@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: PAAWDNAH
Platform: Ethereum
Language: Solidity

Date: May 25th, 2023

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 29
(@ 0] 1Y/ =1 1 T To [o] 0T) 30
DISCIAIMEIS ... e 32
Appendix
o Code FIOW Diagram ..o 33
o Slither RESUIS LOQ ...uviiiiii i e e e 34
e Solidity staticanalysis ... 36
® SOININt LiNtEr oo 38

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the PAAWDNAH team to perform the Security audit of
the PAAWDNAH protocol smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the

findings regarding the audit performed on May 25th, 2023.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e PAAWDNAH is a smart contract having functions like pause, unpause, withdraw,

deposit, revertState, etc. .

o PAAWDNAH

ReentrancyGuardUpgradeable, = SafeMathUpgradeable, = IERC20Upgradeable,

PausableUpgradeable, Initializable standard smart contracts from the OpenZeppelin

library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

contract inherits the AccessControlUpgradeable,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
PAAWDNAH Token Smart Contract
Platform Ethereum / Solidity
File PAAWDNAH.sol
File MD5 Hash 5D68E919E52C109671F4806E3CODD9EG

Updated File MD5 Hash

A297160D58C01585F6D4802CB478ECBD

Audit Date

May 25th, 2023

Updated Audit Date

June 1st, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Fee detail: YES, This is valid.
o Fee Rate: 7% Owner wallet’s

private key must be
handled very
securely. Because if
that is compromised,
then it will create

problems.

Owner/Admin role has control over following functions: YES, This is valid.

e Add funds to the withdrawal wallet.

e Add funds to the backup wallet.

e Update Deposit amount.

o Revert state if no new deposits are made in 2 weeks.

e Pause / Unpause the contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 11 high, 1 medium and 4 low and 9 very low level issues.
We confirm that 11 high, 1 medium, 3 low and 8 informational severity issues are

fixed in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Moderated
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the PAAWDNAH Token are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the PAAWDNAH Token.

The PAAWDNAH team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is preferred as it increases the readability.

Documentation

We were given a PAAWDNAH Token smart contract code in the form of a file. The hash of

that code is mentioned above in the table.

As mentioned above, code parts are well commented. So itis easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initializer modifier Passed No Issue
3 | reinitializer modifier Passed No Issue
4 | onlylnitializing modifier Passed No Issue
5 disablelnitializers internal Passed No Issue
6 AccessControl init internal | access only Initializing No Issue
7 | __AccessControl_init_unchai | internal | access only Initializing No Issue
ned
8 [onlyRole modifier Passed No Issue
9 [supportsinterface read Passed No Issue
10 | hasRole read Passed No Issue
11 | checkRole internal Passed No Issue
12 | checkRole internal Passed No Issue
13 | getRoleAdmin read Passed No Issue
14 | grantRole write access only Role No Issue
15 | revokeRole write access only Role No Issue
16 | renounceRole write Passed No Issue
17 | setupRole internal Passed No Issue
18 | setRoleAdmin internal Passed No Issue
19 | grantRole internal Passed No Issue
20 | revokeRole internal Passed No Issue
21 ReentrancyGuard init internal | access only Initializing No Issue
22 | _ ReentrancyGuard_init_unc | internal | access only Initializing No Issue
hained
23 | nonReentrant modifier Passed No Issue
24 | nonReentrantBefore write Passed No Issue
25 | nonReentrantAfter write Passed No Issue
26 | reentrancyGuardEntered internal Passed No Issue
27 Pausable init internal | access only Initializing No Issue
28 Pausable init unchained internal | access only Initializing No Issue
29 | whenNotPaused modifier Passed No Issue
30 [whenPaused modifier Passed No Issue
31 | paused read Passed No Issue
32 | requireNotPaused internal Passed No Issue
33 | requirePaused internal Passed No Issue
34 | pause internal Passed No Issue
35 | unpause internal Passed No Issue
36 | initialize write Passed No Issue
37 | withdraw internal Passed Removed
38 | deposit external Passed No Issue
39 | withdraw external Withdrawal Issue Refer Audit
(Low severity) findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

40 | revertFunds write access only Role Removed
41 | setMinimumBackupWalletBal | external Passed Removed
ance
42 | getDepositorDeposits external Passed Removed
43 | getTotalDepositAmount external Passed Removed
44 | pause external access only Role No Issue
45 | unpause external access only Role No Issue
46 | setMaintenanceFeeRate external Passed Removed
47 | setBackupPlanFeeRate external Passed Removed
48 | setQueFeeRate external Passed Removed
49 | withdrawFees external access only Role Removed
50 [updateMaintenanceFee external Passed Removed
51 | depositBackupWallet external Passed Removed
52 [depositWithdrawalWallet external Passed Removed
53 | withdrawMaintenanceFee external Passed Removed
54 | removeFirstDepositorFromQu | internal Passed No Issue
eue
55 | setMaxDepositors write Passed No Issue
56 | addFundsToWithdrawalWallet write Passed No Issue
57 | addFundsToBackupWallet write access only Role No Issue
58 | setDepositAmount write access only Role No Issue
59 | getDepositorPositionInQueue | external Passed No Issue
60 | revertState write access only Role No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Not able to transfer maintenanceFee, backupPlanFee and queFee in _widthdraw
function when totalDepositors reaches MIN_DEPOSITORS_FOR_WITHDRAWAL.:

Function: _withdraw()

_withdraw() {
queuelength = totalDepos (lastWithdrawalIndex);
depositorsToPr = = queuelength < MIN_DEPOSITORS_FOR_WITHD L ? queueLength : MIN_DEPOS
distributeAmount = depositAmount.mul(depositorsToP
maintenanceFee = distributefmount.mul(MAINTENANCE_FEE_RATE).di

backupPlanFee = distributefmount.mul(BACKUP_PLAN_ FEE_RATE).div

queFee = distributeAmount.mul({QUE_FEE_RATE).d

distributeAmount.sub(maintenanceFee}.sub(backupPlanFee).sub(queFee);

(maintenanceFee) ;

(backupPlanFee);
(developerFundWallet).transfer(queFee);

i = lastWithdrawalIndex < lastWithdrawalIndex

Not able to transfer maintenanceFee, backupPlanFee and queFee in _widthdraw function
when totalDepositors deposits reach MIN_DEPOSITORS_FOR_WITHDRAWAL.
The contract doesn’t have enough coins to transfer fees to respective wallets, and the

contract doesn’t implement a receive or fallback function to receive coins.

Resolution: Suggest checking this logic.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Used the wrong variable:

Function: Deposit()

deposit(depositAmount) nonReentrant {
(depositAmount > @, "Deposit amount should be greater than @");
(

usdc.balance0f(.sender) >= depositAmount,

"Insufficient bala !

maintenanceFee = depositAmount
.mul{maintenanceFeePercentage)
.div(10@);
usdc.transferFrom(.sender, (), depositAmount);

usdc.transferFrom(()}, maintenanceWallet, maintenanceFee);

maintenanceFeesCollected = maintenanceFeesCollected.add(maintenanceFee);

The USDC variable is not correct, it should be USDC which is newly introduced.

Status: This is fixed in the revised smart contract code.

(3) Undeclared variable:

Function: Deposit()

deposit(depositAmount) nonReentrant {
(depositAmount > @, "Deposit amount should be greater than 8");
(

usdc.balance0Df(.sender) >= depositAmount,

"Insufficient bal

)i
maintenanceFee = depositAmount
.mul{maintenanceFeePercentage)
.div(100);
usdc.transferFrom(.sender, (), depositAmount);

usdc.transferFrom((), maintenanceWallet, maintenanceFee);

maintenanceFeesCollected = maintenanceFeesCollected.add{maintenanceFee};

depositBalances|[.sender] = depositBalancesl .sender]
.add(depositAmount)
.sub(maintenanceFee) ;
Deposit(.sender, depositAmount, maintenanceFee);

Variable used without declaration.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(4) Not able to withdraw funds, user deposit is locked inside contract:

Function: _withdraw()

withdrav()

queueLength = totalDepositors.sub(lastWithdrawalIndex);

ocess = queuelength =<
JR_WITHDRAWAL
eLength
DEPOSITORS_FOR_WITHDRAWAL ;

The _withdraw function is nowhere called from the contract, and it's marked as internal, so

the user cannot withdraw funds.

Status: This is fixed in the revised smart contract code.

(5) After transferring the deposit amount among the depositors inside the _withdraw

function, again maintaining the deposit amount against the user using withdrawalBalances:
Function: _withdraw()

dep orDistribution = distributeAmountAfterFees.div(
MIN_DEPOS ORS_FOR_WITHDRAWAL

usdc.transfer({depositor, depositorDistribution);

ances [depositor] = withdrawalBalances [depositor].add(
istribution

After transferring the deposit amount among the depositors inside the _withdraw function,

adding the withdrawal amount against the user using withdrawalBalances.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) In withdraw function calculating 3 types of fees:

Function: withdraw()

maintenancefFee = distributeAmount.mul({MAINTENANCE_FEE_RATE).div(

backupPlanFee = distributeAmount.mul(BACKUP_PLAN_FEE_RATE).div(

queFee = distributeAmount.mul(QUE_FEE_RATE).div(10a);

distributeAmountAfterFees = distributeAmount
(maintenanceFee)

(queFee);

(mainte el nceFee);

maintenancef 1lec ancefFe 1lected.add(maintenanceFee};

(ba 1let).transfer('lanFee);
backupPlanFe ecte ected.add(backupPlanFee);

(developerFundWallet).transfer{queFee);

1Index;

i < lastWithdrawalInc dd(depositorsToProcess);

depositor = depositors[il;

In the withdrawal function calculating 3 types of fees maintenance, backup and que fee,
please check this.and after calculation of fees try to transfer native coins to respective

wallet instead of usdc token.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(7) Transferring the deposit amount twice:

Function: withdraw()

availableBalanc
"Insufficient f
)i

usdc.transferFrom(withdrawalWallet, .sender, withdrawAmount);

withdrawalBalances [.sender] = 9;

Withdraw(.sender, withdrawAmount);

The withdrawal balance is already transferred to the depositors from _withdraw function,

but again in the withdraw() function, transferring it twice.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(8) Collecting maintenance Fees total 4 times in entire contract:

Function: withdrawMaintenanceFee()

withdrawMaintenanceFee()
(
. 5ender owner,

er can withdr

balance UsSDC.balancedf(
(

bal == maintenanc

[igh funds to withc

transfer{owner, maintenanceFeesCollected);
maintenanceFeesCollected = @;

withdrawFees() (ADMIN_ROLE) {
maintenanceFees = mainte Colled
backupPlanFees = backupPlanFeesCollected;

(

maintenanceFees = @ || backupPlanFees > @,

"No available to withdraw
)i

if (maintenanceFees = A) {

Collecting maintenance fee again in the withdrawMaintenanceFee and withdrawFees, but

it has already been collected in the deposit function.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(9) Not able to deposit more than 4 times:

Error:

Gas estimation failed

Gas estimation errored with the following message (see below). The transaction

execution will likely fail. Do you want to force sending?

Returned error: {"jsonrpc":"2.0","error":"execution reverted: ERC20: transfer
amount exceeds balance","id":6972592196063183}

Send Transaction Cancel Transaction

1. Set the deposit amount to 1 USDC.
2. Deposit 4 times with 1 USDC.
3. Try to deposit 5 times.

4. not able to deposit more than 4 times.

The reason is:

1. On the 4th deposit the logic is: From 1st 3 deposits(1 USDC in each deposit) after
deducting fee(7%) netamount = 0.93 x 3= 2.79 USDC is accumulated in the contract.

2. For the 4th deposit it will enter if condition(refer below code snippet) its withdrawing 1st
deposited amount which is 0.93 x3 = 2.79 USDC from contract to withdrawal wallet.

3. So for the 5th deposit again it will enter if condition and hence no sufficient balance in

contract for auto withdrawal so not able to deposit.

Function: deposit()

backupWalletBalance = usdc.balanceOf(backupWallet);

depositQueue. length >= 3 &&
backupWalletBalance >= depositAmount.mul(3) &&
Ipaused()

Dennsit firstDenosit = denositOuensTlel:

usdc. transfer(withdrawalWallet, firstDeposit.amount.mul(3));

withdrawalWalletBalance = withdrawalWalletBalance.add(
firstDeposit.amount.mul(3)

)Y;

eligibleWithdrawals [firstDeposit.depositor] = eligibleWithdrawals [
firstDeposit.depositor

l.add{firstDeposit.amount.mul(3));

removeFirstDepositorFromQueue();

Deposited(.sender, netAmount, -timestamp);

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(10) Contract will be freezed for 2 weeks at certain scenarios:

Function: deposit()

der].add(netAmount);
Amount, timestamp));

{amount);

backupWalletBalance = usdc.balance0f (backupWallet);

eue. length == 3 &&
pWalletBalance »>= depositAmount.mul(3) &&
Ipaused()

ysit.amount.mul(3));
withdrawalWalletBalance.add(

ysit.amount.mul(3)
stDeposit.depositor] = eligibleWithdrawals(
removeFirstDepositorFromQueuel();

bleWithdrawals - call

Deposited(.sender, netAmount, timestamp);

Call error:

Gas estimation failed

Gas estimation errored with the following message (see below). The transaction
execution will likely fail. Do you want to force sending?

Returned error: {"jsonrpc":"2.0","error":"execution reverted: Maximum number of
depositors reached.","id":1534329269286337}

Send Transaction Cancel Transaction

1. Set the deposit amount to 1 USDC.

2. Keep the backup wallet balance 0.

3. By keeping backup wallet balance zero it will never enter the if condition(auto fund
transfer to withdrawal wallet) in the deposit function.

4. Keep on depositing until it reaches maxDepositors.

5. Once maxDepositors is reached Try to deposit again.

6. Not able to deposit further and hence

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

7. No withdrawal logic is called and the contract will be freezed for 2 weeks and no profits
are returned to depositors.

8. To unfreeze the contract the admin has to call the revert state function.

Status: This is fixed in the revised smart contract code.

(11) Invalid amount of USDC token transfer to the contract:

Function: Deposit()

fee = amount.mul{FEE_RATE).div(100);
netAmount = amount.sublfee);
usdc.transferFrom(.sender, maintenanceWallet, fee);

usdc.transferFrom(.sender, (), amount);

deposits[.sender] = deposits| .sender].add(netAmount);
depositQueue.push(Deposit(.sender, netAmount, .timestamp));
totalDeposits = totalDeposits.add(amount);

After deducting Fee from total deposit amount Transferring total deposit amount of USDC

to the contract instead of net amount.

Resolution: We suggest changing the logic and transferring the net amount after

deducting the fee from the total deposit amount to the contract.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Medium

(1) The depositBackupWallet function is not useful:

Function: depositBackupWallet()

depositBackupWallet(amount)
(

.Sender == owner,

it into the backup wallet"

USDC.transferFrom(.sender, backupWallet, amount),
"Transfer failed"

A depositBackupWallet function is used to fund usdc to backupWallet, but backupWallet is

nowhere used.

Status: This is fixed in the revised smart contract code.

Low

(1) There is no option to update the fees:

Functions: setMaintenanceFeeRate(), setBackupPlanFeeRate(), setQueFeeRate()

setMaintenanceFeeRate(
_maintenanceFeeRate
onlyRole(ADMIN_ROLE) {
maintenanceFeeRate = _maintenanceFeeRate;

setBackupPlanFeeRate(
_backupPlanFeeRate
onlyRole(ADMIN_ROLE) {
backupPlanFeeRate = _backupPlanFeeRate;

setQueFeeRate(_queFeeRate) onlyRole(ADMIN_ROLE) {
queFeeRate = _queFeeRate;

As per the document, an option should be available to update the fees.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

3. Fees & Rates: Verify that the fee calculations in the deposit and withdrawal functions work as
intended. Make sure that the fee rates are set properly and that the fees are distributed to the
correct wallets. Check if the function to change fee rates works correctly and only accessible

to the right role.

But the update fees functions are using the wrong variables to update the fees, and those

variables are nowhere used.

Resolution: Suggest using the correct state variables to update the fees. using the correct
functions.
Status: This is fixed in the revised smart contract code.

(2) Use OwnableUpgradeable contract to provide a basic access control mechanism:

Function: Constructor()

constructor() {

owner = .sender;

Instead of using state variables to check the owner, use the OwnableUpgradeable contract

to provide a basic access control mechanism.

Status: This is fixed in the revised smart contract code.

(3) A WithdrawalWalletBalance is not maintained correctly:
Function: addFundsToWithdrawalWallet()

hasRole

maintenanosy

onLyRoLe (ADMIN_ROLE] {

withdrmealih

weithdraval'

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

WithdrawalWalletBalance is updated after adding funds to withdraw wallet which is not
correct because tokens can be withdrawn by owner outside the contract since it's a

metamask wallet whose control is with the owner of the wallet and not the contract.

Status: This is fixed in the revised smart contract code.

(3) Not able to withdraw USDC after 4th deposit until withdrawal wallet manually funds by
the admin:

Error:

Gas estimation failed

Gas estimation errored with the following message (see below). The transaction

execution will likely fail. Do you want to force sending?

Returned error: {"jsonrpc":"2.0","error":"execution reverted: ERC20: transfer
amount exceeds balance","id":6972592196066619}

Send Transaction Cancel Transaction

Function: withdraw()

withdraw(amount) whenNotPaused nonReentrant {
(

eligibleWithdrawals [.sender] >= amount,

"Insufficient eligible withdrawal balance."

i

usdc.transfer(.sender, amount);
eligibleWithdrawals[.sender] = eligibleWithdrawalsI .sender].sub(
amount

);

Withdrawn (.sender, amount);

1. Set the deposit amount to 1 usdc.

2. Deposit 4 times with1 usdc.

3. Try to deposit 5 times.

4. not able to deposit more than 4 times

5.Try to call withdraw function not able to withdraw

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

The reason is:

1. On 4th deposit the logic is: From 1st 3 deposits(1 usdc in each deposit) after deducting
fee(7%) netamount = 0.93 x 3= 2.79 usdc is accumulated in the contract.

2. For 4th deposit it will enter if condition(refer below code snippet) its withdrawing 1st
deposited amount which is 0.93 x3 = 2.79 usdc from contract to withdrawal wallet.

3. So when user calls withdraw function no sufficient balance in contract for withdrawal not

able to withdraw.

Function: deposit()

backupWalletBalance = usdc.balanceOf(backupWallet);

depositQueue. length >= 3 &&
backupWalletBalance >= depositAmount.mul(3) &&
'paused(}

Denosit firstDennsit = depositOuens [E]1%:

usdc.transfer(withdrawalWallet, firstDeposit.amount.mul(3));

withdrawalwalletBalance = withdrawalWalletBalance.add(
firstDeposit.amount.mul(3)

);

eligibleWithdrawals [firstDeposit.depositor] = eligibleWithdrawals[
firstDeposit.depositor

l.add(firstDeposit.amount.mul(3));

removeFirstDepositorFromQueue();

Deposited(.sender, netAmount, .timestamp);

Status: Open (until withdrawal wallet manually funded by the admin)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Unused variables:

There are variables defined but not used anywhere.
e totalQueuedUsers
e depositCounter
e withdrawalCounter
e withdrawalQueue
o taxWallet

e usdcPrice

Resolution: Remove unused variables from the code.

Status: This is fixed in the revised smart contract code.

(2) Please use the latest compiler version when deploying the contract:

ve.8.0+commit.c7dfd78e

This is not a severe issue, but we suggest using the latest compiler version at the time of
contract deployment, which is 0.8.19 at the time of this audit. Using the latest compiler
version is always recommended, which prevents any compiler level issues.

Status: This is fixed in the revised smart contract code.

(3) Warning: SPDX licence identifier:

Warning Error:

Warning: SPDX license identifier not provided in source file. Before
publishing, consider adding a comment containing "SPDX-License-
Identifier: <SPDX-License>"™ to each source file. Use "SPDX-License-

Identifier: UNLICENSED" for non-open-source code. Please see

https://spdx.org for more information.

--> PAAWDNAH.sol

Warning: SPDX license identifier is not provided in the source file.

Resolution: We suggest adding SPDX-License-Identifier.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(4) Redundant variable:

Variable: minimumBackupWalletBalance

minimumBackupWalletBalance;

Function: setMinimumBackupWalletBalance()

setMinimumBackupWalletBalancd{
_minimumBackupWalletBalance
onlyRole(ADMIN_ROLE) {
minimumBackupWalletBalance = _minimumBackupWalletBalance;

The minimumBackupWalletBalance is defined but nowhere used; it is just used to update

the value using the setMinimumBackupWalletBalance function.

Variable: maintenanceFeeRate

maintenanceFeeRate;

Function: setMaintenanceFeeRate()

setMaintenanceFeeRate(
_maintenanceFeeRate
onlyRole(ADMIN_ROLE) {
maintenanceFeeRate = _maintenanceFeeRate;

The maintenanceFeeRate is defined but nowhere used; it is just used to update the value

using the setMaintenanceFeeRate function.
Variable: backupPlanFeeRate

backupPlanFeeRate;

Function: setBackupPlanFeeRate()

setBackupPlanFeeRate(
_backupPlanFeeRate

onlyRole(ADMIN_ ROLE) {
backupPlanFeeRate = _backupPlanFeeRate;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

The backupPlanFeeRate is defined but nowhere used; it is just used to update the value

using the setBackupPlanFeeRate function.

Variable: queFeeRate

gueFeeRate;

Function: setQueFeeRate()

setQueFeeRate(_queFeeRate) onlyRole(ADMIN_ROLE) {

queFeeRate = _queFeeRate;

The queFeeRate is defined but nowhere used; it is just used to update the value using the

setQueFeeRate function.

Resolution: If the variable is not used, please suggest removing it.

Status: This is fixed in the revised smart contract code.

(5) Redundant function:

Function: addFundsToWithdrawalWallet()

addFundsToWithdrawalWallet(
amount

onlyRole(ADMIN_ROLE)]
usdc.transterFrom(.sender, withdrawalWallet, amount);

The new code introduced requires a statement checking the balance of the sender before
transfer which is not needed because if no funds the transaction will not trigger it will auto
reject saying insufficient funds.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) Unused variables:

Variable: maxDepositors

25 maxDepositors;

Variable is not used in contract.

e maxDepositors

Resolution: Remove unused variable.

Status: This is fixed in the revised smart contract code.

(7) Function to update unused variable:

Function: setMaxDepositors()

setMaxDepositors(
_maxDepositors

onlyRole (ADMIN_ROLE) {
maxDepositors = _maxDepositors;

Function to update the variable which is not used in contract.

Resolution: Remove function which is not useful.

Status: This is fixed in the revised smart contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(8) Updating unused variable while initializing the contract:

Function: initialize()

initialize(

usdc,

depositAmount,

withdrawalWallet,

ackupWallet,

_maintenanceWallet
initializer K

AccessControl_init();
ReentrancyGuard_init();
Pausable_init();
_setupRole{DEFAULT_ADMIN_ROLE, .sender) ;
_setupRole {ADMIN_ROLE, -.sender);
usdc = IERC20@Upgradeable(_usdc);
depositAmount = _depositAmount;
withdrawalWallet = _withdrawalWallet;
backupWallet = _backupWallet;
maintenanceWallet = _maintenanceWallet;
withdrawalWalletBalance = @;
totalDeposits = @;
maxDepositors = 300, 0ed;

Updating unused variables while initializing the contract.

Resolution: Remove mentioned line of code.

Status: This is fixed in the revised smart contract code.

(9) SafeMath Library:

~9.8.11;
e ess/AccessControlUpgr:
ts—upg a /secur eentrancyGuardUp
ts—upgr =
ts—upgradeable/toker /IERC20Upg .
le/securi ausableUpgradeable.sol";
enzeppelin/contracts—upgradeable/proxy/utils/Initializable.sol";

SecureDeposit

Initializable,
AccessControlUpgradeable,
ReentrancyGuardUpgradeable,
PausableUpgradeable

SafeMathUpgradeable 3
ADMIN_ROLE = ("ADMIN_ROLE");
MAX_DEPOSITORS = 300000;

The SafeMath Library is used in this contract code, but if the compiler version is greater
than or equal to 0.8.0, it will not be required to be used because Solidity automatically

handles overflow and underflow.

Resolution: Remove the SafeMath library and use normal math operators. It will improve

code size and reduce gas consumption.

Status: Acknowledged, as the impact of this is not significant.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

AccessControlUpgradeable.sol
e grantRole: Grant role and address can be assigned by the admin.
e revokeRole: Revoke role and address can be assigned by the admin.

e renounceRole: Renounce roles for self by the admin.

PAAWDNAH.sol
e pause: Triggers stopped state can be set by the admin.
e unpause: Returns to normal state can be set by the admin.
e setMaxDepositors: Maximum depositors values can be set by the admin.
e addFundsToWithdrawalWallet: Add funds to the withdrawal wallet by the admin.
e addFundsToBackupWallet: Add funds to the backup wallet by the admin.
e setDepositAmount: Update Deposit amount by the admin.

e revertState: Revert state can be set by the admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file and we have used all possible tests
based on given objects as files. We have observed 11 high severity issues, 1 medium
severity issue, 4 low severity issues and 9 very low severity issues in the smart contract.
We confirm that 11 high severity issues, 1 medium severity issue, 3 low severity issues, 8
informational severity issues are fixed in the revised smart contract code. So, the smart

contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - PAAWDNAH Token
(€) secursDeposit

Initializable
AccessControlUpgradeable
Reentrancy GuardUpgradeable
Pausablelpgradeable

inSafeMathUpgradeabie for wint256

© bytes32 ADMIN_ROLE

& uint256 MAX,_DEPOSITORS
© uint258 MIN_DEPOSITORS_FOR_VWTHDRAWAL
< Uint256 MAINTENANCE_FEE_RATE
< uint256 BACKUP _PLAN FEE RATE
@ uint256 QUE_FEE_RATE

< uint256 WO _WEEKS

© uint256 maintenanceFeeRate

O uint256 backupPlanFeeRate

© uint256 queFeeRate

© uint256 minimumBackupWWalletBalance
© address depositWallet

© address maintenanceVWallet

@ gddress backupPlanWallet

© address withdrawalVallet
© address developerFundyVallet

@JEHCzOUpg(@ SrnasUnaradenth © address taxWallet

COO S ATTaCE S © UINiZ56 totalDepositors
@ QtotalSupply() O bytes16 HEX SYMBOLS O uint256 totalQueuedUsers

=t °

e 5 s AGprRESs Lot © dnzte marterancercescoteces
@ Quallowance() < QtoString() © Uint256 depositCounter
@ approve() < CitoHexString() © uint256 withdrawalCounter
© transferFrom()

O uint256 lastWithdrawallindex

© uint256 lastDepositTimestamp

© uint256 depositAmount

© uint256 withdrawal/ValletBalance
© uint256 usdcPrice

@ [ERC20Upgradeable usde

© address==null deposits

@ address==>uUint256 withdrawalGalances
© address==Uint256 depositQueusPosition
© address depositors
.7 | © eddress withdrawalQueue
L © inttizlize()
. @ édeposit()
; @ _withdraw()
rd @ withcraw()
L © revertFunds()
. @ setMinimumBack el
. © QgetDepositorDeposits()
’ @ QgetTotalDepositAmount()
; @ pause()
I © unpauss()
P < © setMairtenanceFeeRate()
, © setBackupPlanFeeRate()
; /| @ setQueFeeRate()
. /| @ withdrawFees()
-
.
;
“for wint256 \
p \
’ \
@AccesannlmlUpgradeah\e 1 \
4 Initializable \
4 Contextlipgradeable \ \
L Eégjzzfggiﬁxigdeabb @ PausahleUpgradeable \
@ - (®) satenathUpgradeabie Pre— \
g \
= ChTT O bytes32=>RoleData _roles Contextlipgradeabie \
< QsContract() < QtrySub() t :Ime;sf DE;AULT ADUIN ROLE |
< sendValue() < atrytul() Lntess _gap O bool _paused \
< functionCall() < QryDiv() © __AccessControl_init{) O uint256 __gap \
< functionCallWith'alus() < QtryMad() © __AccessControl_init_unchained() \
© QunctionStaticCall) © Qadd() © Qsuppertsiterface() S s oy e \
© QuerifyCallResultFromTarget() < asub() @ QhasRole() Y o \
© QerifyCallResuit) < amui() < @_checkRole() R T |
Q,_requireNotPaused()
| Q_revert() < adiv() @ QgetRoleAdming) oq o |
< Qmod() @ grantRole() ° _requireRaueed() \
_pause() \
@ revokeRole() < _unpause() |
@ renounceRole() — - - \
< _setupRole() | \ \
< _setRoleAdming) | \ \
< _grantRole() | \ |
< _revokeRole() | \

/ | |
Ve | | \ (€) ReentrancyGuardUpgradeable
| | \ initializable
| | |
| | | O uint256 _NOT_ENTERED
| | | O uint256 _ENTERED
| || O urt256 _status
| | || O uInt256 __gap
| I' || © _ReentrancyGuard_init()
| \ | | | ¢ _ReentrancyGuard_init_unchained()
| | | | ® _nonReentrantBefore)
| | | ® _nonReentrantafter()
| | | | @ a_reentrancyGuardEnterec()
l T
| | |
|
| |
©ERC165Upgradeahle | s © ContextUpgradeable | |
Initializable '-. @ IAccessControlUpgradeable Initializable | .'I
IERC165Upgradeable |
@ QhasRole() !
@ QgetRoleAdmin) O uirt256 __gap |
O i \ [
s _om % g0 |
< __ERC165_init() O i < __Context_int_unchainec() / y
< _ERC165_init_unchained() 0 < T_msgSender() | J /
@ Qsupportsinterface() < O_msaData() d

(@) erc165Upgradeatie I

. @ Initializable

O uints _initialized
O pool _intializing

@ Qsupportsinterface()

< _disablelnitislizers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> PAAWDNAH.sol

SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256)
d emit an event for:
- minimumBackupwWalletBalance
- depositAmount = _depositAmount
eference: https://github.com/crytic/slither,

_minimumBackupwWalletBalance {PAAWDNAH.sol#801
(PAAWDNAH . sol#202)
wiki/Detector-Documentation#miss ing-events-arithmetic

56).

securebeposit. initialize(address,address,address,address,address,address,address,uint256,uint2
3) lacks a zero-check on :

- depositWallet = _depositWallet (PAAWDNAH.sol#794)
SecureDeposit.initialize(address,address,address,address,address,address,address,uint

sol#) lacks a zero-check on

- maintenanceWallet = _maintenanceWallet (PAAWDNAH.sol#735)
SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256)
sol#781) lacks zero-check on :

- backupPlanwallet = _backupPlanwWallet (PAAWDNAH.sol#796)
SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256)
sol#783) lacks a zero-check on :

- withdrawalwallet = walWallet (PAAWDNAH.sol#793)
SecureDeposit.initializ ddress,address,address,address,address,address,address,uint256,uint2
AH.sol#784) lacks a zero-check on :

- developerFundwWallet developerFundwallet (PAAWDNAH.sol#799)
SecureDeposit.initialize({address,address,address,address,address,address, ajj\nss uint256,uint2
) lacks a zero-check on

- taxWallet = _taxWallet (PAAWDNAH.sol#360)
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

256,

uint2s6

_backupPlan

=]

_withdrawal

56).

_developerF

56).

_taxWallet

eference: |

R

a0

SecureDeposit.revertFunds{) (PAAWDNAH.sol#390-903) has external calls inside a loop: usdc.transfer{depositor,
PAAWDNAH . sol#897)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-1inside-a-loop
SecureDeposit.revertFunds{) (PAAWDNAH.sol#3908-003) uses timestamp for
Dangerous comparisons:
- require{beel,string)(block.timestamp == lastDepositTimestamp +
activity) (PAAWDNAH.sol#391)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp

CIDFF|)EI"LSIDITS

TWO_WEEKS,Cannot revert funds befor

(PAAWDNAH .s01#778-

)._maintenanceWallet

wallet

shoul

_depositWallet (PAAWDNAH.sol

{ PAAWDNAH

Wallet (PAAWDNAH.

(PAAWDNAH .

undwWallet ({PAAWDN

{PAAWDNAH.s01#785

currentDeposit) (

e two weeks of

AddressUpgradeable. revert{bytes,string) IPHHuENHH s0l#365-374) uses assembly
) - INLINE ASM (PAAWDNAH. SDlﬁjrf—H
Reference: https://github. CDWfCIvtlcfsllth°If\lklfDQtQCTDF Documentation#assembly-usage

SecureDeposit.revertFunds() (PAAWDNAH.sol#3908-903) has costly operations inside a loop:
- delete deposits[depositor] (PAAWDNAH.sol#899)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

call in AddressUpgradeable.sendValue(address,uint256) (PAAWDNAH.sol#286-29
{success) = recipient.call{value: amount}{) (PAAWDNAH.sol#229)

call in AddressUpgradeable. TunctlonCa11u1thba1u91ajj\Ass bytes, uint256,string) (PAAWDNAH. sol#3
(success, returndata) target.call{value: value}(data) 'PHHHDNHH sol#320)

call in AddressUpgradeable.functionStaticCall{address,bytes,string) (PAAWDNAH.sol#328-
(success, returndata) target.staticcall(data) IPHHuDNHH 501*355'
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

lev 1):

Low
3-32

335):

Function
Function

(PAAWDNAH.s01#447-448) 1is not in mixedCase

ContextUpgradeable.
(PAAWDNAH.sol#450-451) is not in mixedCase

ContextUpgradeable.

Context_1init()

~_Context_init_unchained()

Variable ContextUpgradeable

.__gap (PAAWDNAH.sol#460)

is not in mixedCase

Function

is not in mixedCase

ERC165Upgradeable.
ERC165Upgradeable. |
ERC165Upgradeable.
AccessControlUpgr

AccessControlUpgradeable.

AccessControlUpgradeable.

ReentrancyGuardUpgradeable.
ReentrancyGuardUpgradeable.
ReentrancyGuardUpgradeable.
PausableUpgradeable._ Pausable_init() (PAAWDNAH.
PausableUpgradeable. Pausable_init_unchained()
PausableUpgradeable. gap (PAAWDNAH.sol#737) is

__ERC165_init()
Function ERC165_init_unchained()
Variable
Function
Function
Variable
Function
Function
Variable
Function
Function
Variable

adeable. AccessControl_init{)

~_gap (PAAWDNAH.sol#5
__ReentrancyGuard_

__Reent

Parameter SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256).

AWDNAH.s0l#779) is not in mixedCase
Parameter Secure

(PAAWDNAH . sol1#7 is not in mixedCase

(PAAWDNAH .5 01#465-466)
{PAAWDNAH . s01#468-469)
~_gap (PAAWDNAH.sol#474) is not in mixedCase

__AccessControl_init uncha
)
'ancyGuard_inlt_uncha

__gap (PAAWDNAH.sol#636) is not in mixedCase
is not in mixedCase

fPHAHDNAH.SDl#JTS—ﬂTQ}
:Lll’:jl. '
is not in mixedCase
T |
ined()

sol#655-657)
(PAAWDNAH.s01#659-661)
not in mixedCase

postt initialize(address,address,address,address,address,address,address,uint256,uint2
)

(PAAWDNAH.sol#481-482)

(PAAWDNAH . sol#588-590)
(PAAWDNAH . s01#592-594)

is not in mixedCase

is not in mixedCase
is not in mixedCase

is not in mixedCase
is not in mixed

is not in mixedCase

56).

Parameter SecureDeposit. initialize(address,address,address,address,address,address,address,uint256,uint256)

(PAAWDNAH.sol#781) is not in mixedCase

2):

Case

depositWallet (PA
_maintenancewWallet

_backupPlanWallet

Parameter

_withdrawalWallet

SecureDeposit. initialize(address,address,address,address,address,address,address,uint256,uint256)
(PAAWDNAH.sol#783) is not in mixedCase

Parameter SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256).
et (PAAWDNAH.sol#784) is not in mixedCase

Parameter SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint2
AH.s0l#785) is not in mixedCase

Parameter SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint2
etBalance (PAAWDNAH.s0l#786) is not in mixedcase

Parameter SecureDeposit.initialize(address,address,address,address,address,address,address,uint256,uint256).
AWDNAH.s0l#787) is not in mixedCase

Parameter SecureDeposit.setMinimumBackupWalletBalance{uint256).
ase
Parameter
Parameter
Parameter
Reference:

_developerFundwall

56)._ taxWallet (PAAWDN

56).

_minimumBackupwWall
depos itAmount (PA

_minimumBackupWalletBalance (PAAWDNAH.sol#985) is not in mixedc
SecureDeposit.setMaintenanceFeeRate{uint256). maintenanceFeeRate (PAAWDNAH.sol#) is not in mixedCase
SecureDepos it.setBackupPlanFeeRate(uint256). backupPlanFeeRate (PAAWDNAH.so0l#9 is not in mixedCase
SecureDeposit.setQueFeeRate{uint256). gueFeeRate [PAAWDNAHM.sol#928) is not in mixedCase
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Reentrancy in SecureDeposit. (PAAWDNAH.sol#831-873):
External calls:

- address(maintena
State variables written after
- maintenanceFeesCollected =

“withdraw()

(PAAWDNAH . s01#347)

nceWallet).transfer{maintenanceFee)
the call(s):
maintenanceFeesCollected.add(maintenanceFee) (PAAWDNAH.sol#848)

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

t

r ht . gith yti ith D ntati
PAAWDNAH.sol analyzed contracts with 84 detectors ult(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

PAAWDNAH.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
SecureDeposit.deposit(): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 79:1:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 76:24:

Gas & Economy

Gas costs:

Gas requirement of function SecureDeposit.initialize is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 49:1:

Gas costs:

Gas requirement of function SecureDeposit.deposit is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)

Pos: 79:1:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Similar variable names:

SecureDeposit.deposit() : Variables have very similar names "deposits" and

"depositors". Note: Modifiers are currently not considered by this static analysis.
Pos: 81:9:

Similar variable names:

SecureDeposit.deposit() : Variables have very similar names "deposits" and

"depositors". Note: Modifiers are currently not considered by this static analysis.
Pos: 93:1:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 81:1:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 935:2:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the
same. If you want to remove the empty position you need to shift items
manually and update the "length" property.

more

Pos: 899:2:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

PAAWDNAH.sol

PAAWDNAH.s0l1l:10:18: Error:
PAAWDNAH. : :23:18: Error:
) .501:35:18: Error:

2:18: Error:

g
Q
(o)}
t

error: missing
error: missing
error: missing
error: missing
missing
missing
missing
missing

® @

e} e}
A T R O))

)
(U
B B

) 0 W

® ® O

t

o)

K B BB

0w n n n n
(0]

O W
t

D (
ct

:64:18: Error:
:156:18: Error:
:175:18: Error:
:197:18: Error:

av)
)
0}
]
=
O
)
o+

o
W)
® O
B B
O K
(SRR 0}
ct ct ct

o)
)
]
(0)]
)
=

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

