@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: 6ense Token

Website: https://www.6ense.it
Platform: Ethereum /BSC
Language: Solidity

Date: September 15th, 2023

https://www.6ense.it

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the 60S team to perform the Security audit of the 6ense
Token smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on September 15th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.
Project Background

e The 6ense token is a token smart contract that has functions like delivery, updating

fees, receiving, swapping, liquidity, and adding liquidity.

Audit scope
Name Code Review and Security Analysis Report for
6ense Token Smart Contract
Platform Ethereum / BSC
File 6ense.sol

Github commit hash be874bcd26a997db836b8002573¢c4436758d3931

Ethereum Code 0x85018d46c4F21460490d841ef43b07bbcc99F6Dc
BSC Code 0x223beb542ffb661714d209e5ed7e4af18e83bc80c
Audit Date September 15th, 2023

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/EtherAuthority/Smart-Contracts-Library/blob/main/6OSToken/6ense.sol
https://etherscan.io/address/0x85018d46c4F21460490d841ef43b07bbcc99F6Dc#code
https://bscscan.com/address/0x223be542ffb661714d209e5ed7e4af18e83bc80c#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics: YES, This is valid.
e Name: 6ense
e Symbol: 60S

e Decimals: 18

e Reward Fees: 2% YES, This is valid.
e Transaction tax: 4%

e Liquidity tax: 5%

e Burntax: 1%

e Maximum transaction amount: 5 Million

o Number of Blocks For Blacklist: 5

Ownership Control: YES, This is valid.
e Current owner can transfer the ownership.
e Owner can renounce ownership.
e Enable trade.
e Update an account address on the block list.
e Update reward fees.
e Update the transaction.
e Updated liquidity fee percentage.
e Set the maximum transaction amount.

e Set the swap and liquify enabled status.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and 3 very low level issues.

We confirmed that all the issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in 6ense Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the 6ense Token.

The 6ense Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a 6ense Token smart contract code in the form of a github web link. The

hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. but The logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official project URL: https://www.6ense.it which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://www.6ense.it

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [lockTheSwap modifier Passed No Issue
3 | totalSupply read Passed No Issue
4 | balanceOf read Passed No Issue
5 | transfer read Passed No Issue
6 [allowance read Passed No Issue
7 | approve write Passed No Issue
8 | transferFrom write Passed No Issue
9 [increaseAllowance write Passed No Issue
10 | decreaseAllowance write Passed No Issue
11 | isExcludedFromReward read Passed No Issue
12 | totalFees read Passed No Issue
13 | deliver write Passed No Issue
14 | reflectionFromToken read Passed No Issue
15 | tokenFromReflection read Passed No Issue
16 | enableTrade write access only Owner No Issue
17 | isTradeEnabled external Passed No Issue
18 | addToBlacklist write access only Owner No Issue
19 [removeFromBlacklist write access only Owner No Issue
20 | excludeFromReward write access only Owner No Issue
21 | includelnReward external access only Owner No Issue
22 | transferBothExcluded write Passed No Issue
23 | excludeFromFee write access only Owner No Issue
24 | includelnFee write access only Owner No Issue
25 | setRewardFeePercent external access only Owner No Issue
26 | setTransactionFeePerc | external access only Owner No Issue
ent
27 | setLiquidityFeePercent | external access only Owner No Issue
28 | setNumTokensSellToAd | external access only Owner No Issue
dToLiquidity
29 | setMaxTxAmount external access only Owner No Issue
30 | setMaxTxPercent external access only Owner No Issue
31 | setSwapAndLiquifyEna write access only Owner No Issue
bled
32 | receive external Passed No Issue
33 | reflectFee write Passed No Issue
34 | qgetValues read Passed No Issue
35 [getTValues read Passed No Issue
36 | getRValues write Passed No Issue
37 | getRate read Passed No Issue
38 | getCurrentSupply read Passed No Issue
39 | takeliquidity write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

40 | sendTransactionTax write Passed No Issue
41 | calculateFee write Passed No Issue
42 | removeAllFee write Passed No Issue
43 | restoreAllFee write Passed No Issue
44 | isExcludedFromFee read Passed No Issue
45 | approve internal Passed No Issue
46 | transfer internal Passed No Issue
47 | burnTokens write Critical operation lacks Refer Audit
event log, Tokens not Findings
burned while transferring
from reward excluded
address
48 | swapAndLiquify write lockTheSwap No Issue
49 | swapTokensForEth write Passed No Issue
50 [addLiquidity write Passed No Issue
51 | tokenTransfer write Unnecessary condition used | Refer Audit
Findings
52 | transferStandard write Passed No Issue
53 | transferToExcluded write Passed No Issue
54 | transferFromExcluded write Passed No Issue
55 | name read Passed No Issue
56 | symbol read Passed No Issue
57 [decimals read Passed No Issue
58 | totalSupply read Passed No Issue
59 [balanceOf read Passed No Issue
60 | transfer write Passed No Issue
61 | allowance read Passed No Issue
62 | approve write Passed No Issue
63 | transferFrom write Passed No Issue
64 | increaseAllowance write Passed No Issue
65 | decreaseAllowance write Passed No Issue
66 | transfer internal Passed No Issue
67 | mint internal Passed No Issue
68 | burn internal Passed No Issue
69 | approve internal Passed No Issue
70 | spendAllowance internal Passed No Issue
71 | beforeTokenTransfer internal Passed No Issue
72 | afterTokenTransfer internal Passed No Issue
73 | onlyOwner modifier Passed No Issue
74 | owner read Passed No Issue
75 | checkOwner internal Passed No Issue
76 | renounceOwnership write access only Owner No Issue
77 | transferOwnership write access only Owner No Issue
78 | transferOwnership internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Tokens not burned while transferring from reward excluded address:
burnTokens (

from,

tAmount,

rate

.
A

H.

—+-
—

'I

Excluded ['1' O -'T'I]) [
tOwned|[from] -= tAmount;

tOwned[to] += tAmount * rate;
} else {
_rOwned|[from] -= tAmount;

_rOwned[to] += tAmount * rate;

1% of tokens do not get burned while transferring tokens from reward excluded addresses.

Resolution: We suggest correcting the logic by adding the proper amount for the burn
address.

Status: Acknowledged by team as this does not have a major security impact.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Critical operation lacks event log:
Missing event log for:

e burnTokens()

Resolution: Please write an event log for the listed events.

Status: Acknowledged by team as this does not have a major security impact.

(2) Unused event:

MinTokensBeforeSwapUpdated(minTokensBeforeSwap);

The MinTokensBeforeSwapUpdated event is not used in the contract.

Resolution: We suggest removing unused events.

Status: Acknowledged by team as this does not have a major security impact.

(3) Unnecessary condition used:

recipient, amount,

ount);

Unnecessary “else if” condition used in _tokenTransfer function.

Resolution: We suggest removing unnecessary condition in the smart contract.

Status: Acknowledged by team as this does not have a major security impact.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

6ense.sol

e enableTrade: Trade status can be set by the owner.

e addToBlacklist: An account address can be added to the blacklist by the owner.

e removeFromBlacklist: The account address can be removed from the blacklist by
the owner.

e excludeFromReward: The account address can be excluded from rewards by the
owner.

e includelnReward: The account address can be included in the reward by the owner.

e excludeFromFee: Account status can be set to be true and be excluded from the
fee by the owner.

e includelnFee: Account status can be set to false to includelnFee by the owner.

e setRewardFeePercent: Reward fee percentage values can be set by the owner.

e setTransactionFeePercent: Transaction fee percentage values can be set by the
owner.

e setlLiquidityFeePercent: Liquidity fee percentage values can be set by the owner.

e setNumTokensSellToAddToLiquidity: The liquidity token amount can be set by the
owner.

e setMaxTxAmount: The maximum transaction amount can be set by the owner.

e setMaxTxPercent: The maximum transaction percentage can be set by the owner.

e setSwapAndLiquifyEnabled: Swap and Liquify enabled status can be set by the

owner.

Ownable.sol

e renounce Ownership: Deleting ownership will leave the contract without an owner,
removing any owner-only functionality.
e transfer ownership: The current owner can transfer ownership of the contract to a

new account.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github web link. And we have used all
possible tests based on given objects as files. We had observed 1 low and 3 informational
issues in the smart contracts. We confirmed that all the issues have been acknowledged.

So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - 6ense Token

@ Token

ERC20
Ownabie

anSafeMath for wint256

ess=uUINt25SE _rOwned
LINtI56 _tOwned

o

g aclelr
_isExclL

ol _isExcluded

address _exchuded
UIM256 MAX
LiIN256
uIM256 rTotal
LIM256 _tFeeTotal
bool trade_o
WIM2S6 currentBlockNumber
wint256 numBlocksFor Blacklist
WIM2S6 _rewardFes
Wint256 _previousRewardree
WIMZ56 _transactionfee
UIM256 _previousTransactionFes
256 _burnfee
56 _hquidiyFee
WIN256 _previousLiquidityFee
IUniswap\/2Router02 uniswap'/2Router
address uniswap\/2Pair
bool inSwapAndLiguify
bool swapAndLiguifyEnabled
ddress DEAD
56 _maxTxAmourt
55 numTokensSell ToAddToLiguidity

&__constructor__()
AtotalSupply()
® QbalanceOf()

ee|l0opOdOOCDOOODOODOODODOODODODDODOOD

© increaseAllowance()
® decreaseAlowance()

® QsExcludedFromReward()
@ QtotalFees()

® deliver()

® QreflectionFromToken()
QtokenFromReflection()
enableTrade()

® QusTradeEnabled()

® addToBlacklist()

‘® removeFromElacklist()

® exchudefromReward()

@ includeinReward()
_transferBothExcludecd()
excludeFromFes()
includelnFee()

setRewardF ecPercent()
setTransactionF eePercent()
setliquidtyFesPercent()
sethiumTokensSelToAddToL iguidity ()
setMaxTxAmount()
sethMaxTxPercent()

® setSwapAndLiquifyEnabled()
= _reflectFee()

= O_getValues()

= A _getTValues()

Q_getCurrentSupphy()
_takel iquicity()

W _sendTransactionTax(}
= QealculateFee()

= removeAlFee()

m restoreAlFee()

© QusExcludedFromFes()

_transfer()
= _burnTokens()

W swap AndLiquify()

= swapTokensForEth()

= addicuidity ()

= _tokenTransfer()
_transferStandard()
_transferToExciuded()
= _transferFromExcluded()

. IUniswap\V 2Pair

name()
QAsymbok()
Qdecimals()
StotalSupply()

@ v~ 2

QfeeTol)
QfeeToSetter()

createPair()
setFeeTol)
setFeeToSetter()

p
[for wini256
)

! \
\‘\7 @ Ownable

@) saremtatn Context

© Qadd) O address _owner

3 3"‘?0 ® __constructor__()

= qd“ O & Qowner()

* oty < & _checkOwner()
® renounceCwnership()
& transferOwnership()
< _transterownership()

)
ADOMAIN_SEPARATOR()
UPERMIT_TYPEHASH()
Qnonces()
permiti)

QUMMM _LIQUIDIT ¥ ()
Qfactory()

tokenD()

Qtokeni()

A getReserves()
QApriceDCumulativelast()
Aprice] Cumulativelast()
QkLast()

mirt()

burn()

swapi()

shim{)

sync()

initialize)

. IUniswapV 2Router02

iniswapVZRouterd 1

® removeLiquidityE THSUpportingFesOnTransfer Tokens()
removeLiquidityETHWithPermitSupportingFeeOnTransfer Tokens()

T T ingFeeOnTransfer Tokens()
ETHFor gF TransferTokens()
® swapExactTokensForETHSupportingFeeCnTransfer Tokens()

(€) erczo

Context
IERC20
IERGCZOMetadata

address=>uint256 _balances
addiess==ma

WINtZ56 _totalSupply
String _name

String _symbol

o
o
o
o
(=]

ng address=>ut256 _allowances

Adecimals()
AtotalSupply ()
AlbalanceOf()
transfer()
Qalowance()
approve()
transferFrom()
increaseAllowance()
decreaseAlowance()

_transfer(
©_mirt()
< Thurn()
approve()

< _afterTokenTransfer()

s

| |
IERC20Metadatal
() context ®
IERC20
© a_msgSender() © Quname()
< Q_msgData() Asymizol)

® Qudecimals()

!

%

. IERC20

® QtctalSupply()
© QbalanceOf()
® transter()
@ Qallowance()
® approve()
@ transferFrom()

@ suniswapv2Routerot

S factory()

QWETH()

addLiquidty()

& sctell_icquiclityETH()
removeLiquidity()
removeLiquidityETH()
removeLiquidityVWithPermit()
removeLiquidityETHWRhPermit()
swapExactTokensForTokens()
swapTokensForExactTokens()
@ swapExactETHF or Tokens()
swapTokensForExactETH()
swapExact TokensForETH()

& swapETHForExact Tokens()
Qguate()

AgetAmountOut()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.
We did the analysis of the project altogether. Below are the results.

Slither Log >> 6ense.sol

ould emit an event for:

emit an event for:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentrancy in Token.transferFrom{address,address,uint256) (6ense.sol#1018-1022):
External calls:
- _transfer(sender,recipient,amount) (6ense.sol#1019)
- uniswapV2Router.addLiguidityETH{value: ethAmount}{address(this),tokenAmount,8,8,owner(),block.timestamp) (6
nse.sol#1396-1403)
- uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,8,path,address(this),block.
mestamp) (6ense.sol#1382-1388)
External calls sending eth:
- _transfer(sender,recipient,amount) (6Gense.sol#10819)
- uniswapV2Router.addLiquidityETH{value: ethAmount}{address(this),tokenAmount,®,8,owner(),block.timestamp) (6e
nse.sol#1396-14063)
riables written after the call(s):
e(sender,_msgSender{),_allowances[sender][_msgSender()].sub(amount,ERC28: transfer amount exceeds allowance))

) _allowances[owner][spender] = amount (6ense.sol#1264)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

Reentrancy in Token. transfer({address,address,uint256) (6ense.sol#1268-1333):
External calls:
- swapAndLigquify(contractTokenBalance) {6ense.sol#1314)
- uniswapV2Router.addLiguidityETH{value: ethAmount}{address(this),tokenAmount,®,8,owner(),block.timestamp) (6Ge
nse.sol#1396-1403)
- uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,®,path,address(this),block.ti
mestamp) (6Gense.sol#1382-1388)
External calls sending eth:
- swapAndLiguify{contractTokenBalance) {6ense.sol#1314)
- uniswapV2Router.addLiquidityETH{value: ethAmount}{address(this),tokenAmount,®,8,owner(),block.timestamp) {6e
nse.sol#1396-14063)
it emitted after the call{s):
ransfer({sender,recipient,tTransferAmount) (6ense.sol#1434)

- _tokenTransfer(from,to,amount,takeFee) (6ense.sol#1332
Transfer({sender,recipient,tTransferaAmount) (6ense.sol#1456
) (Bense.sol#133

- _tokenTransfer(from,to,amount, takeFee
Transfer{sender,recipient,tTransferAmount) (6ense. 531$144=-

- _tokenTransfer(from,to,amount,takeFee) (6ense.s
Transfer({sender,recipient,tTransferAmount) (6 20

nse.sol#11208)

- _tokenTransfer(from,to,amount,takeFee) (6ense.sol#133
Reentrancy in Token. S\athdquulTwlulht45C} (Gense.sol#1350-1371):
External calls:
- swapTokensForEth{half) (6ense.sol#1362)
- uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,8,path,address{this),block.t1i
mestamp) (6Gense.sol#1382-1388)
- addLiquidity(otherHalf,newBalance) {6ense.sol#1263)
- uniswapV2Router.addLiguidityETH{value: ethAmount}{address(this),tokenAmount,8,8,owner(),block.timestamp) (6e
nse.sol#1396-1403)
External calls sending eth:
- addLiguidity{otherHalf,newBalance) (6ense.sol#1368)
- uniswapV2Router.addLiquidityETH{value: ethAmount}(address(this),tokenAmount,8,0,owner(),block.timestamp) (6e
nse.sol#1396-14083)
Event emitted after the callis):
- Approval{owner, spéndar,awount' (Gense. 501*
a i y{otherHalf,ne 2)
- SwapAndLiguif { alahCé,DthQIHalT' (6
Reentrancy in Token.transferFrom{address,address,uint256
External calls:
- _transferisender,rec1pient,awount) (6ense.sol#1019)
- uniswapV2Router.addLiquidityETH{value: ethAmount}(address(this),tokenAmount,8,0,owner(),block.timestamp) (6e
nse.sol#1396-1403)
- uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,8,path,address{this),block.t1i
mestamp) (6Gense.sol#1382-1388)
External calls sending eth:
- _transferisender,rec1pient,awount) (6ense.sol#1019)
- uniswapV2Router.addLiquidityETH{value: ethAmount}(address(this),tokenAmount,8,0,owner(),block.timestamp) (6e
nse.sol#1396-1403)
Event emitted after the call(s):
- Approval{owner,spender,amount) (6ense.sol#1265)
= _approweisender,_nsg?el-eli},_allofances[sender][_wsg?enderﬁ}].subiawount,ERCEB: transfer amount exceeds all
owance)) (6ense.sol#1020)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3

Token.includeInReward{address) ({Gense.sol#1898-11089) has costly ecperations inside a loop:
) - _excluded.pop() (6ense.sol#1105)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

Context._msgData() (6Gense.sol#222-224) is never used and should be removed
f 'Dkan'|ansfn|fajj|ass, ddress,uint256) o.50l#694-698) is n r used and should be removed
(address,address,uint256) (6Gense.sol# 33) 1 used and should be removed
| okenTransf ajjlnss,ajjlnss uint256) e .50l 378) 1is never used and should be removed
_burn{address,uint) {6ense.sol#59) i 2 should be rem
mint{address,uint256) (6ense.sol#5 i j should be removed
spandnllo\QHCAIajjlass address,uint256) (6e s is never used and should be removed
transfer(address,address, ulht;ECl (Gense.sol#) is never used and should be removed
SafeMath.mod(uint 256) Itensa sol#195-197) is ne used and should be removed
SafeMath.mod{uint int256,string) (6Gense.sol#211-214) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
Token._rTotal ({Gense.sol#933) 1is set pre-censtruction with a non-constant functien or state variable:
- (MAX - (MAX % _tTotal)
Token. previousRewardFee IEEMSQ 501 #942) 1is set pre-construction with a non-constant function or state variable:
- _rewardFee
Token._previousTransactionFee (6ense.sol#945) is set pre-constructien with a non-constant function or state variable:
= ransactionFee
Token._previousLiguidityFee (Gense.sol#9508) is set pre-construction with a non-constant function or state variable:
- _liquidityFee

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state

Pragma version®.8.19 (6ense.sol#2) necessitates a version too recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.1
6

solc-0.8.19 is not recommended for deployment)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ith
(11 contrac

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis
6ense.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Token.(): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently

not considered by this static analysis.

more

Pos: 977:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Token.swapTokensForEth(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 1373:4:

Block timestamp:

Use of "block timestamp": "block. timestamp" can be influenced by miners
to a certain degree. That means that a miner can "choose" the

block timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 1402:12:

Gas costs:

Gas requirement of function Token.includelnReward is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 1098:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops
that depend on storage values, have to be used carefully. Due to the block
gas limit, transactions can only consume a certain amount of gas. The
number of iterations in a loop can grow beyond the block gas limit which
can cause the complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a lot of avoidable gas costs.
Carefully test how many items at maximum you can pass to such
functions to make it successful.

more

Pos: 1100:8:

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more

Pos: 729:4:

Constant/View/Pure functions:

Token.reflectionFromToken (uint256,bool) : Is constant but potentially
should not be. Note: Modifiers are currently not considered by this static
analysis.

more

Pos: 1051:4:

Similar variable names:

Token._transferFromExcluded(address,address,uint256) : VVariables have
very similar names "rFee" and "tFee". Note: Modifiers are currently not
considered by this static analysis.

Pos: 1455:26:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any

"

circumstance (apart from a bug in your code). Use "require(x)" if x can be
false, due to e.g. invalid input or a failing external component.
more

Pos: 1293:12:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

6ense.sol

Compiler version 0.8.19 does not satisfy the 70.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:141
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:238
Error message for require is too long
Pos: 9:280
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:337
Error message for require is too long
Pos: 9:504
Error message for require is too long
Pos: 9:534
Error message for require is too long
Pos: 9:535
Error message for require is too long
Pos: 9:540
Error message for require is too long
Pos: 9:592
Error message for require 1is too long
Pos: 9:597
Error message for require is too long
Pos: 9:627
Error message for require is too long
9:628
contains empty blocks
24:677
contains empty blocks
24:697
Function name must be in mixedCase
Pos: 5:737
Function name must be in mixedCase
Pos: 5:738
Function name must be in mixedCase
Pos: 5:755
Function name must be in mixedCase
Pos: 5:777
Contract has 24 states declarations but allowed no more than 15
Pos: 1:915
Variable name must be in mixedCase
Pos: 5:935
Explicitly mark visibility of state
Pos: 5:954
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pos: 5:976

Error message require

Pos: 9:1043

Error message require

Pos: 9:1062

Error message f require

Pos: 9:1083

Error message require i 00 long
Pos: 9:1132

Error message for require is long
Pos: 9:1137

Error message for require i long
Pos: 9:1142

Code contains empty blocks

Pos: 32:1168

Error message for require is long

- message for require 1is long
9:1261
Error message for require is too long
9:1268
message for require is long
9:1269
message for require i too long
9:1270
message for require is too long
13:1292
id making time-based decisions in your business
13:1386
id making time-based decisions in your business
13:1401

o B
O B 0 5 W
¢ O s O oo
i} =

=]
=
~N

U
(@)
n O W

>}
A

/

g
O

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

