
Project: EGONINU
Platform: Egon Blockchain
Language: Solidity
Date: September 5th, 2023

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the EGON Tax team to perform the Security audit of the
ENU Token smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on September 5th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● EGON tax token contract is utilized for swapping and liquifying, adding new liquidity,

and updating fees.

● Smart contracts offer various functions, such as adding liquidity, swapping and

liquefying, and setting fees.

Audit scope

Name Code Review and Security Analysis Report for
EGON Tax (ENU) Token Smart Contract

Platform Egon Blockchain / Solidity

File EgonInu.sol

Online code link 0x4BD0BaA28652F233817f3eC24Ff476fb36879E08

Audit Date September 5th, 2023

Revised Audit Date September 30th, 2023

https://egonscan.com/address/0x4BD0BaA28652F233817f3eC24Ff476fb36879E08/contracts

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

ENU.sol
● Name: Egon Inu

● Symbol: ENU

● Decimals: 9

YES, This is valid.

Total Fees: 10%
● EGON Rewards Fee: 5%

● Liquidity Fee: 1%

● Marketing Fee: 3%

● Burn Fee: 1%

● Extra Fee On Sell: 0%

YES, This is valid.
The smart contract owner controls
these functions, so the owner must
handle the private key of the owner's
wallet very securely.
Because if the private key is
compromised, then it will create
problems.

The Owner has control over the following
functions:

● Set EGON reward fee, liquidity fee,

marketing fee and burn fees.

● Set a swap and liquify enabled status.

● Set the marketing address.

● Set the maximum transaction limit.

● Exclude from reward address.

.

YES, This is valid.

Audit Summary

According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and 1 very low level issues.
We confirm that all these issues are fixed / acknowledged in the revised smart
contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in ENU Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the ENU Token.

The ENU Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an ENU Token smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 lockTheSwap modifier Passed No Issue
3 setFee write access only

Owner
No Issue

4 setExtraFeeOnSell write Removed -
5 setMaxtx write Removed -
6 receive external Passed No Issue
7 updateRouterAddress write Removed -
8 excludeFromFees write Removed -
9 setExcludeFromMaxTx write Removed -
10 setExcludeFromAll write Removed -
11 excludeMultipleAccountsFromFees write Removed -
12 setAutomatedMarketMakerPair write Removed -
13 _setAutomatedMarketMakerPair write Removed -
14 updateGasForProcessing write Removed -
15 updateClaimWait external Removed -
16 getClaimWait external Removed -
17 getTotalDividendsDistributed external Removed -
18 isExcludedFromFees read Removed -
19 isExcludedFromMaxTx read Removed -
20 withdrawableDividendOf read Removed -
21 dividendTokenBalanceOf read Removed -
22 getAccountDividendsInfo external Removed -
23 getAccountDividendsInfoAtIndex external Removed -
24 processDividendTracker external Removed -
25 claim external Removed -
26 getLastProcessedIndex external Removed -
27 getNumberOfDividendTokenHolders external Removed -
28 excludeFromDividends external Removed -
29 setSwapAndLiquifyEnabled write access only

Owner
No Issue

30 _transfer internal Transferred 0
amount

Refer Audit
Findings

31 swapAndLiquify write lockTheSwap No Issue
32 swapTokensForEth write Passed No Issue
33 swapAndSendEGONToMarketing write Removed -
34 addLiquidity write Passed No Issue
35 name read Passed No Issue
36 symbol read Passed No Issue
37 decimals read Passed No Issue
38 totalSupply read Passed No Issue
39 balanceOf read Passed No Issue

40 transfer write Passed No Issue
41 allowance read Passed No Issue
42 approve write Passed No Issue
43 transferFrom write Passed No Issue
44 increaseAllowance write Passed No Issue
45 decreaseAllowance write Passed No Issue
46 _transfer internal Removed -
47 _mint internal Passed No Issue
48 _burn internal Removed -
49 _approve internal Passed No Issue
50 _beforeTokenTransfer internal Removed -
51 _afterTokenTransfer internal Removed -
52 owner read Passed No Issue
53 onlyOwner modifier Passed No Issue
54 renounceOwnership write access only

Owner
No Issue

55 transferOwnership write access only
Owner

No Issue

56 _setOwner write Removed -
57 setSafeManager write Removed -
58 withdraw external Removed -
59 withdrawEGON external Removed -
60 openTrade external Removed -
61 open modifier Removed -
62 includeToWhiteList external Removed -
63 _transfer internal Removed -
64 withdrawDividend write Removed -
65 excludeFromDividends external Removed -
66 updateClaimWait external Removed -
67 getLastProcessedIndex external Removed -
68 getNumberOfTokenHolders external Removed -
69 getAccount write Removed -
70 getAccountAtIndex write Removed -
71 canAutoClaim read Removed -
72 setBalance external Removed -
73 process write Removed -
74 processAccount write Removed -
75 receive external Removed -
76 distributeDividends write Removed -
77 withdrawDividend write Removed -
78 _withdrawDividendOfUser internal Removed -
79 dividendOf read Removed -
80 withdrawableDividendOf read Removed -
81 withdrawnDividendOf read Removed -
82 accumulativeDividendOf read Removed -
83 _transfer internal Passed No Issue
84 _mint internal Removed -
85 _burn internal Removed -

86 _setBalance internal Removed -
87 isExcludedFromFee write Passed No Issue
88 excludeFromFee write Passed No Issue
89 includeInFee write Passed No Issue
90 _transferTokens internal Passed No Issue
91 _setupDecimals internal Passed No Issue
92 setMinimumTokensBeforeSwap external access only

Owner
No Issue

93 setMarketingAddress external access only
Owner

No Issue

94 getTreasuryAddress read Passed No Issue
95 excludeFromReward external access only

Owner
No Issue

96 setMaxTxnLimit external access only
Owner

No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Transfers 0 Amount:

Transfers 0 amounts.

Resolution: We suggest avoiding the 0 amount transfer in the _transfer() internal function.

Status: Fixed, Updated code in revised smart contract code.

(2) Owners can drain tokens and coins:

Using the withdraw function, the owner can drain any tokens from the contract.

Using the withdrawEGON function, the owner can drain coins from the contract.

Resolution: We suggest confirming before contract deployment.

Status: Fixed, removed these functions in revised smart contract code.

Very Low / Informational / Best practices:

(1) Hardcoded address:

The marketingWallet is set by a hard coded address.

Resolution: We suggest confirming before contract deployment.

Status: Acknowledged

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

EgonInu.sol

● excludeFromFee: Exclude fee account address set status true by the owner.

● includeInFee: Exclude fee account address set status false by the owner.

● setFee: The owner can set a EGON reward fee, liquidity fee, marketing fee, and

burn fee.

● setMinimumTokensBeforeSwap: Minimum Tokens Before Swap value can be set by

the owner.

● setSwapAndLiquifyEnabled: Swap and liquify enabled status can be set by the

owner.

● setMarketingAddress: Marketing address can be set by the owner.

● excludeFromReward: Exclude from reward address can be set by the owner.

● setMaxTxnLimit: Maximum transaction limit can be set by the owner.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transfer ownership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We had observed 2 low issues and 1 informational issue

in the smart contracts. We confirm that all these issues have been fixed / acknowledged in

the revised smart contract code. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - EGON Tax (ENU) Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> EgonInu.sol

Solidity Static Analysis

EgonInu.sol

Solhint Linter

EgonInu.sol

Compiler version 0.8.18 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:8
Error message for require is too long
Pos: 9:29
Error message for require is too long
Pos: 9:66
Function name must be in mixedCase
Pos: 5:99
Contract has 21 states declarations but allowed no more than 15
Pos: 1:124
Explicitly mark visibility of state
Pos: 7:131
Variable name must be in mixedCase
Pos: 5:154
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:163
Avoid making time-based decisions in your business logic
Pos: 13:306
Avoid making time-based decisions in your business logic
Pos: 13:322
Error message for require is too long
Pos: 9:370
Error message for require is too long
Pos: 9:371
Error message for require is too long
Pos: 9:388
Error message for require is too long
Pos: 9:389
Code contains empty blocks
Pos: 32:416

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

