
Project: PlanetMoon
Website: https://www.planetmoon.io
Platform: Binance Smart Chain
Language: Solidity
Date: June 9th, 2023

https://www.planetmoon.io


Table of contents
Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….9

Technical Quick Stats …..……………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 26

● Slither Results Log ………………………………………………………………………. 37

● Solidity static analysis ….……………………………………………………………….. 43

● Solhint Linter …………………………………………………………………….……….. 53

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
EtherAuthority was contacted by PlanetMoon to perform the Security audit of the
PlanetMoon token smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on June 9th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● PlanetMoon is a staking contract on the Binance Smart Chain blockchain.

● The PlanetMoon Contracts handle multiple contracts, and all contracts have

different functions.

○ StakingPoolFactory: This contract is used for creating a staking pool.

○ StakingPool: This contract has functions like: stake tokens, unstake tokens.

○ PMRewardDistributor: This contract is used to distribute rewards and

emergency withdrawal tokens.

○ MembershipFeeManager: This contract manages membership fees and sets

distribution schemes.

○ CampaignFeeManager: This contract manages campaign fees.

○ PMTeamManager: This contract is used to create a team and add team

members to a team.

○ PMMembershipManager: This contract is used to manage membership

management.

● There are 12 smart contracts and 10 Interfaces, which were included in the audit

scope. And there were some standard library codes, such as OpenZepelin, that

were excluded. Because those standard library code is considered as time tested

and community audited, so we can safely ignore them.



Audit scope

Name Code Review and Security Analysis Report
for PlanetMoon Smart Contracts

Platform BSC / Solidity

File 1 CreatorContract.sol

File 1 MD5 Hash C4EEA3C6734402C92378F1D64795C10A

Updated File 1 MD5 Hash 38188592B7CE7AEF0BF9C7A8F27481F1

File 2 CreatorManager.sol

File 2 MD5 Hash 734D984618CC705D82FEB698CB09C651

Updated File 2 MD5 Hash 01FF54E0D4324547E737CAFF77E59645

File 3 PMMembershipManager.sol

File 3 MD5 Hash 2292C9FFEA2B7C39DFC6323A6A43F88D

Updated File 3 MD5 Hash ACF59DB9925B330CC28BD9AA998248EB

File 4 PMTeamManager.sol

File 4 MD5 Hash 32C8F6A546CE93BF3F736320594DB913

Updated File 4 MD5 Hash 83A59CAB9A2761A643D6B033A7368978

File 5 CampaignFeeManager.sol

File 5 MD5 Hash 39B80FDF00D4BED3BE035588D6A35E53

Updated File 5 MD5 Hash 594A482F2CCA0C0AF1614FFD977B4F8E

File 6 MembershipFeeManager.sol

File 6 MD5 Hash 5A0D763A3F86113A686F9E3FD637FD43

Updated File 6 MD5 Hash 65C512973A0C3C02D1841BD8BF9AD689

File 7 PMRewardDistributor.sol

File 7 MD5 Hash B49079168252FC6905CBF9768A98F046

Updated File 7 MD5 Hash 43BF55FB736B61B5E73A5F8EC279DCB6

File 8 StakingPool.sol

File 8 MD5 Hash 9673A432913EDA0D403CD646C1F90C34



Updated File 8 MD5 Hash 6FF229F3DE8B978750DB6DC4803C2D0B

File 9 StakingPoolFactory.sol

File 9 MD5 Hash F51E1D5CE85D5F83E9B6DC32B99987EF

Updated File 9 MD5 Hash EAE1130FA355323409A419C441266E15

File 10 SwapETHForTokens.sol

File 10 MD5 Hash 66081D74E1C2179D40E7A10CA474A465

File 11 PriceFeed.sol

File 11 MD5 Hash 2D9F8A045E7792533EA18B4A5BCC3329

Audit Date June 9th, 2023

Revised Date June 13th, 2023



Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 CreatorManager.sol
● This contract is access to CreatorContract.

YES, This is valid.

File 2 PMMembershipManager.sol
● Name: PlanetMoon Membership Manager

● Symbol: PMM

Owner has control over following functions:
● Set the membership fee manager addresses.

● Subscribe as a member.

● Set the give away membership.

● Update pause status.

YES, This is valid.

File 3 PMTeamManager.sol
● Name: PlanetMoon Team Manager

● Symbol: PTM

Owner has control over following functions:
● Set the membership fee manager address.

● Add/update team members.

● Update pause status.

YES, This is valid.

File 4 CampaignFeeManager.sol
Owner has control over following functions:

● Set the campaign fees.

● Set the fee distribution wallet addresses.

● Emergency withdrawal token.

● Split funds.

YES, This is valid.

File 5 MembershipFeeManager.sol
Owner has control over following functions:

● Set the membership fee values.

YES, This is valid.



● Set the distribution scheme.

● Set the fee distribution wallets.

● Split funds.

● Emergency withdrawal token.

File 6 PMRewardDistributor.sol
Owner has control over following functions:

● Set the distribute reward address.

● Reward to campaign address can be applied.

● Emergency withdrawal token.

● Update pause status.

● Set the giveaway manager address.

YES, This is valid.

File 7 StakingPool.sol
● UnstakeTokens can only be called by creator

contract of the token holder.

YES, This is valid.

File 8 StakingPoolFactory.sol
Owner has control over following functions:

● Set the pause status.

● Set the campaign fee manager address.

YES, This is valid.

File 9 PriceFeed.sol
● PriceFeed contract is used to get the latest price of

one USD.

YES, This is valid.

File 10 SwapETHForTokens.sol
Owner has control over following functions:

● Set the router addresses.

● Current owner can transfer ownership of the

contract to a new account.

● Deleting ownership will leave the contract without

an owner, removing any owner-only functionality.

YES, This is valid.



Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and 8 very low level issues.
We confirm that 8 very low severity issues are fixed in the revised smart contract
code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Code Quality
This audit scope has 12 smart contracts and 10 interfaces files. Smart contracts contain

Libraries, Smart contracts, inherits and Interfaces. This is a compact and well written

smart contract.

The libraries in the PlanetMoon Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the PlanetMoon Protocol.

The PlanetMoon team has provided unit test scripts, which helped to determine the

integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a PlanetMoon Protocol smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.planetmoon.io which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.planetmoon.io


AS-IS overview

CreatorContract.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onERC721Received write Passed No Issue
3 sendTokensBackToOwner write Passed No Issue
4 getPoolAddresses read Passed No Issue
5 onlyOwner modifier Passed No Issue
6 owner read Passed No Issue
7 _checkOwner internal Passed No Issue
8 renounceOwnership write access only

Owner
No Issue

9 transferOwnership write access only
Owner

No Issue

10 _transferOwnership internal Passed No Issue
11 onERC721Received write Passed No Issue
12 removePoolAddress write Passed Fixed

CreatorManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 createACreator write Passed No Issue
3 getCreatorAddress read Passed No Issue
4 getPoolAddressesOfCreator read Passed No Issue

PMMembershipManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getUserTokenData read Passed No Issue
3 becomeMember write Passed No Issue
4 upgradeToPremium write Passed No Issue
5 becomePremiumMember write Passed No Issue
6 totalSupply read Passed No Issue
7 _beforeTokenTransfer internal Passed No Issue
8 tokenURI read Passed No Issue



9 updateMembershipFeeManager write access only
Owner

No Issue

10 giveAwayMembership write access only
Owner

No Issue

11 changePauseStatus write access only
Owner

No Issue

12 supportsInterface read Passed No Issue
13 balanceOf read Passed No Issue
14 ownerOf read Passed No Issue
15 name read Passed No Issue
16 symbol read Passed No Issue
17 tokenURI read Passed No Issue
18 _baseURI internal Passed No Issue
19 approve write Passed No Issue
20 getApproved read Passed No Issue
21 setApprovalForAll write Passed No Issue
21 isApprovedForAll read Passed No Issue
22 transferFrom write Passed No Issue
23 safeTransferFrom write Passed No Issue
24 safeTransferFrom write Passed No Issue
25 _safeTransfer internal Passed No Issue
26 _ownerOf internal Passed No Issue
27 _exists internal Passed No Issue
28 _isApprovedOrOwner internal Passed No Issue
29 _safeMint internal Passed No Issue
30 _safeMint write Passed No Issue
31 _mint internal Passed No Issue
32 _burn internal Passed No Issue
33 _transfer internal Passed No Issue
34 _approve internal Passed No Issue
35 _setApprovalForAll internal Passed No Issue
36 _requireMinted internal Passed No Issue
37 _checkOnERC721Received internal Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue
39 _afterTokenTransfer internal Passed No Issue
40 _beforeConsecutiveTokenTransfer internal Passed No Issue
41 _afterConsecutiveTokenTransfer internal Passed No Issue
42 onlyOwner modifier Passed No Issue
43 owner read Passed No Issue
44 _checkOwner internal Passed No Issue
45 renounceOwnership write access only

Owner
No Issue

46 transferOwnership write access only
Owner

No Issue

47 _transferOwnership internal Passed No Issue



PMTeamManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only

Owner
No Issue

6 transferOwnership write access only
Owner

No Issue

7 _transferOwnership internal Passed No Issue
8 createATeam write Passed No Issue
9 updateTeamMembers write Passed No Issue
10 getTeamData read Passed No Issue
11 getTeamsDataByRange read Passed No Issue
12 tokenURI read Passed No Issue
13 updateMembershipFeeManager write access only

Owner
No Issue

14 changePauseStatus write access only
Owner

No Issue

15 supportsInterface read Passed No Issue
16 tokenOfOwnerByIndex read Passed No Issue
17 totalSupply read Passed No Issue
18 tokenByIndex read Passed No Issue
19 _beforeTokenTransfer internal Passed No Issue
20 _beforeConsecutiveTokenTransfer internal Passed No Issue
21 _addTokenToOwnerEnumeration write Passed No Issue
21 _addTokenToAllTokensEnumeration write Passed No Issue
22 _removeTokenFromOwnerEnumerat

ion
write Passed No Issue

23 _removeTokenFromAllTokensEnume
ration

write Passed No Issue

CampaignFeeManager.sol
Functions

Sl. Functions Type Observation Conclusio
n

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue



8 getCampaignFee read Passed No Issue
9 getAllCampaignFees read Passed No Issue
10 setCampaignFees write access only Owner No Issue
11 getUnstakingFee read Passed No Issue
12 getAllUnstakingFees read Passed No Issue
13 setUnstakingFees write access only Owner No Issue
14 setDistributionScheme write access only Owner No Issue
15 setFeeDistributionWallets write access only Owner No Issue
16 SplitFunds write Passed Fixed
17 emergencyWithdraw write access only Owner No Issue
18 receive external Passed No Issue
19 setFeeDistributionShares write access only Owner No Issue

MembershipFeeManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only

Owner
No Issue

6 transferOwnership write access only
Owner

No Issue

7 _transferOwnership internal Passed No Issue
8 getMembershipFee read Passed No Issue
9 getAllFees read Passed No Issue
10 setMembershipFee write access only

Owner
No Issue

11 setFeeDistributionShares write access only
Owner

No Issue

12 setFeeDistributionWallets write access only
Owner

No Issue

13 SplitFunds write Passed Fixed
14 emergencyWithdraw write access only

Owner
No Issue

15 receive external Passed No Issue

PMRewardDistributor.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue



4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only

Owner
No Issue

6 transferOwnership write access only
Owner

No Issue

7 _transferOwnership internal Passed No Issue
8 onlyGiveAwayManager modifier Passed No Issue
9 distributeReward write access only Give

Away Manager
No Issue

10 applyRewardToACampaing write access only Give
Away Manager

No Issue

11 emergencyWithdraw write access only
Owner

No Issue

12 changePauseStatus write access only
Owner

No Issue

13 updateGiveAwayManager write access only
Owner

No Issue

14 receive external Passed No Issue

StakingPool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 tokenOfOwnerByIndex read Passed No Issue
4 totalSupply read Passed No Issue
5 tokenByIndex read Passed No Issue
6 _beforeTokenTransfer internal Passed No Issue
7 _beforeConsecutiveTokenTransfe

r
internal Passed No Issue

8 _addTokenToOwnerEnumeration write Passed No Issue
9 _addTokenToAllTokensEnumerati

on
write Passed No Issue

10 _removeTokenFromOwnerEnume
ration

write Passed No Issue

11 _removeTokenFromAllTokensEnu
meration

write Passed No Issue

12 stakeTokens write Passed No Issue
13 unstakeTokens write Passed No Issue
14 findRedeemableReward read Passed No Issue
15 checkTokenReward read Passed No Issue
16 getProjectInfo read Passed No Issue
17 getTokenData read Passed No Issue
18 getUserTokens read Passed No Issue





StakingPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 createAStakingPool write Passed No Issue
9 getPoolsByToken read Passed No Issue
10 getPoolByID read Passed No Issue
11 getPoolIdsOfAUser read Passed No Issue
12 getPoolIdsOfATeam read Passed No Issue
13 changePauseStatus write access only Owner No Issue
14 updateCampaignFeeManager write access only Owner No Issue

SwapETHForTokens.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyOwner modifier Passed No Issue
3 owner read Passed No Issue
4 _checkOwner internal Passed No Issue
5 renounceOwnership write access only Owner No Issue
6 transferOwnership write access only Owner No Issue
7 _transferOwnership internal Passed No Issue
8 setRouter write access only Owner No Issue
9 swapETHForTokens internal Passed No Issue

PriceFeed.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getLatestPriceOfOneUSD read Passed No Issue



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

8 very low severity issues were found which are fixed in the revised smart contract code.



Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

PMMembershipManager.sol
● updateMembershipFeeManager: Membership fee manager address can be set by

the owner.

● giveAwayMembership: Give away membership can be set by the owner.

● changePauseStatus: Pause status can be set by the owner.

PMTeamManager.sol
● updateMembershipFeeManager: Membership fee manager address can be set by

the owner.

● changePauseStatus: Pause status can be set by the owner.

CampaignFeeManager.sol
● setCampaignFees: CampaignFees can be set by the owner.

● setUnstakingFees: UnstakingFees can be set by the owner.

● setDistributionShares: DistributionScheme can be set by the owner.

● setFeeDistributionWallets: Fee distribution wallet addresses can be set by the

owner.

● SplitFunds: Split funds can be set by the owner.

● emergencyWithdraw: Emergency withdrawal token by the owner.

MembershipFeeManager.sol
● setMembershipFee: Membership Fee values can be set by the owner.

● setDistributionShares: Distribution scheme can be set by the owner.

● setFeeDistributionWallets: Fee Distribution Wallets can be set by the owner.

● SplitFunds: Split funds can be set by the owner.

● emergencyWithdraw: Emergency withdrawal token by the owner.



PMRewardDistributor.sol
● distributeReward: Distribute reward address can be set by the owner.

● applyRewardToACampaing: Reward to campaign address can be applied by the

owner.

● emergencyWithdraw: Emergency withdrawal token by the owner.

● changePauseStatus: Pause status can be set by the owner.

● updateGiveAwayManager: Give away manager address can be set by the owner.

StakingPoolFactory.sol
● changePauseStatus: Pause status can be set by the owner.

● updateCampaignFeeManager: Campaign fee manager address can be set by the

owner.

SwapETHForTokens.sol
● setRouter: Router address can be set by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● _checkOwner: Throws if the sender is not the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.



Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 8 very low severity issues in the smart

contracts. We confirm that 8 very low severity issues are fixed in the revised smart contract

code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - PlanetMoon

CreatorContract Diagram



CreatorManager Diagram



PMMembershipManager Diagram



PMTeamManager Diagram



CampaignFeeManager Diagram



MembershipFeeManager Diagram



PMRewardDistributor Diagram



StakingPool Diagram



StakingPoolFactory Diagram



SwapETHForTokens Diagram



PriceFeed Diagram



Slither Results Log
Slither log >> CreatorContract.sol

Slither log >> CreatorManager.sol

Slither log >> PMMembershipManager.sol



Slither log >> PMTeamManager.sol



Slither log >> CampaignFeeManager.sol

Slither log >> MembershipFeeManager.sol



Slither log >> PMRewardDistributor.sol

Slither log >> StakingPool.sol



Slither log >> StakingPoolFactory.sol



Slither log >> SwapETHForTokens.sol

Slither log >> PriceFeed.sol



Solidity Static Analysis

CreatorContract.sol



CreatorManager.sol



PMMembershipManager.sol



PMTeamManager.sol



CampaignFeeManager.sol



MembershipFeeManager.sol



PMRewardDistributor.sol



StakingPool.sol

StakingPoolFactory.sol



SwapETHForTokens.sol



PriceFeed.sol



Solhint Linter

CreatorContract.sol

CreatorContract.sol:13:6: Error: Parse error: missing 'constant' at
'INVALID_POOLID'
CreatorContract.sol:13:20: Error: Parse error: missing '=' at '('
CreatorContract.sol:14:6: Error: Parse error: missing 'constant' at
'INVALID_TOKEN_ID'
CreatorContract.sol:14:22: Error: Parse error: missing '=' at '('
CreatorContract.sol:15:6: Error: Parse error: missing 'constant' at
'ALLREADY_UNSTAKED'
CreatorContract.sol:15:23: Error: Parse error: missing '=' at '('
CreatorContract.sol:16:6: Error: Parse error: missing 'constant' at
'NOT_AUTHERIZED'
CreatorContract.sol:16:20: Error: Parse error: missing '=' at '('
CreatorContract.sol:48:33: Error: Parse error: mismatched input '('
expecting {';', '='}

CreatorManager.sol

CreatorManager.sol:8:6: Error: Parse error: missing 'constant' at
'ALREADY_EXIST'
CreatorManager.sol:8:19: Error: Parse error: missing '=' at '('
CreatorManager.sol:9:6: Error: Parse error: missing 'constant' at
'NOT_EXIST'
CreatorManager.sol:9:15: Error: Parse error: missing '=' at '('
CreatorManager.sol:22:32: Error: Parse error: mismatched input '('
expecting {';', '='}
CreatorManager.sol:39:28: Error: Parse error: mismatched input '('
expecting {';', '='}
CreatorManager.sol:48:28: Error: Parse error: mismatched input '('
expecting {';', '='}

PMMembershipManager.sol

PMMembershipManager.sol:13:6: Error: Parse error: missing 'constant'
at 'ALREADY_A_MEMBER'
PMMembershipManager.sol:13:22: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:14:6: Error: Parse error: missing 'constant'
at 'INSUFFICIENT_FUNDS'
PMMembershipManager.sol:14:24: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:15:6: Error: Parse error: missing 'constant'
at 'FAILED_TO_TRANSFER_BNBS'
PMMembershipManager.sol:15:29: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:16:6: Error: Parse error: missing 'constant'
at 'NOT_A_MEMBER'
PMMembershipManager.sol:16:18: Error: Parse error: missing '=' at '('



PMMembershipManager.sol:17:6: Error: Parse error: missing 'constant'
at 'ALREADY_A_PREMIUM_MEMBER'
PMMembershipManager.sol:17:30: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:18:6: Error: Parse error: missing 'constant'
at 'TOKEN_DONT_EXIST'
PMMembershipManager.sol:18:22: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:19:6: Error: Parse error: missing 'constant'
at 'CONTRACT_IS_PAUSED'
PMMembershipManager.sol:19:24: Error: Parse error: missing '=' at '('
PMMembershipManager.sol:47:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:51:35: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:58:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:70:42: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:79:31: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:82:43: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:91:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:96:42: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:105:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:109:35: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:116:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:127:42: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMMembershipManager.sol:145:35: Error: Parse error: mismatched input
'(' expecting {';', '='}

PMTeamManager.sol

PMTeamManager.sol:14:6: Error: Parse error: missing 'constant' at
'INSUFFICIENT_FUNDS'
PMTeamManager.sol:14:24: Error: Parse error: missing '=' at '('
PMTeamManager.sol:15:6: Error: Parse error: missing 'constant' at
'FAILED_TO_TRANSFER_BNBS'
PMTeamManager.sol:15:29: Error: Parse error: missing '=' at '('
PMTeamManager.sol:16:6: Error: Parse error: missing 'constant' at
'NOT_OWNER_OF_TEAM'
PMTeamManager.sol:16:23: Error: Parse error: missing '=' at '('
PMTeamManager.sol:17:6: Error: Parse error: missing 'constant' at
'TOKEN_DONT_EXIST'
PMTeamManager.sol:17:22: Error: Parse error: missing '=' at '('
PMTeamManager.sol:18:6: Error: Parse error: missing 'constant' at
'CONTRACT_IS_PAUSED'
PMTeamManager.sol:18:24: Error: Parse error: missing '=' at '('
PMTeamManager.sol:46:37: Error: Parse error: mismatched input '('
expecting {';', '='}



PMTeamManager.sol:53:37: Error: Parse error: mismatched input '('
expecting {';', '='}
PMTeamManager.sol:68:42: Error: Parse error: mismatched input '('
expecting {';', '='}
PMTeamManager.sol:79:36: Error: Parse error: mismatched input '('
expecting {';', '='}
PMTeamManager.sol:88:35: Error: Parse error: mismatched input '('
expecting {';', '='}
PMTeamManager.sol:114:35: Error: Parse error: mismatched input '('
expecting {';', '='}

CampaignFeeManager.sol

CampaignFeeManager.sol:2:1: Error: Compiler version 0.8.9 does not
satisfy the r semver requirement
CampaignFeeManager.sol:53:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
CampaignFeeManager.sol:55:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:55:29: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:55:50: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:55:71: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:104:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:105:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:106:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:107:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:126:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:127:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:128:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:129:9: Error: Variable name must be in
mixedCase
CampaignFeeManager.sol:150:5: Error: Function name must be in
mixedCase
CampaignFeeManager.sol:196:13: Error: Avoid to make time-based
decisions in your business logic
CampaignFeeManager.sol:207:9: Error: Variable name must be in
mixedCase

MembershipFeeManager.sol

MembershipFeeManager.sol:2:1: Error: Compiler version 0.8.9 does not
satisfy the r semver requirement



MembershipFeeManager.sol:54:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
MembershipFeeManager.sol:108:5: Error: Function name must be in
mixedCase
MembershipFeeManager.sol:157:13: Error: Avoid to make time-based
decisions in your business logic
MembershipFeeManager.sol:168:9: Error: Variable name must be in
mixedCase

PMRewardDistributor.sol

PMRewardDistributor.sol:13:6: Error: Parse error: missing 'constant'
at 'NOT_ENOUGH_BALANCE'
PMRewardDistributor.sol:13:24: Error: Parse error: missing '=' at '('
PMRewardDistributor.sol:14:6: Error: Parse error: missing 'constant'
at 'CONTRACT_IS_PAUSED'
PMRewardDistributor.sol:14:24: Error: Parse error: missing '=' at '('
PMRewardDistributor.sol:56:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMRewardDistributor.sol:68:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMRewardDistributor.sol:77:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
PMRewardDistributor.sol:89:37: Error: Parse error: mismatched input
'(' expecting {';', '='}

StakingPool.sol

StakingPool.sol:13:6: Error: Parse error: missing 'constant' at
'POOL_NOT_STARTED'
StakingPool.sol:13:22: Error: Parse error: missing '=' at '('
StakingPool.sol:14:6: Error: Parse error: missing 'constant' at
'NOT_ENOUGH_REWARD'
StakingPool.sol:14:23: Error: Parse error: missing '=' at '('
StakingPool.sol:15:6: Error: Parse error: missing 'constant' at
'OWNER_ONLY'
StakingPool.sol:15:16: Error: Parse error: missing '=' at '('
StakingPool.sol:16:6: Error: Parse error: missing 'constant' at
'NOT_ALLOWED'
StakingPool.sol:16:17: Error: Parse error: missing '=' at '('
StakingPool.sol:17:6: Error: Parse error: missing 'constant' at
'NOT_AUTHERIZED'
StakingPool.sol:17:20: Error: Parse error: missing '=' at '('
StakingPool.sol:18:6: Error: Parse error: missing 'constant' at
'NOTHING_TO_UNSTAKE'
StakingPool.sol:18:24: Error: Parse error: missing '=' at '('
StakingPool.sol:19:6: Error: Parse error: missing 'constant' at
'ALREADY_UNSTAKED'
StakingPool.sol:19:22: Error: Parse error: missing '=' at '('
StakingPool.sol:20:6: Error: Parse error: missing 'constant' at
'INSUFFICIENT_FUNDS'
StakingPool.sol:20:24: Error: Parse error: missing '=' at '('



StakingPool.sol:21:6: Error: Parse error: missing 'constant' at
'FAILED_TO_TRANSFER_BNBS'
StakingPool.sol:21:29: Error: Parse error: missing '=' at '('
StakingPool.sol:22:6: Error: Parse error: missing 'constant' at
'FAILED_TO_TRANSFER_TOEKNS'
StakingPool.sol:22:31: Error: Parse error: missing '=' at '('
StakingPool.sol:23:6: Error: Parse error: missing 'constant' at
'FAILED_TO_TRANSFER_ORIGNAL_TOEKNS'
StakingPool.sol:23:39: Error: Parse error: missing '=' at '('
StakingPool.sol:24:6: Error: Parse error: missing 'constant' at
'FAILED_TO_TRANSFER_REWARD_TOEKNS'
StakingPool.sol:24:38: Error: Parse error: missing '=' at '('
StakingPool.sol:25:6: Error: Parse error: missing 'constant' at
'NO_CREATOR_CONTRACT_FOUND'
StakingPool.sol:25:31: Error: Parse error: missing '=' at '('
StakingPool.sol:26:6: Error: Parse error: missing 'constant' at
'NOT_A_VALID_STAKING_TYPE'
StakingPool.sol:26:30: Error: Parse error: missing '=' at '('
StakingPool.sol:94:35: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:102:43: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:110:36: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:155:44: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:173:33: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:177:37: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:182:35: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:200:37: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:206:42: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:213:52: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:218:51: Error: Parse error: mismatched input '('
expecting {';', '='}
StakingPool.sol:293:44: Error: Parse error: mismatched input '('
expecting {';', '='}

StakingPoolFactory.sol

StakingPoolFactory.sol:15:6: Error: Parse error: missing 'constant'
at 'NOT_PREMIUM_OR_TEAM'
StakingPoolFactory.sol:15:25: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:16:6: Error: Parse error: missing 'constant'
at 'NOT_OWNER_OF_TEAM'
StakingPoolFactory.sol:16:23: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:17:6: Error: Parse error: missing 'constant'
at 'START_TIME_SHOULD_BE_FUTURE'
StakingPoolFactory.sol:17:33: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:18:6: Error: Parse error: missing 'constant'



at 'PROFILE_IS_ALREADY_SET'
StakingPoolFactory.sol:18:28: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:19:6: Error: Parse error: missing 'constant'
at 'NOT_THE_CAMPAIGN_OWNER'
StakingPoolFactory.sol:19:28: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:20:6: Error: Parse error: missing 'constant'
at 'FAILED_TO_TRANSFER_TOKENS'
StakingPoolFactory.sol:20:31: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:21:6: Error: Parse error: missing 'constant'
at 'CONTRACT_IS_PAUSED'
StakingPoolFactory.sol:21:24: Error: Parse error: missing '=' at '('
StakingPoolFactory.sol:58:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:65:38: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:71:40: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:78:37: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:82:46: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:105:44: Error: Parse error: mismatched input
'(' expecting {';', '='}
StakingPoolFactory.sol:110:42: Error: Parse error: mismatched input
'(' expecting {';', '='}

SwapETHForTokens.sol

SwapETHForTokens.sol:2:1: Error: Compiler version ^0.8.14 does not
satisfy the r semver requirement
SwapETHForTokens.sol:32:13: Error: Avoid to make time-based decisions
in your business logic

PriceFeed.sol

PriceFeed.sol:2:1: Error: Compiler version ^0.8.14 does not satisfy
the r semver requirement
PriceFeed.sol:30:9: Error: Variable name must be in mixedCase

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.




