date June 8th, 2023



Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Token Name: VLFI

● Token Symbol: vLFI

● Decimals: 18

YES, This is valid.

Manager has control over following functions:
● Set the poolName.

● Set the pool decimals.

● Set the initial pool token price.

● Set treasury address.

● Set the cooldownActive state.

● Withdraw the funds to the treasury.

YES, This is valid.

Staking Manager has control over following
functions:

● Set the unstake window time.

● Set cooldown seconds.

● Sets the rewards per second.

YES, This is valid.

Data Provider Oracle has control over following
functions:

● Set the VOI and signature of the authorized

user.

YES, This is valid.



House Pool Data Provider has control over
following functions:

● Store the bets placed.

● update the bet information.

● Settle bets.

YES, This is valid.



Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 3 high, 0 medium and 1 low and some very low level issues.
These issues are fixed / acknowledged in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the LunaFi Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the LunaFi Token.

The LunaFi Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a LunaFi Staking Token smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are well commented on. So it is easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its website https://lunafi.io which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://lunafi.io


AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyValid modifier Passed No Issue
3 initialize external initializer No Issue
4 setPoolName external access only Role No Issue
5 setDecimals external access only Role No Issue
6 initLpTokenPrice external Passed No Issue
7 setTreasuryAddress external access only Role No Issue
8 getTreasuryAddress external Passed No Issue
9 getUserCooldown external Passed No Issue
10 getUserRewardDebt external Passed No Issue
11 getCooldownSeconds external Passed No Issue
12 getUnstakeWindowTime external Passed No Issue
13 getAccRewardPerShare external Passed No Issue
14 getLastRewardTime external Passed No Issue
15 getRewards external Passed No Issue
16 getRewardPerSecond external Passed No Issue
17 getSportsBookContract external Passed No Issue
18 setSportsBookContract external access only Role No Issue
19 setUnstakeWindowTime external access only Role No Issue
20 setCooldownSeconds external access only Role No Issue
21 updateFarm write Passed No Issue
22 setRewardPerSecond write access only Role No Issue
23 permitAndStake external Passed No Issue
24 unstakeMax write Passed No Issue
25 setCoolDownActiveState external access only Role No Issue
26 getCoolDownActiveState external Passed No Issue
27 activateCooldown external Passed No Issue
28 claimRewards external Passed No Issue
29 getuserEVTrackerForTheUser external Passed No Issue
30 getUserBets external Passed No Issue
31 getBetInfoByID external Passed No Issue
32 getEV external Passed No Issue
33 getMaxExposure external Passed No Issue
34 getMyLiquidity external Passed No Issue
35 setVOI external access only Role No Issue
36 storeBets external Passed No Issue
37 updateBets external Passed No Issue
38 settleBets external Passed No Issue
39 calculateNewEVValue read Passed No Issue
40 stake write Passed No Issue
41 unStake write Passed No Issue
42 withdrawToTreasury external access only Role No Issue



43 getMaxWithdrawal read Passed No Issue
44 cleanUserMapping internal Passed No Issue
45 getNextCooldownTimestamp read Passed No Issue
46 _transfer internal Passed No Issue
47 _afterTokenTransfer internal Passed No Issue
48 _mint internal Passed No Issue
49 createFarm internal Passed No Issue
50 _burn internal Passed No Issue
51 updateAttributes internal Passed No Issue
52 _updateTVL internal Passed No Issue
53 _setVoi internal Passed No Issue
54 _setME internal Passed No Issue
55 _setEV internal Passed No Issue
56 ceil internal Passed No Issue
57 farmUtil internal Passed No Issue
58 TreasuryAmountWithdrawal internal Passed No Issue
59 __ERC20_init internal access only

Initializing
No Issue

60 __ERC20_init_unchained internal access only
Initializing

No Issue

61 name read Passed No Issue
62 symbol read Passed No Issue
63 decimals read Passed No Issue
64 totalSupply read Passed No Issue
65 balanceOf read Passed No Issue
66 transfer write Passed No Issue
67 allowance read Passed No Issue
68 approve write Passed No Issue
69 transferFrom write Passed No Issue
70 increaseAllowance write Passed No Issue
71 decreaseAllowance write Passed No Issue
72 _transfer internal Passed No Issue
73 _update internal Passed No Issue
74 _mint internal Passed No Issue
75 _burn internal Passed No Issue
76 _approve internal Passed No Issue
77 _spendAllowance internal Passed No Issue
78 __AccessControl_init internal access only

Initializing
No Issue

79 __AccessControl_init_unchained internal access only
Initializing

No Issue

80 onlyRole modifier Passed No Issue
81 supportsInterface read Passed No Issue
82 hasRole read Passed No Issue
83 _checkRole internal Passed No Issue
84 _checkRole internal Passed No Issue
85 getRoleAdmin read Passed No Issue
86 grantRole write access only Role No Issue



87 revokeRole write access only Role No Issue
88 renounceRole write Passed No Issue
89 _setRoleAdmin internal Passed No Issue
90 _grantRole internal Passed No Issue
91 _revokeRole internal Passed No Issue
92 __ERC20Permit_init internal access only

Initializing
No Issue

93 __ERC20Permit_init_unchained internal access only
Initializing

No Issue

94 permit write Passed No Issue
95 nonces read Passed No Issue
96 DOMAIN_SEPARATOR external Passed No Issue
97 __ERC20Votes_init internal access only

Initializing
No Issue

98 __ERC20Votes_init_unchained internal access only
Initializing

No Issue

99 _maxSupply internal Passed No Issue
100 _update internal Passed No Issue
101 _getVotingUnits internal Passed No Issue
102 numCheckpoints read Passed No Issue
103 checkpoints read Passed No Issue
104 __EIP712_init internal access only

Initializing
No Issue

105 __EIP712_init_unchained internal access only
Initializing

No Issue

106 _domainSeparatorV4 internal Passed No Issue
107 _buildDomainSeparator read Passed No Issue
108 _hashTypedDataV4 internal Passed No Issue
109 eip712Domain read Passed No Issue
110 _EIP712Name internal Passed No Issue
111 _EIP712Version internal Passed No Issue
112 _EIP712NameHash internal Passed No Issue
113 _EIP712VersionHash internal Passed No Issue



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical Severity

(1) Logical vulnerability:

Users can claim rewards for his balance although he has not staked. This was the reason

for the exploit on 2023-05-22.

Resolution: We suggest rewards should be given only for the staked amount of the user.

By this we can avoid the hack that happened recently.

Status: This issue is fixed in the revised contract code.

High Severity

(1) Rewards is not given before unstake:

After stake, the user claims the rewards and then unstake. At this point, the user can see

his pending rewards and dept rewards but he cannot withdraw it. On restake all the

pending and dept rewards reset to 0 and no rewards transferred to the user.

Resolution: We suggest giving rewards before the whole unstake.

Status: This issue is fixed in the revised contract code.

(2) Bets can be overwritten:

In the storeBets function is used to store the bets, but there is no check for the existing bet

id. Hence the bets can be overwritten if the same Id used for it.

Resolution: We suggest validating for the bet id if it exists or not.

Status: This issue is fixed in the revised contract code.



(3) A bet can be settled more than once:

In the settleBets, bet can be set more than once. No check for an already settled bet.

Resolution: We suggest validating the bet before settling.

Status: This issue is fixed in the revised contract code.

Medium

No medium severity vulnerabilities were found.

Low

(1) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop.

Below functions are having issues:

● storeBets

● updateBets

● settleBets

Resolution: We suggest validating the array length before executing for loop to avoid out

of gas issue.

Status: This issue is fixed in the revised contract code.



Very Low / Informational / Best practices:

(1) If totalsupply reaches to 0 no one can stake:

If initlpTokenPrice is not set before the totalSupply reaches to zero, then no one can stake.

Resolution: We suggest setting initlpTokenPrice after initializing the staking contract.

Status: This issue is acknowledged in the revised contract code.

(2) Unused variable:

Variable: INT_ACC_REWARD_PRECISION

Function: farmUtil()

The INT_ACC_REWARD_PRECISION variable has been defined as a constant but is not

used anywhere. In the farmUtil function, the input parameter _amount is not used.

Resolution: We suggest removing unused variables / parameters.

Status: This issue is fixed in the revised contract code.



Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

VLFI.sol
● setPoolName: The poolName can be set by the manager.

● setDecimals: The pool decimals are set by the manager.

● initLpTokenPrice: The initial pool token price can be set by the manager.

● setTreasuryAddress: Treasury address can be set by the manager.

● setSportsBookContract: Sports Book Contract address can be set by the manager.

● setCoolDownActiveState: Cooldown active state can be set by the manager.

● setUnstakeWindowTime: Unstake window time can be set by the staking manager.

● setCooldownSeconds: Cooldown seconds can be set by the staking manager.

● setRewardPerSecond: Rewards per second can be set by the staking manager.

● setVOI: VOI can be set by the data provider oracle manager.

● storeBets: Store the bets placed by the house pool data provider.

● updateBets: Update the bets information by the house pool data provider.

● settleBets: Settle bets by the house pool data provider.

● withdrawToTreasury: Manager can withdraw the funds to the treasury.

AccessControlUpgradeable.sol
● grantRole: Grants `role` to `account` can be set by the owner.

● revokeRole: Revokes `role` from `account` by the owner.

● renounceRole: Renounce Role from `account` by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.



Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed 1 critical severity issue, 3 high severity

issues, 1 low severity issue and 2 informational severity issues in smart contracts. These

issues are fixed / acknowledged in the revised smart contract code. So, the smart
contracts are ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - LunaFi Token



Slither Results Log
Slither Log >> VLFI.sol





Solidity Static Analysis
VLFI.sol





Solhint Linter

VLFI.sol

VLFI.sol:10:18: Error: Parse error: missing ';' at '{'
VLFI.sol:362:18: Error: Parse error: missing ';' at '{'
VLFI.sol:641:18: Error: Parse error: missing ';' at '{'
VLFI.sol:649:18: Error: Parse error: missing ';' at '{'
VLFI.sol:656:18: Error: Parse error: missing ';' at '{'
VLFI.sol:665:18: Error: Parse error: missing ';' at '{'
VLFI.sol:672:18: Error: Parse error: missing ';' at '{'
VLFI.sol:695:18: Error: Parse error: missing ';' at '{'
VLFI.sol:760:18: Error: Parse error: missing ';' at '{'
VLFI.sol:773:18: Error: Parse error: missing ';' at '{'
VLFI.sol:781:18: Error: Parse error: missing ';' at '{'
VLFI.sol:818:18: Error: Parse error: missing ';' at '{'
VLFI.sol:826:18: Error: Parse error: missing ';' at '{'
VLFI.sol:859:18: Error: Parse error: missing ';' at '{'
VLFI.sol:867:18: Error: Parse error: missing ';' at '{'
VLFI.sol:892:18: Error: Parse error: missing ';' at '{'
VLFI.sol:913:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1079:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1264:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1283:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1299:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1314:18: Error: Parse error: missing ';' at '{'
VLFI.sol:1344:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.




