
Project: Tyrion Staking
Website: https://www.tyrion.io
Platform: Binance Smart Chain
Language: Solidity
Date: September 16th, 2023

https://www.tyrion.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 10

Audit Findings …………………………………………………………………………………… 11

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Tyrion team to perform the Security audit of the
Tyrion Staking smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on September 16th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Tyrion is an innovative cryptocurrency ecosystem.

● The Tyrion Staking is a smart contract that has functionalities of stake/unstake

tokens, rewards in the form of tokens.

Audit scope

Name Code Review and Security Analysis Report for
Tyrion Staking Smart Contract

Platform BSC / Solidity

File Tyrion_Staking.sol

Online code 0xFC6964d9e0141e7CFc37081A2B45429C17DCDd3d

Updated MD5 hash 4538D947C69F4611F248A99070985770

Audit Date September 16th, 2023

Revised Audit Date September 19th, 2023

https://bscscan.com/address/0xFC6964d9e0141e7CFc37081A2B45429C17DCDd3d#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

● Apy Timeframe: 1 day

● Lockup Period: 365 days

● Unstake request time: 14 days

● APY: 25%

● Minimum APY: 3%

● Penality: 10%

● Maximum investment: 1,00,000 TYON

● Minimum withdraw reward limit: 10 TYON

● Minimum investment: 100 TYON

● Total reward to distribute: 50 Million TYON

YES, This is valid.
The smart contract owner
controls these functions, so
the owner must handle the
private key of the owner's
wallet very securely.
Because if the private key is
compromised, then it will
create problems.

Ownership Control:
● Withdraw funds.

● Update APY values.

● Update investment values.

● Update penality.

● Update withdrawal limit.

● Update Lockup period.

● Update Distributed reward.

● Current owner can transfer the ownership.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 1 low and 8 very low level issues.
We confirm that these all issues are fixed / acknowledged in the revised smart
contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Moderated

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Tyrion Staking are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Tyrion Staking.

The Tyrion Staking team has not provided scenario and unit test scripts, which would have
helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Tyrion Staking smart contract code in the form of a bscscan.com web

link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. but The logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official project URL: https://www.tyrion.io which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://bscscan.com
https://www.tyrion.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 Stake external Ambiguous Error

Message
Refer Audit
Findings

3 get_apy_temp read Passed No Issue
4 get_apy read Passed No Issue
5 get_TotalReward read Passed No Issue
6 getReward_perInv read Passed No Issue
7 withdrawReward external Passed No Issue
8 unStake external Unstake request not

updated
Refer Audit
Findings

9 unStake_Request external Unstake request not
updated

Refer Audit
Findings

10 get_ReqEndTime read Passed No Issue
11 getTotalInvestment read Passed No Issue
12 getAll_investments read Passed No Issue
13 getAll_investments_ForReward read Passed No Issue
14 transferOwnership write access only Owner No Issue
15 total_withdraw_reaward read Passed No Issue
16 get_currTime read Passed No Issue
17 get_withdrawnTime read Passed No Issue
18 withdrawFunds write access only Owner No Issue
19 update_minimum_Apy write Value limit is not set Refer Audit

Findings
20 update_minimum_investment write Value limit is not set Refer Audit

Findings
21 update_max_investment write Value limit is not set Refer Audit

Findings
22 update_penality write Value limit is not set Refer Audit

Findings
23 update_withdraw_limit write Value limit is not set Refer Audit

Findings
24 update_Lockup_period write Value limit is not set Refer Audit

Findings
25 update_Apy_Timeframe write Value limit is not set Refer Audit

Findings
26 update_distributed_reward write Value limit is not set Refer Audit

Findings
27 update_Unstake_request_time write access only Owner No Issue
28 update_APY write Value limit is not set Refer Audit

Findings
29 onlyOwner modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Value limit is not set:

In the listed functions, variable values can be set with any number.

An explicit range limit should be set for each variable according to its use in calculations:

● update_minimum_Apy

● update_minimum_investment

● update_max_investment

● update_penality

● update_withdraw_limit

● update_Lockup_period

● update_Apy_Timeframe

● update_APY

● update_distributed_reward

Resolution: Consider adding an explicit value to the values.
Status: Acknowledged

Low

(1) Critical operation lacks event log:

Missing event log for:

● Stake

● Unstake

● withdrawReward

● withdrawFunds

● unStake_Request

Resolution:Write an event log for the listed events.

Status: Fixed

Very Low / Informational / Best practices:

(1) Hard Coded variable values:

Staking_token and Reward_Token variables are set with hardcoded values.

Resolution:We advise always ensuring the set hardcoded values.

Status: Acknowledged

(2) Missing error message:

Error messages are missing in some functions. Requirements must have error messages.

Resolution:We suggest adding appropriate error messages.

Status: Fixed

(3) Make variables constant:

Staking_token and Reward_Token: These variable values will be unchanged. So, please

make it constant. It will save some gas.

Resolution: We advise declaring those variables as constants. Just use a constant

keyword. And define constants in the constructor.

Status: Fixed

(4) Unstake request not updated:

After executing unStake_Request user, unstake request details have not been updated

with user information.

Resolution: We suggest checking code logic and making appropriate changes to update

the information.

Status: Acknowledged

(5) Ambiguous Error Message:

The mentioned error message does not explain exactly the error of the operation.

Resolution: As error messages are intended to notify users about failing conditions, they

should provide enough information so that appropriate corrections can be made to interact

with the system.

Status: Acknowledged

(6) Features claimed:

In document, there are two values

1. Maximum rewards = 3 million

2. Total supply = 500 million

But In code total_reward_to_distribute is set by 50 million.

Resolution:We suggest confirming for the total rewards to be distributed.

Status: Acknowledged

(7) Unused variable:

The withdrawnTime is allInvestments variable; its value is set in the stake function but

never used anywhere in the contract.

Resolution:We suggest removing all unused variables.

Status: Fixed

(8) Add “OnlyOwner” modifier:

Below, All the setter functions are accessible to only the owner. To check this, the required

statement is written in all the setter functions.

● transferOwnership

● withdrawFunds

● update_minimum_Apy

● update_minimum_investment

● update_max_investment

● update_penality

● update_withdraw_limit

● update_Lockup_period

● update_Apy_Timeframe

● update_distributed_reward

● update_Unstake_request_time

● update_APY

Resolution:We advise adding the "OnlyOwner" modifier to check this accessibility, set the

modifier in all the functions, and remove the required statements.

Status: Fixed

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Tyrion_Staking.sol
● transferOwnership: The current owner can transfer ownership of the contract to a

new account.

● withdrawFunds: The owner can withdraw funds.

● update_minimum_Apy: Minimum APY values can be updated by the owner.

● update_minimum_investment: Minimum investment values can be updated by the

owner.

● update_max_investment: Maximum investment values can be updated by the

owner.

● update_penality: Penality values can be updated by the owner.

● update_withdraw_limit: Withdraw limit values can be updated by the owner.

● update_Lockup_period: Lockup period values can be updated by the owner.

● update_Apy_Timeframe: APY Timeframe values can be updated by the owner.

● update_distributed_reward: Distributed reward values can be updated by the owner.

● update_Unstake_request_time: Unstake request time can be updated by the owner.

● update_APY: APY values can be updated by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a bscscan.com web link. And we have used

all possible tests based on given objects as files. We had observed 1 medium, 1 low and 8

informational issues in the smart contracts.but those are not critical ones. We confirm that

these all issues are fixed / acknowledged in the revised smart contract code. So, it’s good
to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://bscscan.com

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Tyrion Staking

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Tyrion_Staking.sol

Solidity Static Analysis
Tyrion_Staking.sol

Solhint Linter

Tyrion_Staking.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:6
Contract has 20 states declarations but allowed no more than 15
Pos: 1:15
Contract name must be in CamelCase
Pos: 1:15
Explicitly mark visibility of state
Pos: 9:19
Variable name must be in mixedCase
Pos: 9:19
Explicitly mark visibility of state
Pos: 9:20
Variable name must be in mixedCase
Pos: 9:20
Variable name must be in mixedCase
Pos: 9:26
Variable name must be in mixedCase
Pos: 9:27
Variable name must be in mixedCase
Pos: 9:28
Variable name must be in mixedCase
Pos: 9:29
Variable name must be in mixedCase
Pos: 9:31
Variable name must be in mixedCase
Pos: 9:32
Variable name must be in mixedCase
Pos: 9:33
Variable name must be in mixedCase
Pos: 9:34
Variable name must be in mixedCase
Pos: 9:35
Variable name must be in mixedCase
Pos: 9:39
Variable name must be in mixedCase
Pos: 9:40
Contract name must be in CamelCase
Pos: 9:41
Variable name must be in mixedCase
Pos: 13:45
Variable name must be in mixedCase
Pos: 13:50
Variable name must be in mixedCase
Pos: 13:51
Variable name must be in mixedCase
Pos: 13:52
Variable name must be in mixedCase
Pos: 13:64

Variable name must be in mixedCase
Pos: 13:74
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 9:76
Avoid making time-based decisions in your business logic
Pos: 25:79
Function name must be in mixedCase
Pos: 9:88
Avoid making time-based decisions in your business logic
Pos: 58:107
Avoid making time-based decisions in your business logic
Pos: 60:108
Function name must be in mixedCase
Pos: 9:126
Visibility modifier must be first in list of modifiers
Pos: 38:126
Variable name must be in mixedCase
Pos: 13:127
Function name must be in mixedCase
Pos: 9:165
Visibility modifier must be first in list of modifiers
Pos: 33:165
Variable name must be in mixedCase
Pos: 13:166
Function name must be in mixedCase
Pos: 9:207
Visibility modifier must be first in list of modifiers
Pos: 41:207
Variable name must be in mixedCase
Pos: 13:212
Avoid making time-based decisions in your business logic
Pos: 34:224
Function name must be in mixedCase
Pos: 9:262
Visibility modifier must be first in list of modifiers
Pos: 48:262
Variable name must be in mixedCase
Pos: 13:266
Avoid making time-based decisions in your business logic
Pos: 34:276
Variable name must be in mixedCase
Pos: 13:316
Error message for require is too long
Pos: 13:317
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:320
Error message for require is too long
Pos: 13:331
Avoid making time-based decisions in your business logic
Pos: 119:335
Variable name must be in mixedCase
Pos: 17:337
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:343
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.

Pos: 13:344
Avoid making time-based decisions in your business logic
Pos: 59:344
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:346
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:347
Function name must be in mixedCase
Pos: 9:356
Error message for require is too long
Pos: 13:360
Avoid making time-based decisions in your business logic
Pos: 64:363
Avoid making time-based decisions in your business logic
Pos: 67:364
Function name must be in mixedCase
Pos: 9:372
Function name must be in mixedCase
Pos: 9:383
Variable name must be in mixedCase
Pos: 60:383
Function name must be in mixedCase
Pos: 9:413
Variable name must be in mixedCase
Pos: 70:413
Error message for require is too long
Pos: 13:433
Function name must be in mixedCase
Pos: 9:437
Visibility modifier must be first in list of modifiers
Pos: 48:437
Variable name must be in mixedCase
Pos: 13:440
Function name must be in mixedCase
Pos: 9:446
Avoid making time-based decisions in your business logic
Pos: 20:448
Function name must be in mixedCase
Pos: 9:451
Provide an error message for require
Pos: 13:459
Provide an error message for require
Pos: 13:462
Function name must be in mixedCase
Pos: 9:471
Provide an error message for require
Pos: 13:473
Function name must be in mixedCase
Pos: 9:478
Provide an error message for require
Pos: 13:480
Function name must be in mixedCase
Pos: 9:485
Provide an error message for require
Pos: 13:487
Function name must be in mixedCase
Pos: 9:492

Provide an error message for require
Pos: 13:494
Function name must be in mixedCase
Pos: 9:499
Provide an error message for require
Pos: 13:501
Function name must be in mixedCase
Pos: 9:506
Provide an error message for require
Pos: 13:508
Function name must be in mixedCase
Pos: 9:513
Provide an error message for require
Pos: 13:515
Function name must be in mixedCase
Pos: 9:519
Provide an error message for require
Pos: 13:521
Function name must be in mixedCase
Pos: 9:526
Provide an error message for require
Pos: 13:528
Function name must be in mixedCase
Pos: 9:533
Provide an error message for require
Pos: 13:535

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

