
Project: SecureChain AI Token
Website: https://securechain.ai
Platform: Ethereum / BSC
Language: Solidity
Date: September 14th, 2023

https://securechain.ai


Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Business Risk Analysis …..…………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 14

Our Methodology ………………………………………………………………………………... 15

Disclaimers ………………………………………………………………………………………. 17

Appendix

● Code Flow Diagram ……………………………………………………………………... 18

● Slither Results Log ………………………………………………………………………. 19

● Solidity static analysis ….……………………………………………………………….. 21

● Solhint Linter …………………………………………………………………….……….. 23

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
EtherAuthority was contracted by the SecureChain AI team to perform the Security audit of
the SCAI Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on September 14th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The SecureChain AI (SCAI) token is a standard token smart contract, having

functions like updating buy and selling fees, updating LP pair addresses, updating

enabled trading status, etc.

● The SCAI tokens are part of the SecureChain AI ecosystem and they are launched

in Ethereum and BSC networks.

Audit scope

Name Code Review and Security Analysis Report for
SecureChain AI (SCAI) Token Smart Contract

Platform Ethereum / BSC

File SCAI.sol

Ethereum Code 0xe35009059cb55ded065027e9832a2c564aff7512

BSC Code 0x051A66a7750098fB1EC6548D36E275bb23749A78

Audit Date September 14th, 2023

https://etherscan.io/address/0xe35009059cb55ded065027e9832a2c564aff7512#code
https://bscscan.com/address/0x051A66a7750098fB1EC6548D36E275bb23749A78#code


Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: SecureChain AI

● Symbol: SCAI

● Decimals: 18

● ERC20 Supply: 100 Million

● BEP20 Supply: 100 Million

● No more minting possible

YES, This is valid.

● Buy fee: 2%

● Selling fee: 2%

● fee denominator: 1000

● Swap Threshold: 20,000

YES, This is valid.
The smart contract owner can not
raise the taxes more than 2%
which is a good thing.

Ownership Control:
● Set a no-fee wallet account enabled status.

● Update a new pair address.

● Toggle swap fee status.

● Update the marketing wallet address.

● Update the presale address.

● EnableTrading status.

● Current owner can transfer the ownership.

● Owner can renounce ownership.

YES, This is valid. We advise to
renounce ownership once the
ownership functions are not
needed. This is to make the smart
contract 100% decentralized.



Audit Summary

According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and 2 very low level issues.
We confirm that these issues are acknowledged by the SecureChain AI team.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Business Risk Analysis
Category Result

Buy Tax 2%

Sell Tax 2%

Cannot Buy Passed

Cannot Sell Passed

Max Tax 2%

Modify Tax Not Detected

Fee Check Passed

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Detected

Max Tax? Passed

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check Passed

Can Mint? No

Is Proxy? Not Detected

Can Take Ownership? Not Detected

Hidden Owner? Not Detected

Self Destruct? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED



Code Quality
This audit scope has 2 smart contracts. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in SCAI Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the SCAI Token.

The SCAI Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a SCAI Token smart contract code in the form of Etherscan and BSCscan

web links.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Another source of information was its official project URL: https://securechain.ai which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/address/0xe35009059cb55ded065027e9832a2c564aff7512#code
https://bscscan.com/address/0x051A66a7750098fB1EC6548D36E275bb23749A78#code
https://securechain.ai


AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 totalSupply external Passed No Issue
3 decimals external Passed No Issue
4 symbol external Passed No Issue
5 name external Passed No Issue
6 getOwner external Passed No Issue
7 allowance external Passed No Issue
8 balanceOf read Passed No Issue
9 receive external Passed No Issue
10 transfer write Passed No Issue
11 approve external Passed No Issue
12 _approve internal Passed No Issue
13 transferFrom external Passed No Issue
14 isNoFeeWallet external Passed No Issue
15 setNoFeeWallet write access only Owner No Issue
16 isLimitedAddress internal Passed No Issue
17 is_buy internal Passed No Issue
18 is_sell internal Passed No Issue
19 is_transfer internal Passed No Issue
20 canSwap internal Passed No Issue
21 changeLpPair external access only Owner No Issue
22 toggleCanSwapFees external access only Owner No Issue
23 _transfer internal Passed No Issue
24 changeWallets external access only Owner No Issue
25 takeTaxes internal Passed No Issue
26 internalSwap internal In the swap flag No Issue
27 setPresaleAddress external access only Owner No Issue
28 enableTrading external access only Owner No Issue
29 inSwapFlag modifier Passed No Issue
30 owner read Passed No Issue
31 onlyOwner modifier Passed No Issue
32 renounceOwnership write access only Owner No Issue
33 transferOwnership write access only Owner No Issue
34 _setOwner write Passed No Issue
35 _msgSender internal Passed No Issue
36 _msgData internal Passed No Issue



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Consider renouncing ownership:

Once all the administrative functions are over, then we advise to renounce the ownership

of the contract. This will make it fully decentralized. Fully decentralized contracts increase

the trust in the users.

(2) Trading is paused by default:

We understand this is a design of SAFU protocol of launchpad, and only SAFU dev can

enable the trading. And we understand that trading can not be disabled after being

enabled, which is a good thing.

However, we advise to renounce the ownership to make the smart contract fully

decentralized.



Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

SCAI.sol

● setNoFeeWallet: No fee wallet account enabled status can be set by the owner.

● changeLpPair: A new pair address can be updated by the owner.

● toggleCanSwapFees: Swap fee status can be toggled by the owner.

● changeWallets: The marketing wallet address can be updated by the owner.

● setPresaleAddress: The presale address can be updated by the owner.

● enableTrading: Trading status can be enabled by the owner.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transfer ownership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.



Conclusion

We were given a contract code in the form of Etherscan and BSCscan web links. And we

have used all possible tests based on given objects as files. We had observed 2

informational issues in the smart contracts. And those issues are acknowledged. So, it’s
good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/address/0xe35009059cb55ded065027e9832a2c564aff7512#code
https://bscscan.com/address/0x051A66a7750098fB1EC6548D36E275bb23749A78#code


Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - SecureChain AI (SCAI) Token



Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> SCAI.sol





Solidity Static Analysis
SCAI.sol





Solhint Linter

SCAI.sol

Compiler version =0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:6
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:10
Code contains empty blocks
Pos: 19:10
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:29
Error message for require is too long
Pos: 9:47
Function name must be in mixedCase
Pos: 5:72
Provide an error message for revert
Pos: 96:151
Provide an error message for revert
Pos: 91:152
Constant name must be in capitalized SNAKE_CASE
Pos: 5:170
Constant name must be in capitalized SNAKE_CASE
Pos: 5:171
Constant name must be in capitalized SNAKE_CASE
Pos: 5:175
Constant name must be in capitalized SNAKE_CASE
Pos: 5:181
Constant name must be in capitalized SNAKE_CASE
Pos: 5:182
Constant name must be in capitalized SNAKE_CASE
Pos: 5:183
Event name must be in CamelCase
Pos: 5:196
Event name must be in CamelCase
Pos: 5:197
Event name must be in CamelCase
Pos: 5:198
Event name must be in CamelCase
Pos: 5:199
Event name must be in CamelCase
Pos: 5:200
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:203
Code contains empty blocks
Pos: 32:229
Function name must be in mixedCase
Pos: 5:271
Variable name must be in mixedCase



Pos: 9:272
Function name must be in mixedCase
Pos: 5:276
Variable name must be in mixedCase
Pos: 9:277
Function name must be in mixedCase
Pos: 5:281
Variable name must be in mixedCase
Pos: 9:282
Error message for require is too long
Pos: 9:305
Error message for require is too long
Pos: 9:306
Error message for require is too long
Pos: 9:307
Provide an error message for require
Pos: 9:331
Avoid making time-based decisions in your business logic
Pos: 13:366
Code contains empty blocks
Pos: 11:367

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.




