
Project: 20Lab
Platform: Binance Smart Chain
Language: Solidity
Date: May 27th, 2024

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis ….…………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 17

Audit Findings …………………………………………………………………………………… 18

Conclusion ………………………………………………………………………………………. 23

Our Methodology ………………………………………………………………………………... 24

Disclaimers ………………………………………………………………………………………. 26

Appendix

● Code Flow Diagram ……………………………………………………………………... 27

● Slither Results Log ………………………………………………………………………. 29

● Solidity static analysis ….……………………………………………………………….. 32

● Solhint Linter …………………………………………………………………….……….. 36

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the 20Lab team to perform the Security audit of the
20Lab smart contracts code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on May 27th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The 20Lab token contract defines a comprehensive ERC20 token with additional

functionalities such as burning, ownership control, fee management, dividend

tracking, and liquidity management. Here’s an in-depth breakdown of the contract's

key components and functionalities:

● Here's a brief overview of the key components and functionalities of the provided

code:

○ Token.sol(20lab-v1.9.0-1): This contract is designed for a comprehensive

token ecosystem with mechanisms for fee management, liquidity provision,

and dividend distribution, making it suitable for use cases that require

complex tokenomics and user interactions.

○ Token.sol(20lab-v1.9.0-2): This contract is designed for a comprehensive

token management system with advanced features like dynamic fee

management, liquidity provision, and dividend distribution. It includes robust

mechanisms for handling various operational aspects, ensuring security and

flexibility for the token holders and the contract owner.

Audit scope

Name Code Review and Security Analysis Report for
20Lab Smart Contracts

Platform Binance Smart Chain

Language Solidity

File 1 Token.sol(20lab-v1.9.0-1)

File 1 Smart Contract Code 0xbf752138328562c717f840468014500b6Ebf7500

File 2 Token.sol(20lab-v1.9.0-2)

File 2 Smart Contract Code 0xf43f1B7c53b35297201Cf779c606456966f9D070

Audit Date May 27th, 2024

https://testnet.bscscan.com/address/0xbf752138328562c717f840468014500b6Ebf7500#code
https://testnet.bscscan.com/address/0xf43f1B7c53b35297201Cf779c606456966f9D070#code

Claimed Smart Contract Features

Claimed Feature Details Our Observation

File 1: Token.sol(20lab-v1.9.0-1)
Tokenomics:

● Name: 20lab-v1.9.0-1

● Symbol: 20lab-v1.9.0-1

● Decimals: 18

● Total Supply: 1 million 20lab-v1.9.0-1

● Gas For Processing: 0.3 million 20lab-v1.9.0-1

● Maximum buy amount: 0.05 million 20lab-v1.9.0-1

● Maximum sell amount: 0.05 million 20lab-v1.9.0-1

● Maximum Supply: 1.23 million 20lab-v1.9.0-1

● Maximum wallet amount: 0.1 million 20lab-v1.9.0-1

● Swap Threshold Ratio: 0.5 % of the balance of pairV2

contract

Ownership Control:
● Recover tokens.

● Recover foreign erc20 tokens.

● Add addresses in the blacklist.

● Update the swap threshold.

● Update the marketing address.

● Update marketing fees like buy fee, sell fee, and

transfer fee.

● Update liquidity fees like buy fee, sell fee, and transfer

fee.

● Manage exclusion from dividends.

● Enable trading.

● Manage exclusion from trading restrictions.

● Set up the rewards fees.

● Manage exclusion from fees.

● Set an AMM pair address.

YES, This is valid.
We suggest
renouncing ownership
once the ownership
functions are not
needed. This is to
make the smart
contract 100%
decentralized.

● Manage exclusion from transaction limits.

● Update the maximum wallet amount.

● Update the maximum Buy/Sell amount

File 2: Token.sol(20lab-v1.9.0-2)
Tokenomics:

● Name: 20lab-v1.9.0-2

● Symbol: 20lab-v1.9.0-2

● Decimals: 18

● Total Supply: 1 million 20lab-v1.9.0-2

● Gas For Processing: 0.3 million 20lab-v1.9.0-2

● Maximum buy amount: 0.05 million 20lab-v1.9.0-2

● Maximum sell amount: 0.05 million 20lab-v1.9.0-2

● Maximum wallet amount: 0.1 million 20lab-v1.9.0-2

● Swap Threshold Ratio: 0.5 % of balance of pairV2

contract

Ownership Control:
● Recover tokens.

● Recover foreign erc20 tokens.

● Update the swap threshold.

● Update the marketing address.

● Update marketing fees like buy fee, sell fee, and

transfer fee.

● Update liquidity fees like buy fee, sell fee, and transfer

fee.

● Manage exclusion from dividends.

● Set up the rewards fees.

● Manage exclusion from fees.

● Set an AMM pair address.

● Manage exclusion from transaction limits.

● Update the maximum wallet amount.

● Update the maximum Buy/Sell amount

YES, This is valid.
We suggest
renouncing ownership
once the ownership
functions are not
needed. This is to
make the smart
contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
Solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 2%

Sell Tax 2%

Transfer Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 25%

Modify Tax Yes

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in 20Lab are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties/methods can be reused many times by

other contracts in the 20Lab.

The 20Lab team has not provided scenario and unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a 20Lab smart contract code in the form of a 20lab-v1.9.0-1 and

20lab-v1.9.0-2 web link.

As mentioned above, code parts are well-commented. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as the complex code

logic. Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that is

based on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://testnet.bscscan.com/address/0xbf752138328562c717f840468014500b6Ebf7500#code
https://testnet.bscscan.com/address/0xf43f1B7c53b35297201Cf779c606456966f9D070#code

AS-IS overview

Token.sol(20lab-v1.9.0-1)
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 afterConstructor external initializer No Issue
3 decimals write Passed No Issue
4 recoverToken external access only Owner No Issue
5 recoverForeignERC20 external access only Owner No Issue
6 blacklist external access only Owner No Issue
7 _updateFeeToken write Passed No Issue
8 _sendInOtherTokens write Passed No Issue
9 _swapTokensForOtherTokens write Passed No Issue
10 updateSwapThreshold write access only Owner No Issue
13 getSwapThresholdAmount read Passed No Issue
14 getAllPending read Passed No Issue
15 marketingAddressSetup write access only Owner No Issue
16 marketingFeesSetup write access only Owner No Issue
17 receive external Passed No Issue
18 _swapTokensForCoin write Passed No Issue
19 _swapAndLiquify write Passed No Issue
20 _addLiquidity write Passed No Issue
21 addLiquidityFromLeftoverTokens external Passed No Issue
22 liquidityFeesSetup write access only Owner No Issue
23 _sendDividends write Passed No Issue
24 excludeFromDividends external access only Owner No Issue
25 _excludeFromDividends internal Passed No Issue
26 rewardsFeesSetup write access only Owner No Issue
27 excludeFromFees write access only Owner No Issue
28 _updateRouterV2 write Passed No Issue
29 setAMMPair external access only Owner No Issue
30 _setAMMPair write Passed No Issue
31 excludeFromLimits external access only Owner No Issue
32 _excludeFromLimits internal Passed No Issue
33 updateMaxWalletAmount write access only Owner No Issue
34 _maxWalletSafeLimit read Passed No Issue
35 _maxTxSafeLimit read Passed No Issue
36 updateMaxBuyAmount write access only Owner No Issue
37 updateMaxSellAmount write access only Owner No Issue
38 enableTrading external access only Owner No Issue
39 excludeFromTradingRestriction write access only Owner No Issue
40 _update internal Passed No Issue
41 _beforeTokenUpdate internal Warning: Function

state mutability can
Refer Audit
Findings

be restricted to
view

42 _afterTokenUpdate internal Warning: Unused
function parameter.

Remove or
comment out the
variable name to

silence this warning

Refer Audit
Findings

43 name read Passed No Issue
44 symbol read Passed No Issue
45 decimals read Passed No Issue
46 totalSupply read Passed No Issue
47 balanceOf read Passed No Issue
48 transfer write Passed No Issue
49 allowance read Passed No Issue
50 approve write Passed No Issue
51 transferFrom write Passed No Issue
52 _transfer internal Passed No Issue
53 _update internal Passed No Issue
54 _mint internal Passed No Issue
55 _burn internal Passed No Issue
56 _approve internal Passed No Issue
57 _approve internal Passed No Issue
58 _spendAllowance internal Passed No Issue
59 burn write Passed No Issue
60 burnFrom write Passed No Issue
61 pendingOwner read Passed No Issue
62 transferOwnership write access only Owner No Issue
63 _transferOwnership internal Passed No Issue
64 acceptOwnership write Passed No Issue
65 mint write access only Owner No Issue
66 permit write Passed No Issue
67 nonces read Passed No Issue
68 DOMAIN_SEPARATOR external Passed No Issue
69 _deployDividendTracker internal Passed No Issue
70 gasForProcessingSetup write access only Owner No Issue
71 callbackGasSetup external access only Owner No Issue
72 claimWaitSetup external access only Owner No Issue
73 _excludeFromDividends internal Passed No Issue
74 isExcludedFromDividends read Passed No Issue
75 claim external Passed No Issue
76 getClaimWait external Passed No Issue
77 getTotalDividendsDistributed external Passed No Issue
78 withdrawableDividendOf read Passed No Issue
79 dividendTokenBalanceOf read Passed No Issue
80 dividendTokenTotalSupply read Passed No Issue
81 getAccountDividendsInfo external Passed No Issue
82 getAccountDividendsInfoAtIndex external Passed No Issue

83 getLastProcessedIndex external Passed No Issue
84 getNumberOfDividendTokenHol

ders
read Passed No Issue

85 process external Passed No Issue
86 initializer modifier Passed No Issue

Token.sol(20lab-v1.9.0-2)
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 afterConstructor external initializer No Issue
3 decimals write Passed No Issue
4 recoverToken external access only

Owner
No Issue

5 recoverForeignERC20 external access only
Owner

No Issue

6 receive external Passed No Issue
7 _swapTokensForCoin write Passed No Issue
8 updateSwapThreshold write access only

Owner
No Issue

9 getSwapThresholdAmount read Passed No Issue
10 getAllPending read Passed No Issue
13 marketingAddressSetup write access only

Owner
No Issue

14 marketingFeesSetup write access only
Owner

No Issue

15 _swapAndLiquify write Passed No Issue
16 _addLiquidity write Passed No Issue
17 addLiquidityFromLeftoverTok

ens
external Passed No Issue

18 liquidityFeesSetup write access only
Owner

No Issue

19 _swapTokensForOtherRewar
dTokens

write Passed No Issue

20 _sendDividends write Passed No Issue
21 excludeFromDividends external access only

Owner
No Issue

22 _excludeFromDividends internal Passed No Issue
23 rewardsFeesSetup write access only

Owner
No Issue

24 excludeFromFees write access only
Owner

No Issue

25 _updateRouterV2 write Passed No Issue
26 setAMMPair external access only

Owner
No Issue

27 _setAMMPair write Passed No Issue

28 excludeFromLimits external access only
Owner

No Issue

29 _excludeFromLimits internal Passed No Issue
30 updateMaxWalletAmount write access only

Owner
No Issue

31 _maxWalletSafeLimit read Passed No Issue
32 _maxTxSafeLimit read Passed No Issue
33 updateMaxBuyAmount write access only

Owner
No Issue

34 updateMaxSellAmount write access only
Owner

No Issue

35 _update internal Passed No Issue
36 _beforeTokenUpdate internal Warning:

Function state
mutability can be
restricted to view

Refer Audit
Findings

37 _afterTokenUpdate internal Warning: Unused
function

parameter.
Remove or

comment out the
variable name to

silence this
warning

Refer Audit
Findings

38 name read Passed No Issue
39 symbol read Passed No Issue
40 decimals read Passed No Issue
41 totalSupply read Passed No Issue
42 balanceOf read Passed No Issue
43 transfer write Passed No Issue
44 allowance read Passed No Issue
45 approve write Passed No Issue
46 transferFrom write Passed No Issue
47 _transfer internal Passed No Issue
48 _update internal Passed No Issue
49 _mint internal Passed No Issue
50 _burn internal Passed No Issue
51 _approve internal Passed No Issue
52 _approve internal Passed No Issue
53 _spendAllowance internal Passed No Issue
54 burn write Passed No Issue
55 burnFrom write Passed No Issue
56 pendingOwner read Passed No Issue
57 transferOwnership write access only

Owner
No Issue

58 _transferOwnership internal Passed No Issue
59 acceptOwnership write Passed No Issue
60 _deployDividendTracker internal Passed No Issue

61 _setRewardToken internal Passed No Issue
62 gasForProcessingSetup write access only

Owner
No Issue

63 claimWaitSetup external access only
Owner

No Issue

64 _excludeFromDividends internal Passed No Issue
65 isExcludedFromDividends read Passed No Issue
66 claim external Passed No Issue
67 getClaimWait external Passed No Issue
68 getTotalDividendsDistributed external Passed No Issue
69 withdrawableDividendOf read Passed No Issue
70 dividendTokenBalanceOf read Passed No Issue
71 dividendTokenTotalSupply read Passed No Issue
72 getAccountDividendsInfo external Passed No Issue
73 getAccountDividendsInfoAtIn

dex
external Passed No Issue

74 getLastProcessedIndex external Passed No Issue
75 getNumberOfDividendToken

Holders
read Passed No Issue

76 process external Passed No Issue
77 initializer modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Warning: Function state mutability can be restricted to view:

Token.sol(20lab-v1.9.0-1)

Token.sol(20lab-v1.9.0-2)

Warning: Function state mutability can be restricted to view since it's just reading the state

variables not updating.

Resolution: Warning: Function state mutability can be restricted to view since its just

reading the state variables not updating.

(2) Warning: Unused function parameter. Remove or comment out the variable name to

silence this warning:

Token.sol(20lab-v1.9.0-1)

Token.sol(20lab-v1.9.0-2)

Unused parameter in the _afterTokenUpdate.

Resolution: Please remove it if unused.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

Following are Admin functions:

Token.sol(20lab-v1.9.0-1)
● recoverToken: The owner can recover tokens.

● recoverForeignERC20: The owner can recover foreign erc20 tokens.

● blacklist: The owner can add addresses to the blacklist.

● updateSwapThreshold: The owner can update the swap threshold.

● marketingAddressSetup: The owner can update the marketing address.

● marketingFeesSetup: The owner can update marketing fees like buy fee, sell fee

and transfer fee.

● liquidityFeesSetup: The owner can update liquidity fees like buy fee, sell fee and

transfer fee.

● excludeFromDividends: The owner can manage exclusion from dividends.

● rewardsFeesSetup: The owner can set up the rewards fees.

● excludeFromFees: The owner can manage exclusion from fees.

● setAMMPair: The owner can set an AMM pair address.

● excludeFromLimits: The owner can manage exclusion from transaction limits.

● updateMaxWalletAmount: The owner can update the maximum wallet amount.

● updateMaxBuyAmount: The owner can update the maximum Buy amount.

● updateMaxSellAmount: The owner can update the maximum sell amount.

● enableTrading: The owner can enable trading.

● excludeFromTradingRestriction: The owner can manage exclusion from trading

restrictions.

DividendTrackerFunctions.sol
● gasForProcessingSetup: The owner can set the gas for processing dividends.

● callbackGasSetup: The owner can set the gas for a callback.

● claimWaitSetup: The owner can set claim wait time.

DividendTracker.sol
● callbackGasSetup: The owner can set the gas for the callback.

● excludeFromDividends: The owner can manage exclusion from dividends.

● claimWaitSetup: The owner can set claim wait time.

● claim: The owner can claim.

● setBalance: The owner can set the balance.

● process: The owner can process.

Mintable.sol
● mint: The owner can mint new tokens.

Ownable2Step.sol
● transferOwnership: Transfers ownership of the contract to a new account

(`newOwner`).

Ownable.sol
● renounceOwnership: Leaves the contract without the owner. It will not be possible

to call

onlyOwner functions.

● transferOwnership: Transfers ownership of the contract to a new account

(`newOwner`).

Token.sol(20lab-v1.9.0-2)
● recoverToken: The owner can recover tokens.

● recoverForeignERC20: The owner can recover foreign erc20 tokens.

● updateSwapThreshold: The owner can update the swap threshold.

● marketingAddressSetup: The owner can update the marketing address.

● marketingFeesSetup: The owner can update marketing fees like buy fee, sell fee

and transfer fee.

● liquidityFeesSetup: The owner can update liquidity fees like buy fee, sell fee and

transfer fee.

● excludeFromDividends: The owner can manage exclusion from dividends.

● rewardsFeesSetup: The owner can set up the rewards fees.

● excludeFromFees: The owner can manage exclusion from fees.

● setAMMPair: The owner can set an AMM pair address.

● excludeFromLimits: The owner can manage exclusion from transaction limits.

● updateMaxWalletAmount: The owner can update the maximum wallet amount.

● updateMaxBuyAmount: The owner can update the maximum Buy amount.

● updateMaxSellAmount: The owner can update the maximum sell amount.

Token.sol→DividendTrackerFunctions.sol(20lab-v1.9.0-2)
● gasForProcessingSetup: The owner can set the gas for processing dividends.

● claimWaitSetup: The owner can set claim wait time.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a 20lab-v1.9.0-1 and 20lab-v1.9.0-2 web link.

And we have used all possible tests based on given objects as files. We observed 2

informational issues in the smart contracts. but those are not critical. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The Security State of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://testnet.bscscan.com/address/0xbf752138328562c717f840468014500b6Ebf7500#code
https://testnet.bscscan.com/address/0xf43f1B7c53b35297201Cf779c606456966f9D070#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - 20Lab

Token Diagram(20lab-v1.9.0-1)

Token Diagram(20lab-v1.9.0-2)

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Token.sol(20lab-v1.9.0-1)

INFO:Detectors:
DividendTracker.getAccountData(address) (Token.sol#2711-2740) uses timestamp for comparisons

Dangerous comparisons:
- nextClaimTime > block.timestamp (Token.sol#2739)

DividendTracker._canAutoClaim(uint256) (Token.sol#2770-2774) uses timestamp for comparisons
Dangerous comparisons:
- block.timestamp < lastClaimTime (Token.sol#2771)
- block.timestamp - lastClaimTime >= claimWait (Token.sol#2773)

ERC20Permit.permit(address,address,uint256,uint256,uint8,bytes32,bytes32) (Token.sol#2953-2976)
uses timestamp for comparisons

Dangerous comparisons:
- block.timestamp > deadline (Token.sol#2962)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Token._update(address,address,uint256) (Token.sol#3380-3465) has a high cyclomatic complexity (21).
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cyclomatic-complexity
INFO:Detectors:
Pragma version^0.8.20 (Token.sol#4) necessitates a version too recent to be trusted. Consider deploying
with 0.8.18.
solc-0.8.20 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
Parameter DividendTracker.getAccountData(address)._account (Token.sol#2711) is not in mixedCase
Function ERC20Permit.DOMAIN_SEPARATOR() (Token.sol#2989-2991) is not in mixedCase
Parameter Token.afterConstructor(address,address)._feeToken (Token.sol#3111) is not in mixedCase
Parameter Token.afterConstructor(address,address)._router (Token.sol#3111) is not in mixedCase
Parameter Token.updateSwapThreshold(uint16)._swapThresholdRatio (Token.sol#3158) is not in
mixedCase
Parameter Token.marketingAddressSetup(address)._newAddress (Token.sol#3174) is not in mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#3184) is not in
mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#3184) is not in
mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#3184) is not in
mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#3244) is not in mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#3244) is not in mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#3244) is not in
mixedCase
Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#3274) is not in mixedCase

Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#3274) is not in mixedCase
Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#3274) is not in
mixedCase
Parameter Token.updateMaxWalletAmount(uint256)._maxWalletAmount (Token.sol#3333) is not in
mixedCase
Parameter Token.updateMaxBuyAmount(uint256)._maxBuyAmount (Token.sol#3349) is not in mixedCase
Parameter Token.updateMaxSellAmount(uint256)._maxSellAmount (Token.sol#3357) is not in mixedCase
Variable Token.AMMPairs (Token.sol#3023) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Variable
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amo
untADesired (Token.sol#1521) is too similar to
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amo
untBDesired (Token.sol#1522)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar
INFO:Detectors:
ShortStrings.slitherConstructorConstantVariables() (Token.sol#921-1001) uses literals with too many
digits:

- FALLBACK_SENTINEL =
0x00FF (Token.sol#923)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- gasForProcessingSetup(300000) (Token.sol#3083)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- updateMaxWalletAmount(1000000 * (10 ** decimals()) / 10) (Token.sol#3096)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- updateMaxBuyAmount(500000 * (10 ** decimals()) / 10) (Token.sol#3098)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- updateMaxSellAmount(500000 * (10 ** decimals()) / 10) (Token.sol#3099)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- _mint(supplyRecipient,10000000 * (10 ** decimals()) / 10) (Token.sol#3104)
Token.constructor() (Token.sol#3066-3106) uses literals with too many digits:

- Mintable(12300000) (Token.sol#3069)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
DividendTracker.minimumTokenBalanceForDividends (Token.sol#2659) should be immutable
Mintable.maxSupply (Token.sol#2479) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immut
able
INFO:Slither:Token.sol analyzed (40 contracts with 93 detectors), 171 result(s) found

Slither Log >> Token.sol(20lab-v1.9.0-2)

INFO:Detectors:
Token._update(address,address,uint256) (Token.sol#2030-2115) has a high cyclomatic complexity (21).
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cyclomatic-complexity
INFO:Detectors:
Pragma version^0.8.20 (Token.sol#4) necessitates a version too recent to be trusted. Consider deploying
with 0.8.18.
solc-0.8.20 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Function SafeERC20Remastered.safeTransfer_noRevert(IERC20,address,uint256) (Token.sol#250-252)
is not in mixedCase
Constant DividendPayingToken.magnitude (Token.sol#1022) is not in
UPPER_CASE_WITH_UNDERSCORES
Parameter DividendTracker.setRewardToken(address)._rewardToken (Token.sol#1187) is not in
mixedCase
Parameter DividendTracker.getAccountData(address)._account (Token.sol#1224) is not in mixedCase
Function IUniswapV2Pair.DOMAIN_SEPARATOR() (Token.sol#1513) is not in mixedCase

Function IUniswapV2Pair.PERMIT_TYPEHASH() (Token.sol#1514) is not in mixedCase
Function IUniswapV2Pair.MINIMUM_LIQUIDITY() (Token.sol#1531) is not in mixedCase
Function IUniswapV2Router01.WETH() (Token.sol#1552) is not in mixedCase
Parameter Token.afterConstructor(address,address)._rewardToken (Token.sol#1785) is not in mixedCase
Parameter Token.afterConstructor(address,address)._router (Token.sol#1785) is not in mixedCase
Parameter Token.updateSwapThreshold(uint16)._swapThresholdRatio (Token.sol#1823) is not in
mixedCase
Parameter Token.marketingAddressSetup(address)._newAddress (Token.sol#1839) is not in mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#1849) is not in
mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#1849) is not in
mixedCase
Parameter Token.marketingFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#1849) is not in
mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#1894) is not in mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#1894) is not in mixedCase
Parameter Token.liquidityFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#1894) is not in
mixedCase
Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._buyFee (Token.sol#1938) is not in mixedCase
Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._sellFee (Token.sol#1938) is not in mixedCase
Parameter Token.rewardsFeesSetup(uint16,uint16,uint16)._transferFee (Token.sol#1938) is not in
mixedCase
Parameter Token.updateMaxWalletAmount(uint256)._maxWalletAmount (Token.sol#1997) is not in
mixedCase
Parameter Token.updateMaxBuyAmount(uint256)._maxBuyAmount (Token.sol#2013) is not in mixedCase
Parameter Token.updateMaxSellAmount(uint256)._maxSellAmount (Token.sol#2021) is not in mixedCase
Variable Token.AMMPairs (Token.sol#1710) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Variable
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amo
untADesired (Token.sol#1557) is too similar to
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amo
untBDesired (Token.sol#1558)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar
INFO:Detectors:
Token.constructor() (Token.sol#1745-1780) uses literals with too many digits:

- gasForProcessingSetup(300000) (Token.sol#1760)
Token.constructor() (Token.sol#1745-1780) uses literals with too many digits:

- updateMaxWalletAmount(1000000 * (10 ** decimals()) / 10) (Token.sol#1773)
Token.constructor() (Token.sol#1745-1780) uses literals with too many digits:

- updateMaxBuyAmount(500000 * (10 ** decimals()) / 10) (Token.sol#1775)
Token.constructor() (Token.sol#1745-1780) uses literals with too many digits:

- updateMaxSellAmount(500000 * (10 ** decimals()) / 10) (Token.sol#1776)
Token.constructor() (Token.sol#1745-1780) uses literals with too many digits:

- _mint(supplyRecipient,10000000 * (10 ** decimals()) / 10) (Token.sol#1778)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
DividendTracker.minimumTokenBalanceForDividends (Token.sol#1176) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-immut
able
INFO:Slither:Token.sol analyzed (27 contracts with 93 detectors), 95 result(s) found

Solidity Static Analysis
Token.sol(20lab-v1.9.0-1)

Token.sol(20lab-v1.9.0-2)

Solhint Linter

Token.sol(20lab-v1.9.0-1)

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:3
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:3121
Code contains empty blocks
Pos: 55:3121
Avoid making time-based decisions in your business logic
Pos: 13:3135
Contract has 22 states declarations but allowed no more than 15
Pos: 1:3168
Variable name must be in mixedCase
Pos: 5:3196
Variable name must be in mixedCase
Pos: 27:3251
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:3263
Visibility modifier must be first in list of modifiers
Pos: 79:3308
Avoid making time-based decisions in your business logic
Pos: 109:3352
Avoid making time-based decisions in your business logic
Pos: 106:3404
Avoid making time-based decisions in your business logic
Pos: 106:3430
Code contains empty blocks
Pos: 71:3660
Code contains empty blocks
Pos: 80:3660
Variable "amount" is unused
Pos: 58:3684

Token.sol(20lab-v1.9.0-2)

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:3
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1926
Visibility modifier must be first in list of modifiers
Pos: 82:1966
Avoid making time-based decisions in your business logic
Pos: 106:2001
Avoid making time-based decisions in your business logic

Pos: 106:2064
Avoid making time-based decisions in your business logic
Pos: 109:2094
Code contains empty blocks
Pos: 21:2107
Code contains empty blocks
Pos: 71:2294
Code contains empty blocks
Pos: 80:2294
Variable "from" is unused
Pos: 32:2311
Variable "amount" is unused
Pos: 58:2311

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

