
Project: EGON Hold and Node
Staking

Platform: Egon Blockchain
Language: Solidity
Date: September 5th, 2023

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Claimed Smart Contract Features …………………………………………………………….. .6

Audit Summary ……………....…………………………………………………………………...7

Technical Quick Stats …..……………………………………………………………………… .8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 26

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 36

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Hold and Node Staking team to perform the Security
audit of the Hold and Node Staking smart contracts code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on September 5th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Hold and Node Staking is a contract that can be divided into multiples, each with

unique functionalities:

○ HoldElevator: The standard stake reward for EGON Holders is currently

held.

○ NodeElevator: Node contract for active validators to get rewarded since

EgonCoin Blockchain has no block reward.

● Smart contracts offer various functions such as pause/unpause contracts,

withdrawable revenue, withdraw, unstake and deposit.

Audit scope

Name Code Review and Security Analysis Report for Hold
and Node Staking Smart Contracts

Platform Egon Blockchain / Solidity

File 1 HoldElevator.sol

File 1 Online Code 0xCf4C502a2Be5E83Ae138fC88E4b69ef93795E990

Updated File 1 MD5 Hash 6841BD790E6D869D25EF54561E7A9E14

File 2 NodeElevator.sol

File 2 Online Code 0xaEbC3307309D3475309B872Fd869eD3240BdC4Aa

Updated File 2 MD5 Hash E641D9B9050175E216B515FF62FCFF47

Audit Date September 2nd, 2023

Revised Audit Date September 9th, 2023

https://testnet.egonscan.com/address/0xCf4C502a2Be5E83Ae138fC88E4b69ef93795E990/contracts
https://testnet.egonscan.com/address/0xaEbC3307309D3475309B872Fd869eD3240BdC4Aa/contracts

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 HoldElevator.sol

● Premature Unstake : 15% fee from reward earned.

The Owner has control over the following functions:
● Update packages.

● Contract is paused / unpaused.

● Set multiple unstake addresses.

● Unstake single address.

YES, This is valid.

File 2 NodeElevator.sol
● Premature Unstake : 15% fee from reward earned.

The Owner has control over the following functions:
● Contract is paused / unpaused.

● Set addresses in WhiteListed.

● Set multiple unstake addresses.

● Unstake single address.

● Update packages.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium, 0 low and 10 very low level issues.
We confirm that all these severities are fixed / acknowledged in the revised smart
contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Hold and Node Staking are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Hold and Node Staking Protocol.

The Hold and Node Staking team has not provided unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Hold and Node Staking smart contract code in the form of a

https://testnet.egonscan.com web link. The hash of that code is mentioned above in the

table.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://testnet.egonscan.com

AS-IS overview

HoldElevator.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 receive external Passed No Issue
3 onlyOwner modifier Passed No Issue
4 isPaused modifier Passed No Issue
5 isNotPaused modifier Passed No Issue
6 updatePackages external Passed No Issue
7 pause external access only Owner No Issue
8 unpause external access only Owner No Issue
9 unstakeBulk external Passed No Issue
10 unstakeSingle external Passed No Issue
11 deposit external Passed No Issue
12 unstake write Passed No Issue
13 settleSingle internal Passed No Issue
14 withdraw external Passed No Issue
15 revenueOf external Passed No Issue
16 withdrawableRevenueOf write Gas Efficiency Refer Audit

Findings
17 getUserInfo external Passed No Issue
18 globalInfo external Passed No Issue

NodeElevator.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 receive external Passed No Issue
3 onlyOwner modifier Passed No Issue
4 isPaused modifier Passed No Issue
5 isNotPaused modifier Passed No Issue
6 setWhiteListed write access only Owner No Issue
7 pause external access only Owner No Issue
8 unpause external access only Owner No Issue
9 unstakeBulk external Passed No Issue
10 unstakeSingle external Passed No Issue
11 updatePackages external Passed No Issue
12 deposit external Duplicate validation in the

same function
Refer Audit
Findings

13 withdraw external Passed No Issue
14 unstake write Passed No Issue

15 settleSingle internal Passed No Issue
16 revenueOf external Passed No Issue
17 withdrawableRevenueOf write Gas Efficiency Refer Audit

Findings
18 getUserInfo external Passed No Issue
19 globalInfo external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

(1) Daily percentage vulnerabilities:

HoldElevator.sol

NodeElevator.sol

No validation is done inside the updatePackages() function.

The _dailypercentage has no validation while updating by the owner, so the owner can set

the daily percentage to 0 and then the user will not get a daily revenue of his deposit.

Resolution: We suggest using validation for the daily percentage variable and it must be

greater than zero.

Status: Fixed

(2) Large user wallet array size:

HoldElevator.sol

NodeElevator.sol

While depositing users added to an array is relatively straightforward, there is no code to

remove that user from the array when that user has unstaked all his deposits. It will cause

issues when the array size increases. It may stop the deposit functionality in the future.

Resolution: Implement a dynamic array with the "swap and pop" technique for

constant-time removal of users from the array to address scalability issues.

Status: Fixed

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) SafeMath Library: HoldElevator.sol, NodeElevator.sol
SafeMath Library is used in this contract code, but if the compiler version is greater than or

equal to 0.8.0, then it will not be required to be used; Solidity automatically handles

overflow and underflow.

Resolution: Remove the SafeMath library and use normal math operators. It will improve

code size and reduce gas consumption.

Status: Fixed

(2) Make variables constant: HoldElevator.sol

These variables will be unchanged. So, please make it constant. It will save some gas.

Resolution: Declare those variables as constants. Just use a constant keyword.

Status: Fixed

(3) Missing event logs: HoldElevator.sol, NodeElevator.sol
The unstakeBulk and unstakeSingle functions are executed by the owner, but they should

log events.

Resolution:We suggest adding a log for these owner functions.

Status: Fixed

(4) Unused event:

HoldElevator.sol

NodeElevator.sol

Register and claimed events are defined but not used in code.

Resolution:We suggest removing unused events.

Status: Fixed

(5) Require message irrelevant: HoldElevator.sol

The isPaused() modifier requires that the message is irrelevant.

Resolution:We suggest setting the proper message to required.

Status: Fixed

(6) Variable naming is not proper:

HoldElevator.sol

NodeElevator.sol

The constructor asks for the parameter as a marketing address, and that marketing wallet

is used in the contract as the owner's wallet.

Resolution:We suggest using proper variable and variable naming.

Status: Fixed

(7) Utilizing Custom Modifiers for Enhanced Security: HoldElevator.sol

Streamline security in your smart contracts with custom modifiers. Simplify access control

logic, enhance code readability, and reduce redundancy.

Resolution: Implement custom modifiers like 'onlyOwner' to centralize ownership checks.

This promotes code reuse, improves code comprehension, and ensures consistent

security measures.

Status: Fixed

(8) Gas Efficiency:

HoldElevator.sol

NodeElevator.sol

The current behavior of the "withdrawableRevenueOf" function can result in users

unnecessarily spending gas fees to execute transactions, when the user is already

isUnstaked.

Resolution: Modify the "withdrawableRevenueOf" function to include a check that ensures

at least one user is already isUnstaked or not.

Status: Acknowledged

(9) Duplicate validation in the same function: NodeElevator.sol

If the deposit function is already checked before it is invested 0, then the next validation is

not working, and function execution will fail.

Resolution:We suggest removing duplications of validation from the code.

Status: Acknowledged

(10) Unused struct variables:

NodeElevator.sol

HoldElevator.sol

In the user structure, variables "isClaimed" and "earned" are defined but not used

anywhere.

Resolution:We suggest removing unused variables from the structure.

Status: Fixed

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

HoldElevator.sol

● updatePackages: The owner can update packages.

● pause: contract status set paused true by the owner.

● unpause: contract status set paused false by the owner.

● unstakeBulk: The owner can set multiple unstake addresses.

● unstakeSingle: The owner can unstake a single address.

NodeElevator.sol

● setWhiteListed: Added user address in the white list by the owner.

● pause: contract status set paused true by the owner.

● unpause: contract status set paused false by the owner.

● unstakeBulk: The owner can set multiple unstake addresses.

● unstakeSingle: The owner can unstake a single address.

● updatePackages: The owner can update packages.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a https://testnet.egonscan.com web link. And

we have used all possible tests based on given objects as files. We had observed 2

medium issues and 10 Informational severity issues in the smart contracts. We confirm

that all these severities are fixed / acknowledged in the revised smart contract code. So,
the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

https://testnet.egonscan.com

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - Hold and Node Staking Protocol

HoldElevator Diagram

NodeElevator Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> HoldElevator.sol

Slither log >> NodeElevator.sol

Solidity Static Analysis

HoldElevator.sol

NodeElevator.sol

Solhint Linter

HoldElevator.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:5
Error message for require is too long
Pos: 9:79
Explicitly mark visibility of state
Pos: 5:166
Variable name must be in mixedCase
Pos: 5:168
Variable name must be in mixedCase
Pos: 5:169
Variable name must be in mixedCase
Pos: 5:170
Variable name must be in mixedCase
Pos: 9:177
Variable name must be in mixedCase
Pos: 9:191
Explicitly mark visibility of state
Pos: 5:196
Constant name must be in capitalized SNAKE_CASE
Pos: 5:196
Explicitly mark visibility of state
Pos: 5:199
Constant name must be in capitalized SNAKE_CASE
Pos: 5:199
Variable name must be in mixedCase
Pos: 60:212
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:216
Code contains empty blocks
Pos: 31:224
Variable name must be in mixedCase
Pos: 9:244
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 25:275
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 25:276
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 25:299
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 25:300
Avoid making time-based decisions in your business logic
Pos: 30:329
Avoid making time-based decisions in your business logic
Pos: 52:343

Avoid making time-based decisions in your business logic
Pos: 17:348
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:363
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:364
Variable name must be in mixedCase
Pos: 17:379
Variable name must be in mixedCase
Pos: 17:381
Variable name must be in mixedCase
Pos: 17:422
Variable name must be in mixedCase
Pos: 17:424
Variable name must be in mixedCase
Pos: 17:454
Variable name must be in mixedCase
Pos: 17:456
Avoid making time-based decisions in your business logic
Pos: 29:462
Avoid making time-based decisions in your business logic
Pos: 76:462
Avoid making time-based decisions in your business logic
Pos: 25:471
Avoid making time-based decisions in your business logic
Pos: 37:481
Variable name must be in mixedCase
Pos: 13:492
Variable name must be in mixedCase
Pos: 13:496
Variable name must be in mixedCase
Pos: 13:497
Avoid making time-based decisions in your business logic
Pos: 49:502
Variable name must be in mixedCase
Pos: 13:507
Variable name must be in mixedCase
Pos: 13:529

NodeElevator.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:5
Error message for require is too long
Pos: 9:79
Explicitly mark visibility of state
Pos: 5:165
Variable name must be in mixedCase
Pos: 5:167
Variable name must be in mixedCase
Pos: 5:168
Variable name must be in mixedCase

Pos: 5:169
Explicitly mark visibility of state
Pos: 5:170
Variable name must be in mixedCase
Pos: 9:177
Variable name must be in mixedCase
Pos: 9:191
Explicitly mark visibility of state
Pos: 5:197
Constant name must be in capitalized SNAKE_CASE
Pos: 5:197
Explicitly mark visibility of state
Pos: 5:200
Constant name must be in capitalized SNAKE_CASE
Pos: 5:200
Variable name must be in mixedCase
Pos: 60:212
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:216
Code contains empty blocks
Pos: 32:221
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 21:263
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 21:264
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 21:279
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 21:280
Variable name must be in mixedCase
Pos: 9:287
Avoid making time-based decisions in your business logic
Pos: 30:319
Avoid making time-based decisions in your business logic
Pos: 52:346
Avoid making time-based decisions in your business logic
Pos: 17:351
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:365
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:366
Variable name must be in mixedCase
Pos: 13:382
Variable name must be in mixedCase
Pos: 13:384
Variable name must be in mixedCase
Pos: 17:413
Variable name must be in mixedCase
Pos: 17:415
Variable name must be in mixedCase
Pos: 17:445
Variable name must be in mixedCase

Pos: 17:447
Avoid making time-based decisions in your business logic
Pos: 29:453
Avoid making time-based decisions in your business logic
Pos: 76:453
Avoid making time-based decisions in your business logic
Pos: 25:462
Avoid making time-based decisions in your business logic
Pos: 37:472
Variable name must be in mixedCase
Pos: 13:480
Variable name must be in mixedCase
Pos: 13:484
Variable name must be in mixedCase
Pos: 13:485
Avoid making time-based decisions in your business logic
Pos: 49:490
Variable name must be in mixedCase
Pos: 13:495
Variable name must be in mixedCase
Pos: 13:517

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

