
Project: PAAWDNAH
Platform: Ethereum
Language: Solidity
Date: May 25th, 2023

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 29

Our Methodology ………………………………………………………………………………... 30

Disclaimers ………………………………………………………………………………………. 32

Appendix

● Code Flow Diagram ……………………………………………………………………... 33

● Slither Results Log ………………………………………………………………………. 34

● Solidity static analysis ….……………………………………………………………….. 36

● Solhint Linter …………………………………………………………………….……….. 38

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the PAAWDNAH team to perform the Security audit of
the PAAWDNAH protocol smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 25th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● PAAWDNAH is a smart contract having functions like pause, unpause, withdraw,

deposit, revertState, etc. .

● PAAWDNAH contract inherits the AccessControlUpgradeable,

ReentrancyGuardUpgradeable, SafeMathUpgradeable, IERC20Upgradeable,

PausableUpgradeable, Initializable standard smart contracts from the OpenZeppelin

library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
PAAWDNAH Token Smart Contract

Platform Ethereum / Solidity

File PAAWDNAH.sol

File MD5 Hash 5D68E919E52C109671F4806E3C0DD9E6

Updated File MD5 Hash A297160D58C01585F6D4802CB478ECBD

Audit Date May 25th, 2023

Updated Audit Date June 1st, 2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Fee detail:
● Fee Rate: 7%

YES, This is valid.
Owner wallet’s
private key must be
handled very
securely. Because if
that is compromised,
then it will create
problems.

Owner/Admin role has control over following functions:
● Add funds to the withdrawal wallet.

● Add funds to the backup wallet.

● Update Deposit amount.

● Revert state if no new deposits are made in 2 weeks.

● Pause / Unpause the contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 11 high, 1 medium and 4 low and 9 very low level issues.
We confirm that 11 high, 1 medium, 3 low and 8 informational severity issues are
fixed in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Moderated
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the PAAWDNAH Token are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the PAAWDNAH Token.

The PAAWDNAH team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is preferred as it increases the readability.

Documentation

We were given a PAAWDNAH Token smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 __AccessControl_init internal access only Initializing No Issue
7 __AccessControl_init_unchai

ned
internal access only Initializing No Issue

8 onlyRole modifier Passed No Issue
9 supportsInterface read Passed No Issue
10 hasRole read Passed No Issue
11 _checkRole internal Passed No Issue
12 _checkRole internal Passed No Issue
13 getRoleAdmin read Passed No Issue
14 grantRole write access only Role No Issue
15 revokeRole write access only Role No Issue
16 renounceRole write Passed No Issue
17 _setupRole internal Passed No Issue
18 _setRoleAdmin internal Passed No Issue
19 _grantRole internal Passed No Issue
20 _revokeRole internal Passed No Issue
21 __ReentrancyGuard_init internal access only Initializing No Issue
22 __ReentrancyGuard_init_unc

hained
internal access only Initializing No Issue

23 nonReentrant modifier Passed No Issue
24 _nonReentrantBefore write Passed No Issue
25 _nonReentrantAfter write Passed No Issue
26 _reentrancyGuardEntered internal Passed No Issue
27 __Pausable_init internal access only Initializing No Issue
28 __Pausable_init_unchained internal access only Initializing No Issue
29 whenNotPaused modifier Passed No Issue
30 whenPaused modifier Passed No Issue
31 paused read Passed No Issue
32 _requireNotPaused internal Passed No Issue
33 _requirePaused internal Passed No Issue
34 _pause internal Passed No Issue
35 _unpause internal Passed No Issue
36 initialize write Passed No Issue
37 _withdraw internal Passed Removed
38 deposit external Passed No Issue
39 withdraw external Withdrawal Issue

(Low severity)
Refer Audit
findings

40 revertFunds write access only Role Removed
41 setMinimumBackupWalletBal

ance
external Passed Removed

42 getDepositorDeposits external Passed Removed
43 getTotalDepositAmount external Passed Removed
44 pause external access only Role No Issue
45 unpause external access only Role No Issue
46 setMaintenanceFeeRate external Passed Removed
47 setBackupPlanFeeRate external Passed Removed
48 setQueFeeRate external Passed Removed
49 withdrawFees external access only Role Removed
50 updateMaintenanceFee external Passed Removed
51 depositBackupWallet external Passed Removed
52 depositWithdrawalWallet external Passed Removed
53 withdrawMaintenanceFee external Passed Removed
54 removeFirstDepositorFromQu

eue
internal Passed No Issue

55 setMaxDepositors write Passed No Issue
56 addFundsToWithdrawalWallet write Passed No Issue
57 addFundsToBackupWallet write access only Role No Issue
58 setDepositAmount write access only Role No Issue
59 getDepositorPositionInQueue external Passed No Issue
60 revertState write access only Role No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Not able to transfer maintenanceFee, backupPlanFee and queFee in _widthdraw

function when totalDepositors reaches MIN_DEPOSITORS_FOR_WITHDRAWAL:

Function: _withdraw()

Not able to transfer maintenanceFee, backupPlanFee and queFee in _widthdraw function

when totalDepositors deposits reach MIN_DEPOSITORS_FOR_WITHDRAWAL.

The contract doesn’t have enough coins to transfer fees to respective wallets, and the

contract doesn’t implement a receive or fallback function to receive coins.

Resolution: Suggest checking this logic.
Status: This is fixed in the revised smart contract code.

(2) Used the wrong variable:

Function: Deposit()

The USDC variable is not correct, it should be USDC which is newly introduced.

Status: This is fixed in the revised smart contract code.

(3) Undeclared variable:

Function: Deposit()

Variable used without declaration.

Status: This is fixed in the revised smart contract code.

(4) Not able to withdraw funds, user deposit is locked inside contract:

Function: _withdraw()

The _withdraw function is nowhere called from the contract, and it's marked as internal, so

the user cannot withdraw funds.

Status: This is fixed in the revised smart contract code.

(5) After transferring the deposit amount among the depositors inside the _withdraw

function, again maintaining the deposit amount against the user using withdrawalBalances:

Function: _withdraw()

After transferring the deposit amount among the depositors inside the _withdraw function,

adding the withdrawal amount against the user using withdrawalBalances.

Status: This is fixed in the revised smart contract code.

(6) In withdraw function calculating 3 types of fees:

Function: withdraw()

In the withdrawal function calculating 3 types of fees maintenance, backup and que fee,

please check this.and after calculation of fees try to transfer native coins to respective

wallet instead of usdc token.

Status: This is fixed in the revised smart contract code.

(7) Transferring the deposit amount twice:

Function: withdraw()

The withdrawal balance is already transferred to the depositors from _withdraw function,

but again in the withdraw() function, transferring it twice.

Status: This is fixed in the revised smart contract code.

(8) Collecting maintenance Fees total 4 times in entire contract:

Function: withdrawMaintenanceFee()

Collecting maintenance fee again in the withdrawMaintenanceFee and withdrawFees, but

it has already been collected in the deposit function.

Status: This is fixed in the revised smart contract code.

(9) Not able to deposit more than 4 times:

Error:

1. Set the deposit amount to 1 USDC.

2. Deposit 4 times with 1 USDC.

3. Try to deposit 5 times.

4. not able to deposit more than 4 times.

The reason is:
1. On the 4th deposit the logic is: From 1st 3 deposits(1 USDC in each deposit) after

deducting fee(7%) netamount = 0.93 x 3= 2.79 USDC is accumulated in the contract.

2. For the 4th deposit it will enter if condition(refer below code snippet) its withdrawing 1st

deposited amount which is 0.93 x3 = 2.79 USDC from contract to withdrawal wallet.

3. So for the 5th deposit again it will enter if condition and hence no sufficient balance in

contract for auto withdrawal so not able to deposit.

Function: deposit()

Status: This is fixed in the revised smart contract code.

(10) Contract will be freezed for 2 weeks at certain scenarios:

Function: deposit()

Call error:

1. Set the deposit amount to 1 USDC.

2. Keep the backup wallet balance 0.

3. By keeping backup wallet balance zero it will never enter the if condition(auto fund

transfer to withdrawal wallet) in the deposit function.

4. Keep on depositing until it reaches maxDepositors.

5. Once maxDepositors is reached Try to deposit again.

6. Not able to deposit further and hence

7. No withdrawal logic is called and the contract will be freezed for 2 weeks and no profits

are returned to depositors.

8. To unfreeze the contract the admin has to call the revert state function.

Status: This is fixed in the revised smart contract code.

(11) Invalid amount of USDC token transfer to the contract:

Function: Deposit()

After deducting Fee from total deposit amount Transferring total deposit amount of USDC

to the contract instead of net amount.

Resolution:We suggest changing the logic and transferring the net amount after

deducting the fee from the total deposit amount to the contract.

Status: This is fixed in the revised smart contract code.

Medium

(1) The depositBackupWallet function is not useful:

Function: depositBackupWallet()

A depositBackupWallet function is used to fund usdc to backupWallet, but backupWallet is

nowhere used.

Status: This is fixed in the revised smart contract code.

Low

(1) There is no option to update the fees:

Functions: setMaintenanceFeeRate(), setBackupPlanFeeRate(), setQueFeeRate()

As per the document, an option should be available to update the fees.

But the update fees functions are using the wrong variables to update the fees, and those

variables are nowhere used.

Resolution: Suggest using the correct state variables to update the fees. using the correct
functions.

Status: This is fixed in the revised smart contract code.

(2) Use OwnableUpgradeable contract to provide a basic access control mechanism:

Function: Constructor()

Instead of using state variables to check the owner, use the OwnableUpgradeable contract

to provide a basic access control mechanism.

Status: This is fixed in the revised smart contract code.

(3) A WithdrawalWalletBalance is not maintained correctly:

Function: addFundsToWithdrawalWallet()

WithdrawalWalletBalance is updated after adding funds to withdraw wallet which is not

correct because tokens can be withdrawn by owner outside the contract since it's a

metamask wallet whose control is with the owner of the wallet and not the contract.

Status: This is fixed in the revised smart contract code.

(3) Not able to withdraw USDC after 4th deposit until withdrawal wallet manually funds by
the admin:

Error:

Function: withdraw()

1. Set the deposit amount to 1 usdc.

2. Deposit 4 times with1 usdc.

3. Try to deposit 5 times.

4. not able to deposit more than 4 times

5.Try to call withdraw function not able to withdraw

The reason is:
1. On 4th deposit the logic is: From 1st 3 deposits(1 usdc in each deposit) after deducting

fee(7%) netamount = 0.93 x 3= 2.79 usdc is accumulated in the contract.

2. For 4th deposit it will enter if condition(refer below code snippet) its withdrawing 1st

deposited amount which is 0.93 x3 = 2.79 usdc from contract to withdrawal wallet.

3. So when user calls withdraw function no sufficient balance in contract for withdrawal not

able to withdraw.

Function: deposit()

Status: Open (until withdrawal wallet manually funded by the admin)

Very Low / Informational / Best practices:

(1) Unused variables:

There are variables defined but not used anywhere.

● totalQueuedUsers

● depositCounter

● withdrawalCounter

● withdrawalQueue

● taxWallet

● usdcPrice

Resolution: Remove unused variables from the code.

Status: This is fixed in the revised smart contract code.

(2) Please use the latest compiler version when deploying the contract:

This is not a severe issue, but we suggest using the latest compiler version at the time of

contract deployment, which is 0.8.19 at the time of this audit. Using the latest compiler

version is always recommended, which prevents any compiler level issues.

Status: This is fixed in the revised smart contract code.
(3) Warning: SPDX licence identifier:

Warning Error:

Warning: SPDX license identifier is not provided in the source file.

Resolution:We suggest adding SPDX-License-Identifier.

Status: This is fixed in the revised smart contract code.

(4) Redundant variable:

Variable: minimumBackupWalletBalance

Function: setMinimumBackupWalletBalance()

The minimumBackupWalletBalance is defined but nowhere used; it is just used to update

the value using the setMinimumBackupWalletBalance function.

Variable: maintenanceFeeRate

Function: setMaintenanceFeeRate()

The maintenanceFeeRate is defined but nowhere used; it is just used to update the value

using the setMaintenanceFeeRate function.

Variable: backupPlanFeeRate

Function: setBackupPlanFeeRate()

The backupPlanFeeRate is defined but nowhere used; it is just used to update the value

using the setBackupPlanFeeRate function.

Variable: queFeeRate

Function: setQueFeeRate()

The queFeeRate is defined but nowhere used; it is just used to update the value using the

setQueFeeRate function.

Resolution: If the variable is not used, please suggest removing it.
Status: This is fixed in the revised smart contract code.

(5) Redundant function:

Function: addFundsToWithdrawalWallet()

The new code introduced requires a statement checking the balance of the sender before

transfer which is not needed because if no funds the transaction will not trigger it will auto

reject saying insufficient funds.

Status: This is fixed in the revised smart contract code.

(6) Unused variables:

Variable: maxDepositors

Variable is not used in contract.

● maxDepositors

Resolution: Remove unused variable.

Status: This is fixed in the revised smart contract code.

(7) Function to update unused variable:

Function: setMaxDepositors()

Function to update the variable which is not used in contract.

Resolution: Remove function which is not useful.

Status: This is fixed in the revised smart contract code.

(8) Updating unused variable while initializing the contract:

Function: initialize()

Updating unused variables while initializing the contract.

Resolution: Remove mentioned line of code.
Status: This is fixed in the revised smart contract code.

(9) SafeMath Library:

The SafeMath Library is used in this contract code, but if the compiler version is greater

than or equal to 0.8.0, it will not be required to be used because Solidity automatically

handles overflow and underflow.

Resolution: Remove the SafeMath library and use normal math operators. It will improve
code size and reduce gas consumption.

Status: Acknowledged, as the impact of this is not significant.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

AccessControlUpgradeable.sol
● grantRole: Grant role and address can be assigned by the admin.

● revokeRole: Revoke role and address can be assigned by the admin.

● renounceRole: Renounce roles for self by the admin.

PAAWDNAH.sol
● pause: Triggers stopped state can be set by the admin.

● unpause: Returns to normal state can be set by the admin.

● setMaxDepositors: Maximum depositors values can be set by the admin.

● addFundsToWithdrawalWallet: Add funds to the withdrawal wallet by the admin.

● addFundsToBackupWallet: Add funds to the backup wallet by the admin.

● setDepositAmount: Update Deposit amount by the admin.

● revertState: Revert state can be set by the admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file and we have used all possible tests

based on given objects as files. We have observed 11 high severity issues, 1 medium

severity issue, 4 low severity issues and 9 very low severity issues in the smart contract.

We confirm that 11 high severity issues, 1 medium severity issue, 3 low severity issues, 8

informational severity issues are fixed in the revised smart contract code. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - PAAWDNAH Token

Slither Results Log
Slither Log >> PAAWDNAH.sol

Solidity Static Analysis
PAAWDNAH.sol

Solhint Linter

PAAWDNAH.sol

PAAWDNAH.sol:10:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:23:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:35:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:52:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:64:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:156:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:175:18: Error: Parse error: missing ';' at '{'
PAAWDNAH.sol:197:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

