
Project: Circular Gifting
Website: https://realgifting.io
Platform: SCAI Network
Language: Solidity
Date: July 14th, 2023

https://realgifting.io

Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....………………………………………………………………….7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 31

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Circular Gifting team to perform the Security audit of
the Circular Gifting smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on July 14th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The Circular Gifting protocol covers multiple contracts, and all contracts have

different functions.

○ EQUIIUSQ: This contract is used for governance.

○ Omega: This contract is used for governance.

○ Alpha: This contract is used for stable-coin.

○ EQUIIUSE: This contract is used for stable-coin.

● The smart contracts have functions like rescueETH, addLiquidity, burn, mint, etc.

Audit scope

Name Code Review and Security Analysis Report for
Circular Gifting Smart Contracts

Platform SCAI Network / Solidity

File 1 EQUIIUSQ.sol

File 2 Omega.sol

File 3 Alpha.sol

File 4 EQUIIUS_E.sol

Github Commit Hash 700c2e71b3a0f320c0908c2270819720caea732d

Audit Date July 14th, 2023

https://testnet.securechain.ai/address/0x78B38241D47dd841977721c923ee6D3A7E03e9E1/contracts
https://testnet.securechain.ai/address/0xd4cCd7C39fbB2C9F27de7E5ceEe173682e3a94Ac/transactions
https://testnet.securechain.ai/address/0x67F4cE28e33B5f359C8f3773A2EF2eca45470f70/contracts
https://testnet.securechain.ai/address/0x0Df0dA72950cda0a620f56a9DA11A018118E39C6/contracts

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 EQUIIUSQ.sol
● Name: EQUIIUS 'Q'

● Symbol: EQQ

● Decimals: 18

The owner has control over the following functions:
● Current owners can transfer ownership.

● Owners can renounce ownership.

● Set the excluded account from the fee.

● Enable open trading.

● Update the Burn percentage value and Tax

percentage value.

● Rescue ether.

YES, This is valid.

File 2 Omega.sol
● Name: Omega

● Symbol: OMA

● Decimals: 18

● Maximum Amount: 2%

● Burn Tax Percentage: 1%

The owner has control over the following functions:
● Current owners can transfer ownership.

● Owners can renounce ownership.

● Set the excluded account from the fee.

● Enable open trading.

● Update the burn percentage value and Tax

percentage value.

● Rescue ether.

YES, This is valid.

File 3 Alpha.sol
● Name: Alpha

● Symbol: ALP

YES, This is valid.

● Decimals: 18

The owner has control over the following functions:
● Current owners can transfer ownership.

● Owners can renounce ownership.

● Creates `amount` tokens and assigns them to `to`,

increasing the total supply.

● Burns `amount` tokens decreases the total supply.

File 4 EQUIIUSE.sol
● Name: EQUIIUS E

● Symbol: EQE

● Decimals: 18

The owner has control over the following functions:
● Current owners can transfer ownership.

● Owners can renounce ownership.

● Creates `amount` tokens and assigns them to `to`,

increasing the total supply.

● Burns `amount` tokens decreases the total supply.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 1 very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Circular Gifting are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Circular Gifting Protocol.

The Circular Gifting team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Circular Gifting smart contract code in the form of a github web link. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. And the logic is straightforward. So

it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://realgifting.io which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://realgifting.io

AS-IS overview

EQUIIUSQ.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 transferFrom write Passed No Issue
15 allowance read Passed No Issue
16 approve write Passed No Issue
17 _approve internal Passed No Issue
18 _spendAllowance internal Passed No Issue
19 _transferTokens internal Passed No Issue
20 TransferEx write access only Owner No Issue
21 isExcludedFromFee read Passed No Issue
22 setExcludedFromFee external access only Owner No Issue
23 _burnTokens internal Passed No Issue
24 OpenTrade write access only Owner No Issue
25 updateBurnPercentage external access only Owner No Issue
26 updateMaxAmountPerce

ntage
external access only Owner No Issue

27 addToBlacklist write access only Owner No Issue
28 removeFromBlacklist write access only Owner No Issue
29 isBlacklisted read Passed No Issue
30 rescueETH external access only Owner No Issue
31 addLiquidity write Passed No Issue
32 _transfer internal Passed No Issue
33 _calculateTax internal Passed No Issue
34 fallback external Passed No Issue
35 receive external Passed No Issue

Omega.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 transferFrom write Passed No Issue
15 allowance read Passed No Issue
16 approve write Passed No Issue
17 _approve internal Passed No Issue
18 _spendAllowance internal Passed No Issue
19 _transferTokens internal Passed No Issue
20 TransferEx write access only Owner No Issue
21 isExcludedFromFee read Passed No Issue
22 setExcludedFromFee external access only Owner No Issue
23 _burnTokens internal Passed No Issue
24 OpenTrade write access only Owner No Issue
25 updateBurnPercentage external access only Owner No Issue
26 updateMaxAmountPerce

ntage
external access only Owner No Issue

27 addToBlacklist write access only Owner No Issue
28 removeFromBlacklist write access only Owner No Issue
29 isBlacklisted read Passed No Issue
30 rescueETH external access only Owner No Issue
31 addLiquidity write Passed No Issue
32 _transfer internal Passed No Issue
33 _calculateTax internal Passed No Issue
34 fallback external Passed No Issue
35 receive external Passed No Issue

Alpha.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _spendAllowance internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 _afterTokenTransfer internal Passed No Issue
24 mint external access only Owner No Issue
25 burn external Passed No Issue

EQUIIUSE.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 name read Passed No Issue
9 symbol read Passed No Issue
10 decimals read Passed No Issue
11 totalSupply read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 transferFrom write Passed No Issue
15 increaseAllowance write Passed No Issue
16 decreaseAllowance write Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue

19 _burn internal Passed No Issue
20 _approve internal Passed No Issue
21 _spendAllowance internal Passed No Issue
22 _beforeTokenTransfer internal Passed No Issue
23 _afterTokenTransfer internal Passed No Issue
24 mint external access only Owner No Issue
25 burn external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Ownership control:

Stable coin smart contracts have ownership functions. We advise keeping the private key

of the owner's wallet secure. Because if the private key is compromised, then it will have a

devastating effect on the project.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

EQUIIUSQ.sol
● TransferEx: Transfer token can be set by the owner.

● setExcludedFromFee: Owner can set excluded account from fee.

● OpenTrade: Owners can enable open trading.

● updateBurnPercentage: Burn percentage value can be updated by the owner.

● updateMaxAmountPercentage: Tax percentage value can be updated by the owner.

● addToBlacklist: Account can be added to the blacklist by the owner.

● removeFromBlacklist: Account can be removed from the blacklist by the owner.

● rescueETH: Rescue ether by the owner.

Omega.sol
● TransferEx: Transfer token can be set by the owner.

● setExcludedFromFee: Owner can set excluded account from fee.

● OpenTrade: Owners can enable open trading.

● updateBurnPercentage: Burn percentage value can be updated by the owner.

● updateMaxAmountPercentage: Tax percentage value can be updated by the owner.

● addToBlacklist: Account can be added to the blacklist by the owner.

● removeFromBlacklist: Account can be removed from the blacklist by the owner.

● rescueETH: Rescue ether by the owner.

Alpha.sol
● mint: Creates `amount` tokens and assigns them to `to`, increasing the total supply

by the owner.

● burn: Burns `amount` tokens decreasing the total supply by the owner.

EQUIIUSE.sol
● mint: Creates `amount` tokens and assigns them to `to`, increasing the total supply

by the owner.

● burn: Burns `amount` tokens decreasing the total supply by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github web link. And we have used all

possible tests based on given objects as files. We had observed some Informational

severity issues in the smart contracts. but those are not critical. So, the smart contracts
are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Circular Gifting

EQUIIUSQ Diagram

Omega Diagram

Alpha Diagram

EQUIIUSE Diagram

Slither Results Log
Slither log >> EQUIIUSQ.sol

Slither log >> Omega.sol

Slither log >> Alpha.sol

Slither log >> EQUIIUSE.sol

Solidity Static Analysis

EQUIIUSQ.sol

Omega.sol

Alpha.sol

EQUIIUSE.sol

Solhint Linter

EQUIIUSQ.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
1:3
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:48
Error message for require is too long
9:90
Function name must be in mixedCase
5:124
Constant name must be in capitalized SNAKE_CASE
5:184
Constant name must be in capitalized SNAKE_CASE
5:185
Constant name must be in capitalized SNAKE_CASE
5:186
Variable name must be in mixedCase
5:195
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:225
Error message for require is too long
9:306
Error message for require is too long
9:307
Error message for require is too long
9:336
Function name must be in mixedCase
5:350
Error message for require is too long
17:358
Error message for require is too long
9:376
Error message for require is too long
9:378
Function name must be in mixedCase
5:390
Error message for require is too long
9:415
Avoid making time-based decisions in your business logic
13:440
Error message for require is too long
9:445
Error message for require is too long
9:446
Error message for require is too long
9:447
Error message for require is too long
13:474
Error message for require is too long
13:482
Code contains empty blocks

32:502

Omega.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
1:12
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:57
Error message for require is too long
9:99
Function name must be in mixedCase
5:133
Constant name must be in capitalized SNAKE_CASE
5:193
Constant name must be in capitalized SNAKE_CASE
5:194
Constant name must be in capitalized SNAKE_CASE
5:195
Variable name must be in mixedCase
5:204
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:234
Error message for require is too long
9:316
Error message for require is too long
9:317
Error message for require is too long
9:346
Function name must be in mixedCase
5:360
Error message for require is too long
17:368
Error message for require is too long
9:386
Error message for require is too long
9:388
Function name must be in mixedCase
5:400
Error message for require is too long
9:425
Avoid making time-based decisions in your business logic
13:450
Error message for require is too long
9:455
Error message for require is too long
9:456
Error message for require is too long
9:457
Error message for require is too long
13:484
Error message for require is too long
13:492
Code contains empty blocks

32:512

Alpha.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
1:13
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:51
Error message for require is too long
9:93
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:268
Error message for require is too long
9:418
Error message for require is too long
9:445
Error message for require is too long
9:446
Error message for require is too long
9:451
Error message for require is too long
9:500
Error message for require is too long
9:505
Error message for require is too long
9:535
Error message for require is too long
9:536
Code contains empty blocks
24:582
Code contains empty blocks
24:602
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:611
Error message for require is too long
9:625

EQUIIUSE.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
1:14
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:52
Error message for require is too long
9:94

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:269
Error message for require is too long
9:419
Error message for require is too long
9:446
Error message for require is too long
9:447
Error message for require is too long
9:452
Error message for require is too long
9:501
Error message for require is too long
9:506
Error message for require is too long
9:536
Error message for require is too long
9:537
Code contains empty blocks
24:583
Code contains empty blocks
24:603
Contract name must be in CamelCase
1:608
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
5:612
Error message for require is too long
9:626

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

