@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Dice Bot(DICE) Token
Website: https://dicebot/77.com
Platform: Base Chain
Language: Solidity

Date: August 25th, 2023

https://dicebot777.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 19
e Solidity staticanalysis ... 21
® SOININt LiNtEr oo 23

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Dice Bot team to perform the Security audit of the
Dice Bot (DICE) Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on August 25th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Dice Bot is a Betting token for Dice Game. It is a standard token contract on the

Base Chain blockchain.
e The smart contracts have functions like update router address, pair address, swap

and tax enabled status, etc.

Audit scope
Name Code Review and Security Analysis Report for Dice
Bot (DICE) Token Smart Contract
Platform Base Chain / Solidity
File DiceBot.sol
Online Code 0x951b5eb8915685e557ada5df9874e5d474cd54f1
Audit Date August 25th, 2023
Revised Audit Date September 12th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://basescan.org/address/0x951b5eb8915685e557ada5df9874e5d474cd54f1#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Dice Bot
e Symbol: DICE
e Decimals: 18
e Total Supply: 777,777,777

e 5% buy Tax YES, This is valid.
o 5% sell Tax
e Tax Distribution:
o 2% Auto LP Sent to Marketing Wallet.
Swap to ETH
o 1% Marketing Wallet fees.
o 1% Burn - sent to dead.

o 1% Rev Share contract.

Ownership Control: YES, This is valid.
e Update roulette contract address.
e Update marketing wallet address.
e Update revenue wallet address.
e Set open trading status true.
e Set router address.
e Update the pair address.
e Enabled swap status.
e Enabled tax status.
e Owner can renounce ownership.

e Current owner can transfer the ownership.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and 3 very low level issues.

All the issues have been acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in DICE Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the DICE Token.

The DICE Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Dice Bot Token smart contract code in the form of a https://basescan.org

web link. The hash of that code is mentioned above in the table.
As mentioned above, code parts are well commented.And The logic is straightforward. So
it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official project URL: https://dicebot777.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://basescan.org/
https://dicebot777.com

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyOwner modifier Passed No Issue
3 | owner read Passed No Issue
4 checkOwner internal Passed No Issue
5 | renounceOwnership write access only Owner No Issue
6 | transferOwnership write access only Owner No Issue
7 transferOwnership internal Passed No Issue
8 [approve write Passed No Issue
9 |[transfer write Passed No Issue
10 | transferFrom write Passed No Issue
11 | permit write Passed No Issue
12 | DOMAIN SEPARATOR read Passed No Issue
13 [computeDomainSeparator internal Passed No Issue
14 | mint internal Passed No Issue
15 | burn internal Passed No Issue
16 | lockTheSwap modifier Passed No Issue
17 | receive external Passed No Issue
18 | fallback external Passed No Issue
19 | getMinSwapAmount internal Passed No Issue
20 | isGoerli read Passed No Issue
21 | connectAndApprove external Unused function Refer Audit
parameter Findings
22 | setRouletteContract write access only Owner No Issue
23 | setMarketingWallet write access only Owner No Issue
24 | setRevenueWallet write access only Owner No Issue
25 | openTrading external access only Owner No Issue
26 | setRouter external access only Owner No Issue
27 | setPair external access only Owner No Issue
28 | setSwapEnabled external access only Owner No Issue
29 | setTaxEnabled external access only Owner No Issue
30 | calcTax internal Passed No Issue
31 [sellCollectedTaxes internal lock The Swap No Issue
32 | transfer write Revenue and Market Refer Audit
may transfer to Findings
address(0)
33 | transferFrom write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Unused function parameter:

593 return block.chainid == 5;
Warning: Unused function 594 }

595
parameter. Remove or comment out . .
. b Llll ‘ he 1] 596 function connectAndApprove(uint32 secret) returns (bool) {
ne varlable name TO sllence 115 e

) - ' 597 address pwner = _msgSender();
warning. 598
-- iceBot.s0l:596:32: .
> Dicefiot.=o B:32 599 allowance[pwner][rouletteContract] = type(uint).max;
‘ 600 emit Approval(pwner, rouletteContract, type(uint).max);
596 | function 6O1
connectAndApprove(uint32 secret) 602 return true;
external returns (bool) {
¥ Q 0 sten on all transactions Q | Search with transaction hash or address
I8 Welcome to Remix ©.35.1

In the connectAndApprove function, function parameter secret is not used anywhere in the

function.

Resolution: We suggest removing unused input parameters.
Status:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Make variables constant:
These buyTaxBps variables and sellTaxBps variable values will be unchanged. So, please

make it constant. It will save some gas.
Resolution: We suggest declaring those variables as constants. Just use a constant
keyword. And define constants in the constructor.

Status: Acknowledged

(3) Revenue and Market shares may transfer to address(0):

Address 0xd93cf225e645f0265c7¢7d62db5582541a971eds @ ~
Name Transfer (index_topic_1 address from, index_topic_2 address to, uint256 tokens) View Source
Topics 0 @xddf252ad1be2c80be9c2b@68fc278daa052ba7f16304511628F55a4dF523b3ef

1 Dec ~ —*@x335B4Cd4C8BfSE9747C77Dc2e896483136a88997

1

2 Dec ~ BxDEEaaa000008ae: a5 BEA0800000288000aE

Data tokens : 1665828

While buy/sell, if marketing and revenue addresses are not set then tokens will be
transferred to zero address. The owner can set these addresses any time, but by default

they are set to address(0).

Resolution: We suggest always making sure marketing and revenue addresses are set
just after deploying the contract.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

DiceBot.sol
e setRouletteContract: Roulette contract address can be set by the owner.
o setMarketingWallet: Marketing wallet address can be set by the owner.
e setRevenueWallet: Revenue wallet address can be set by the owner.
e openTrading: Open trading status true can be set by the owner.
e setRouter: Router address can be set by the owner.
e setPair: Pair address can be set by the owner.
e setSwapEnabled: Swap status enabled can be set by the owner.

e setTaxEnabled: Tax status enabled can be set by the owner.

Ownable.sol
e renounceOwnership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of htips://basescan.org web link. And we have

used all possible tests based on given objects as files. We had observed 3 informational
issues in the smart contracts. All the issues have been acknowledged. So, it’s good to go

for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://basescan.org

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Dice Bot (DICE) Token

© DiceBot

Ownable
ERCZ20

O Uniswap'/2Router02 router

© IUniswap'/2Factory factory
@ IUniswap'/2Pair pair

O wint INITIAL_SUPPLY

@ uint buyTaxBps

© uint sellTaxBps

@ IUniswapV 2Fair

< bool isSelingCollectedTaxes

© address marketingVallet
© address revenue\Wallet

“ bool swapEnabled @ IUniswapV 2Factory
< bool taxEnabled
© address rouletteContract

—— @ QfeeTol)

@ QfeeToSetter()

< hool isOpen

O address DEAD_ADDR

@ QgetPair()
@ QallPairs()

QisGoerli()

@ @&__constructor__()
< G getMinSwapAmount()

@ QallPairsLength()
@ createPair()
@ getFeeTol)

@ setFeeToSetter()

connectAndApprove()
setRouletteCortract()
setMarketingWWallet()
setRevenue\Wallet()

openTrading()
setRouter()
setPair()

o000 0Q®

< OcalcTax()

@ transfer()
@ transferFrom()
T

setSwapEnabled()
setTaxEnabled()

< sellCollectedTaxes()

@ ERCEU'

© string name

© string symbol

© uint8 decimals

@ uirnt256 totalSupply

© address==uint258 balanceOf

© gddress=>mapping address=>Lint256 alowance
< Lint256 INITIAL_CHAIN_ID

<& bytes32 INTIAL_DOMAIN_SEPARATOR

© Ownable

Context

0O address _owner

@ Qname()

@ Qsymbol()

@ Qulecimals()

@ QtotalSupply()

@ Qhalance0f()

@ Qallowance()

@ approve()

@ transfer()

@ transferFrom()

® CDOMAN_SEPARATOR()
® QPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

@ QMINIMUM_LIQUIDITY ()
@ Qfactory()

@ Qtokeno()

@ Qtoken()

@ QgetReserves()

@ Qprice0Cumulativelast()
@ Qpricel CumulativeLast()
© QhLast()

@ mint()

@ burn()

@ swap()

@ skim()

@ sync()

@ intialize()

@ IUniswapV2Router02

WiniswapV2 Router0]

@ removeLiguidityETHSupportingFee0nTransferTokens()

@ removeLiguidityETHWithPermitSupportingFeeCnTransferTokens()
@ swapExactTokensForTokensSupportingFeeCnTransferTokens()
@ @swapExactETHF orTokensSupportingFeeOnTransfer Tokens()
© swapExactTokensForETHSupportingFeeOnTransferTokens()

© address=>uint256 nonces

@ __eonstructor__()

@ approve()

@ transfer()

@ transferFrom()
@ permit()

< _mint()
< _purn)

@ __constructor__()

© QDOMAIN_SEPARATOR()
< QcomputeDomainSeparator()

@ Qowner()

< Q_checkQwner()

@ renounceOwnership()
@ transferOwnership()

< _transferOwnership()

@ Context
< Q_msgSender()
© o_msgData()

@ 1UniswapV 2Router01

@ Qfactory()

QWETH()

acldLiguiclity ()
daddLiguidityETH()
removeLiguidity()
removeliguidityETH()
removeliguidityWithPermit()
remaoveLiguidityETHARhPermit()

swapExactTokensForTokens()
swapTokensForExactTokens()
& swapExactETHF or Tokens()
swapTokensForExactETH()
swapExactTokensForETH()

@ swapETHForExact Tokens()
Qouote()

© QgetAmountOut()

@ QgetAmourting)

@ QgetAmountsOut()

@ QgetAmountsing)

o000 O0o0OOOOOOOD®

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.
We did the analysis of the project altogether. Below are the results.

Slither Log >> DiceBot.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

DiceBot.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in DiceBot.(address):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are
currently not considered by this static analysis.

more
Pos: 559:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
DiceBot.sellCollectedTaxes(): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 674:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to
a certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 698:12:

Gas costs:

Gas requirement of function DiceBot.transferFrom is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 733:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 348:4:

Constant/View/Pure functions:

DiceBot.calcTax(address,address,uint256) : Is constant but potentially should
not be. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 651:4:

Similar variable names:

DiceBot.connectAndApprove(uint32) : Variables have very similar names
"_owner" and "pwner". Note: Modifiers are currently not considered by this

static analysis.
Pos: 597:8:

Similar variable names:

DiceBot.sellCollectedTaxes() : Variables have very similar names "pair" and
"path". Note: Modifiers are currently not considered by this static analysis.
Pos: 682:8:

No return:
IUniswapV2Router02.removelLiquidityETHWIithPermitSupportingFeeOnTransfe

Defines a return type but never explicitly returns a value.
Pos: 496:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.
invalid input or a failing external component.

more
Pos: 738:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

DiceBot.sol

Compiler version 0.8.19 does not satisfy the 70.5.8 semver
requirement
Pos: 1:18
Variable name must be in mixedCase
Pos: 5:57
Variable name must be in mixedCase
Pos: 5:59
Explicitly mark visibility in function (Set ignoreConstructors
true if using solidity >=0.7.0)
Pos: 5:67
Avoid making time-based decisions in your business logic
Pos: 29:141
Function name must be in mixedCase

5:178
Explicitly mark visibility in function (Set ignoreConstructors
true if using solidity >=0.7.0)
Pos: 5:268
Error message for require is too long
Pos: 9:310
Function name must be in mixedCase
Pos: 5:374
Function name must be in mixedCase
Pos: 5:394 Explicitly mark visibility of state
Pos: 5:547
Explicitly mark visibility in function (Set ignoreConstructors

if using solidity >=0.7.0)

:558
ontains empty blocks

7 e 5 P}
:583

is unused

)
Q
=
)
o+

A~ O
== ©
S5O

Avoid ma
Pos: 13:

1g time-based decisions in your business logic

88

Q

N

[

Avoid making time-based decisions in your business logic
Pos: 13:697

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

