
Project: 6ense Token
Website: https://www.6ense.it
Platform: Ethereum / BSC
Language: Solidity
Date: September 15th, 2023

https://www.6ense.it

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the 6OS team to perform the Security audit of the 6ense
Token smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on September 15th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The 6ense token is a token smart contract that has functions like delivery, updating

fees, receiving, swapping, liquidity, and adding liquidity.

Audit scope

Name Code Review and Security Analysis Report for
6ense Token Smart Contract

Platform Ethereum / BSC

File 6ense.sol

Github commit hash be874bcd26a997db836b8002573c4436758d3931

Ethereum Code 0x85018d46c4F21460490d841ef43b07bbcc99F6Dc

BSC Code 0x223be542ffb661714d209e5ed7e4af18e83bc80c

Audit Date September 15th, 2023

https://github.com/EtherAuthority/Smart-Contracts-Library/blob/main/6OSToken/6ense.sol
https://etherscan.io/address/0x85018d46c4F21460490d841ef43b07bbcc99F6Dc#code
https://bscscan.com/address/0x223be542ffb661714d209e5ed7e4af18e83bc80c#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: 6ense

● Symbol: 6OS

● Decimals: 18

YES, This is valid.

● Reward Fees: 2%

● Transaction tax: 4%

● Liquidity tax: 5%

● Burn tax: 1%

● Maximum transaction amount: 5 Million

● Number of Blocks For Blacklist: 5

YES, This is valid.

Ownership Control:
● Current owner can transfer the ownership.

● Owner can renounce ownership.

● Enable trade.

● Update an account address on the block list.

● Update reward fees.

● Update the transaction.

● Updated liquidity fee percentage.

● Set the maximum transaction amount.

● Set the swap and liquify enabled status.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and 3 very low level issues.
We confirmed that all the issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in 6ense Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the 6ense Token.

The 6ense Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a 6ense Token smart contract code in the form of a github web link. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. but The logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official project URL: https://www.6ense.it which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://www.6ense.it

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lockTheSwap modifier Passed No Issue
3 totalSupply read Passed No Issue
4 balanceOf read Passed No Issue
5 transfer read Passed No Issue
6 allowance read Passed No Issue
7 approve write Passed No Issue
8 transferFrom write Passed No Issue
9 increaseAllowance write Passed No Issue
10 decreaseAllowance write Passed No Issue
11 isExcludedFromReward read Passed No Issue
12 totalFees read Passed No Issue
13 deliver write Passed No Issue
14 reflectionFromToken read Passed No Issue
15 tokenFromReflection read Passed No Issue
16 enableTrade write access only Owner No Issue
17 isTradeEnabled external Passed No Issue
18 addToBlacklist write access only Owner No Issue
19 removeFromBlacklist write access only Owner No Issue
20 excludeFromReward write access only Owner No Issue
21 includeInReward external access only Owner No Issue
22 _transferBothExcluded write Passed No Issue
23 excludeFromFee write access only Owner No Issue
24 includeInFee write access only Owner No Issue
25 setRewardFeePercent external access only Owner No Issue
26 setTransactionFeePerc

ent
external access only Owner No Issue

27 setLiquidityFeePercent external access only Owner No Issue
28 setNumTokensSellToAd

dToLiquidity
external access only Owner No Issue

29 setMaxTxAmount external access only Owner No Issue
30 setMaxTxPercent external access only Owner No Issue
31 setSwapAndLiquifyEna

bled
write access only Owner No Issue

32 receive external Passed No Issue
33 _reflectFee write Passed No Issue
34 _getValues read Passed No Issue
35 _getTValues read Passed No Issue
36 _getRValues write Passed No Issue
37 _getRate read Passed No Issue
38 _getCurrentSupply read Passed No Issue
39 _takeLiquidity write Passed No Issue

40 _sendTransactionTax write Passed No Issue
41 calculateFee write Passed No Issue
42 removeAllFee write Passed No Issue
43 restoreAllFee write Passed No Issue
44 isExcludedFromFee read Passed No Issue
45 _approve internal Passed No Issue
46 _transfer internal Passed No Issue
47 _burnTokens write Critical operation lacks

event log, Tokens not
burned while transferring
from reward excluded

address

Refer Audit
Findings

48 swapAndLiquify write lockTheSwap No Issue
49 swapTokensForEth write Passed No Issue
50 addLiquidity write Passed No Issue
51 _tokenTransfer write Unnecessary condition used Refer Audit

Findings
52 _transferStandard write Passed No Issue
53 _transferToExcluded write Passed No Issue
54 _transferFromExcluded write Passed No Issue
55 name read Passed No Issue
56 symbol read Passed No Issue
57 decimals read Passed No Issue
58 totalSupply read Passed No Issue
59 balanceOf read Passed No Issue
60 transfer write Passed No Issue
61 allowance read Passed No Issue
62 approve write Passed No Issue
63 transferFrom write Passed No Issue
64 increaseAllowance write Passed No Issue
65 decreaseAllowance write Passed No Issue
66 _transfer internal Passed No Issue
67 _mint internal Passed No Issue
68 _burn internal Passed No Issue
69 _approve internal Passed No Issue
70 _spendAllowance internal Passed No Issue
71 _beforeTokenTransfer internal Passed No Issue
72 _afterTokenTransfer internal Passed No Issue
73 onlyOwner modifier Passed No Issue
74 owner read Passed No Issue
75 _checkOwner internal Passed No Issue
76 renounceOwnership write access only Owner No Issue
77 transferOwnership write access only Owner No Issue
78 _transferOwnership internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Tokens not burned while transferring from reward excluded address:

1% of tokens do not get burned while transferring tokens from reward excluded addresses.

Resolution: We suggest correcting the logic by adding the proper amount for the burn

address.

Status: Acknowledged by team as this does not have a major security impact.

Very Low / Informational / Best practices:

(1) Critical operation lacks event log:

Missing event log for:

● _burnTokens()

Resolution: Please write an event log for the listed events.

Status: Acknowledged by team as this does not have a major security impact.

(2) Unused event:

The MinTokensBeforeSwapUpdated event is not used in the contract.

Resolution:We suggest removing unused events.

Status: Acknowledged by team as this does not have a major security impact.

(3) Unnecessary condition used:

Unnecessary “else if” condition used in _tokenTransfer function.

Resolution:We suggest removing unnecessary condition in the smart contract.

Status: Acknowledged by team as this does not have a major security impact.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

6ense.sol
● enableTrade: Trade status can be set by the owner.

● addToBlacklist: An account address can be added to the blacklist by the owner.

● removeFromBlacklist: The account address can be removed from the blacklist by

the owner.

● excludeFromReward: The account address can be excluded from rewards by the

owner.

● includeInReward: The account address can be included in the reward by the owner.

● excludeFromFee: Account status can be set to be true and be excluded from the

fee by the owner.

● includeInFee: Account status can be set to false to includeInFee by the owner.

● setRewardFeePercent: Reward fee percentage values can be set by the owner.

● setTransactionFeePercent: Transaction fee percentage values can be set by the

owner.

● setLiquidityFeePercent: Liquidity fee percentage values can be set by the owner.

● setNumTokensSellToAddToLiquidity: The liquidity token amount can be set by the

owner.

● setMaxTxAmount: The maximum transaction amount can be set by the owner.

● setMaxTxPercent: The maximum transaction percentage can be set by the owner.

● setSwapAndLiquifyEnabled: Swap and Liquify enabled status can be set by the

owner.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transfer ownership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github web link. And we have used all

possible tests based on given objects as files. We had observed 1 low and 3 informational

issues in the smart contracts. We confirmed that all the issues have been acknowledged.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - 6ense Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> 6ense.sol

Solidity Static Analysis
6ense.sol

Solhint Linter

6ense.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:141
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:238
Error message for require is too long
Pos: 9:280
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:337
Error message for require is too long
Pos: 9:504
Error message for require is too long
Pos: 9:534
Error message for require is too long
Pos: 9:535
Error message for require is too long
Pos: 9:540
Error message for require is too long
Pos: 9:592
Error message for require is too long
Pos: 9:597
Error message for require is too long
Pos: 9:627
Error message for require is too long
Pos: 9:628
Code contains empty blocks
Pos: 24:677
Code contains empty blocks
Pos: 24:697
Function name must be in mixedCase
Pos: 5:737
Function name must be in mixedCase
Pos: 5:738
Function name must be in mixedCase
Pos: 5:755
Function name must be in mixedCase
Pos: 5:777
Contract has 24 states declarations but allowed no more than 15
Pos: 1:915
Variable name must be in mixedCase
Pos: 5:935
Explicitly mark visibility of state
Pos: 5:954
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:976
Error message for require is too long
Pos: 9:1043
Error message for require is too long
Pos: 9:1062
Error message for require is too long
Pos: 9:1083
Error message for require is too long
Pos: 9:1132
Error message for require is too long
Pos: 9:1137
Error message for require is too long
Pos: 9:1142
Code contains empty blocks
Pos: 32:1168
Error message for require is too long
Pos: 9:1260
Error message for require is too long
Pos: 9:1261
Error message for require is too long
Pos: 9:1268
Error message for require is too long
Pos: 9:1269
Error message for require is too long
Pos: 9:1270
Error message for require is too long
Pos: 13:1292
Avoid making time-based decisions in your business logic
Pos: 13:1386
Avoid making time-based decisions in your business logic
Pos: 13:1401

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

