
Project: WP Smart Contracts
Platform: Multiple Blockchain
Language: Solidity
Date: September 23rd, 2023

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Claimed Smart Contract Features …………………………………………………………….. .6

Audit Summary ……………....…………………………………………………………………...7

Technical Quick Stats …..……………………………………………………………………… .8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 26

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 33

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the WP Smart Contracts smart contracts code. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on September 23rd, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● WP Smart Contracts is a contract that can be divided into multiples, each with

unique functionalities:

○ Bubblegum: BubblegumCrowdsale is an extension of Crowdsale where

tokens are held by a wallet, which approves an allowance for the crowdsale.

○ Tiramisu: Tiramisu is a whitelisted airdrop that allows recipients to receive a

fixed amount at once.

○ Guava: Guava is an airdrop system that allows any recipient to receive a

fixed amount..

○ Coconut: The smart contract is designed for secure storage and

management of native coins, ERC-20 tokens, ERC-721 NFTs, and

ERC-1155 NFTs, offering deposit, withdrawal, and emergency account

management features.

● WP Smart Contracts are a set of blockchain networks including Ethereum, Arbitrum,

Binance Smart Chain, Polygon, Avalanche, and Fantom.

Audit scope

Name Code Review and Security Analysis Report for WP
Smart Contracts Smart Contracts

Platform Multiple Blockchain / Solidity

File 1 Bubblegum.sol

File 2 Tiramisu.sol

File 3 Guava.sol

File 4 Coconut.sol

Audit Date September 23rd, 2023

Revised Audit Date September 25th, 2023

https://gist.github.com/WPSmartContracts/4e82f76a9501323473f778eeba767a4d
https://gist.github.com/WPSmartContracts/fc9f60d3b5442e48b9f13079592eaec8
https://gist.github.com/WPSmartContracts/16a3f48eabd460b1bc31a2749e0782bf
https://gist.github.com/WPSmartContracts/9f6c26b918acfde0bf86a5a31f42079a

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Bubblegum.sol
The Owner has control over the following functions:

● Set the rate.

● Set the wallet.

● Set the token.

● Pause / Unpause the ICO activity.

YES, This is valid.

File 2 Tiramisu.sol
The Owner has control over the following functions:

● Allows the contract owner to bulk load the

addresses and their corresponding total token

amounts for airdrop.

● Allows the contract owner to load a single

beneficiary's address and the total token amount to

airdrop to their account.

● Update the address of the ERC20 token contract.

● Update the wallet address.

● Pause / Unpause the airdrop activity.

YES, This is valid.

File 3 Guava.sol
The Owner has control over the following functions:

● Set the amount of tokens to airdrop.

● Update the address of the ERC20 token.

● Set the wallet address.

● Pause / Unpause the airdrop activity.

YES, This is valid.

File 4 Coconut.sol
The Owner has control over the following functions:

● Set the expiration time.

● Set the last activity timestamp.

● Add or update a trusted account.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 2 very low level issues.
We confirm that all issues are fixed in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in WP Smart Contracts are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a WP Smart Contracts smart contract code in the form of a

https://gist.github.com web link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://gist.github.com/WPSmartContracts/4e82f76a9501323473f778eeba767a4d

AS-IS overview
Bubblegum.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 tokenWallet external Passed No Issue
3 remainingTokens external Passed No Issue
4 _deliverTokens internal Passed No Issue
5 setRate write access only Owner No Issue
6 setWallet write access only Owner No Issue

_isContract internal Passed No Issue
7 setToken write access only Owner No Issue
8 receive external Passed No Issue
9 token read Passed No Issue
10 wallet external Passed No Issue
11 rate external Passed No Issue
12 weiRaised read Passed No Issue
13 buyTokens write Passed No Issue
14 _preValidatePurchase internal Passed No Issue
15 _postValidatePurchase internal Removed -
16 _deliverTokens internal Passed No Issue
17 _processPurchase internal Passed No Issue
18 _getTokenAmount internal Passed No Issue
19 _updatePurchasingState internal Removed -
20 _forwardFunds internal Passed No Issue
21 pause external access only Owner No Issue
22 unpause external access only Owner No Issue

Guava.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 set external access only Owner No Issue
3 claim external Passed No Issue
4 changeToken external access only Owner No Issue
5 changeWallet external access only Owner No Issue
6 pause external access only Owner No Issue
7 unpause external access only Owner No Issue
8 receive external Passed No Issue
9 owner read Passed No Issue
10 onlyOwner modifier Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue

13 _setOwner write Passed No Issue
14 nonReentrant modifier Passed No Issue
15 paused read Passed No Issue
16 whenNotPaused modifier Passed No Issue
17 whenPaused modifier Passed No Issue
18 _pause internal Passed No Issue
19 _unpause internal Passed No Issue

Tiramisu.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 load external access only Owner No Issue
3 loadSingle external access only Owner No Issue
4 claim external Passed No Issue
5 changeToken external access only Owner No Issue
6 changeWallet external access only Owner No Issue
7 pause external access only Owner No Issue
8 unpause external access only Owner No Issue
9 receive external Passed No Issue
10 owner read Passed No Issue
11 onlyOwner modifier Passed No Issue
12 renounceOwnership write access only Owner No Issue
13 transferOwnership write access only Owner No Issue
14 _setOwner write Passed No Issue
15 nonReentrant modifier Passed No Issue
16 paused read Passed No Issue
17 whenNotPaused modifier Passed No Issue
18 whenPaused modifier Passed No Issue
19 _pause internal Passed No Issue
20 _unpause internal Passed No Issue

CoconutVault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setExpiration external access only Owner No Issue
3 keepAlive external access only Owner No Issue
4 deposit write Passed No Issue
5 receive external Passed No Issue
6 tokenDeposit external Passed No Issue
7 erc721Deposit external Passed No Issue
8 erc1155Deposit external Passed No Issue
9 withdraw external can Withdraw No Issue

10 tokenWithdraw external can Withdraw No Issue
11 erc721Withdraw external can Withdraw No Issue
12 erc1155Withdraw external can Withdraw No Issue
13 changeTrustedAccount external access only Owner No Issue
14 _updateActivity internal Passed No Issue
15 canWithdraw modifier Passed No Issue
16 onERC721Received write Passed No Issue
17 onERC1155Received write Passed No Issue
18 onERC1155BatchReceived write Passed No Issue
19 owner read Passed No Issue
20 onlyOwner modifier Passed No Issue
21 renounceOwnership write access only Owner No Issue
22 transferOwnership write access only Owner No Issue
23 _setOwner write Passed No Issue
24 nonReentrant modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found in the contract code.

High Severity

No high severity vulnerabilities were found in the contract code.

Medium

No medium severity vulnerabilities were found in the contract code.

Low

No low severity vulnerabilities were found in the contract code.

Very Low / Informational / Best practices:

(1) Blank function use: Bubblegum.sol

The buyTokens() function has _postValidatePurchase() and _processPurchase() internal

functions used, but these functions do not have any functionality, and the function body is

empty. So these function calls are useless.

Resolution: We suggest either removing these functions or adding some functionality for

these functions.

Status: Fixed; removed these functions from the smart contract.

(2) Unused event: Tiramisu.sol and Guava.sol

Here the event used in the receive function will never be logged as the receive function

always reverts.

Resolution: We suggest removing unused event definition and use which is never going

to be logged.

Status: Fixed; removed an unused event from the smart contract.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Guava.sol

● set: The amount of tokens to airdrop can be set by the contract owner.

● changeToken: The address of the ERC20 token contract can be updated by the

owner.

● changeWallet: The wallet address can be updated by the owner.

● pause: Pause the airdrop activity by the owner.

● unpause: Resume the airdrop activity by the owner.

Crowdsale.sol

● setRate: The owner can change the rate.

● setWallet: The owner can change the wallet.

● setToken: The owner can change the token if the crowdsale hasn't started yet.

● pause: Pauses the ICO activity by the owner.

● unpause: Resumes the ICO activity by the owner.

Tiramisu.sol

● load: Allows the contract owner to bulk load the addresses and their corresponding

total token amounts for airdrop.

● loadSingle: Allows the contract owner to load a single beneficiary's address and the

total token amount to airdrop to their account.

● changeToken: The address of the ERC20 token contract can be updated by the

owner.

● changeWallet: The wallet address can be updated by the owner.

● pause: Pause the airdrop activity by the owner.

● unpause: Resume the airdrop activity by the owner.

CoconutVault.sol

● setExpiration: The expiration time can be set by the owner.

● keepAlive: The last activity timestamp can be set by the owner.

● changeTrustedAccount: Add or update a trusted account by the owner.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transfer ownership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a https://gist.github.com web link. And we

have used all possible tests based on given objects as files. We had observed 2

Informational severity issues in the smart contracts. We confirm that all the issues are

fixed in the revised smart contract code. So, the smart contracts are ready for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

https://gist.github.com/WPSmartContracts/4e82f76a9501323473f778eeba767a4d

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - WP Smart Contracts Protocol

Bubblegum Diagram

Tiramisu Diagram

Guava Diagram

Coconut Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither log >> Bubblegum.sol

Slither log >> Tiramisu.sol

Slither log >> Guava.sol

Slither log >> Coconut.sol

Solidity Static Analysis

Bubblegum.sol

Tiramisu.sol

Guava.sol

Coconut.sol

Solhint Linter

Bubblegum.sol

Compiler version ^0.8.2 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:74
Error message for require is too long
Pos: 9:103
Error message for require is too long
Pos: 9:119
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 17:138
Error message for require is too long
Pos: 9:185
Error message for require is too long
Pos: 13:208
Error message for require is too long
Pos: 13:228
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:250
Error message for require is too long
Pos: 9:285
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:314
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:357
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:463
Error message for require is too long
Pos: 9:484
Error message for require is too long
Pos: 9:494
Error message for require is too long
Pos: 9:574
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:670
Error message for require is too long
Pos: 9:672

Tiramisu.sol

Compiler version ^0.8.2 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:36
Error message for require is too long
Pos: 9:65
Error message for require is too long
Pos: 9:81
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 17:100
Error message for require is too long
Pos: 9:147
Error message for require is too long
Pos: 13:170
Error message for require is too long
Pos: 13:190
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:212
Error message for require is too long
Pos: 9:247
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:277
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:320
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:413
Error message for require is too long
Pos: 9:415
Error message for require is too long
Pos: 9:451
Error message for require is too long
Pos: 9:475
Error message for revert is too long
Pos: 9:496

Guava.sol

Compiler version ^0.8.2 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:36
Error message for require is too long
Pos: 9:65
Error message for require is too long

Pos: 9:81
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 17:100
Error message for require is too long
Pos: 9:147
Error message for require is too long
Pos: 13:170
Error message for require is too long
Pos: 13:190
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:212
Error message for require is too long
Pos: 9:247
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:276
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:319
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:414
Error message for require is too long
Pos: 9:416
Error message for require is too long
Pos: 9:437
Error message for require is too long
Pos: 9:440
Error message for require is too long
Pos: 9:464
Error message for revert is too long
Pos: 9:485

Coconut.sol

Compiler version ^0.8.2 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Error message for require is too long
Pos: 9:203
Error message for require is too long
Pos: 9:232
Error message for require is too long
Pos: 9:248
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 17:267
Error message for require is too long
Pos: 9:358
Error message for require is too long
Pos: 13:381
Error message for require is too long
Pos: 13:401
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:423
Error message for require is too long
Pos: 9:458
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:543
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:609
Avoid making time-based decisions in your business logic
Pos: 24:610
Error message for require is too long
Pos: 9:623
Error message for require is too long
Pos: 9:662
Use double quotes for string literals
Pos: 71:695
Error message for require is too long
Pos: 9:706
Error message for require is too long
Pos: 9:720
Error message for require is too long
Pos: 9:762
Avoid making time-based decisions in your business logic
Pos: 28:773
Avoid making time-based decisions in your business logic
Pos: 37:774
Avoid making time-based decisions in your business logic
Pos: 79:782

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

