
Project: Catch Coin
Website: www.catchcoin.com
Platform: Base Chain
Language: Solidity
Date: May 3rd, 2024

https://www.catchcoin.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Catch Coin team to perform the Security audit of the
Catch Coin smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on May 3rd, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The Solidity contract for "CATCHCOIN" implements the ERC20 standard.Here's a

breakdown of its key features and functionalities:

○ ERC20 Implementation: The contract implements the ERC20 interface with

standard functions such as totalSupply, balanceOf, transfer, allowance,

approve, and transferFrom.

○ Ownable: The contract includes an Ownable implementation, allowing the

owner to perform certain privileged actions such as transferring ownership

and renouncing ownership.

○ Uniswap Integration: The contract integrates with Uniswap V2 by defining

interfaces for the Uniswap V2 Factory and Router contracts. It provides

functions for creating a pair, adding liquidity, and swapping tokens.

○ Fee Mechanism: The contract includes a fee mechanism where fees are

charged on transfers. There are different types of fees such as reflection fee,

liquidity fee, coin operation fee, and burn fee. The fees are calculated based

on the transferred amount.

○ Exclusion Mechanism: The contract allows certain addresses to be

excluded from fees or from reflection rewards.

○ Trading Restrictions: There are conditions set for trading, such as enabling

trading only after a certain time and enabling trading only for certain

addresses.

○ Automatic Liquidity: The contract automatically adds liquidity to the

Uniswap pool on each transaction if certain conditions are met.

○ Reflection: The contract implements a reflection mechanism where holders

receive rewards based on the amount of tokens they hold.

○ Airdrop Functionality: There's a function to perform airdrops to multiple

addresses.

○ Modifiers and Events: Modifiers like onlyOwner and lockTheSwap are used

to restrict access to certain functions. Events are emitted for important

contract actions.

● Overall, this contract facilitates token transfers, fees collection, liquidity provision,

and rewards distribution while integrating with the Uniswap decentralized exchange

for liquidity management.

Audit scope

Name Code Review and Security Analysis Report for
Catch Coin Smart Contract

Platform Base Chain

Language Solidity

File CATCHCOIN.sol

Smart Contract Code 0x95017e6f16375e63e5cb4d3a5fbf3c40775b08f4

Audit Date May 3rd, 2024

https://basescan.org/token/0x95017e6f16375e63e5cb4d3a5fbf3c40775b08f4#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: catchcoin

● Symbol: CATCH

● Decimals: 18

YES, This is valid.

Controller of the owner control:
● Current owner can transfer the ownership.

● Owner can renounce ownership.

● Grants the owner the ability to exclude an address

from transaction fees.

● Grants the owner the ability to include an address in

transaction fees.

● Set the address of the fund wallet.

● Allows the owner to enable or disable the swap and

liquify feature.

● External function for updating the threshold amount

required for triggering liquidity addition.

● Start trading.

● Airdrop tokens.

YES, This is valid.
We advise to renounce
ownership once the
ownership functions are
not needed. This is to
make the smart contract
100% decentralized.

Audit Summary

According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and 1 very low level issues.
We confirm that 2 low and 1 very low-severity issues are acknowledged in the smart
contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it Proxy? Not Detected

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catch Coin are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catch Coin.

The Catch Coin team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Catch Coin smart contract code in the form of a basescan.org web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x95017e6f16375e63e5cb4d3a5fbf3c40775b08f4#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lockTheSwap modifier Passed No Issue
3 name external Passed No Issue
4 symbol external Passed No Issue
5 decimals external Passed No Issue
6 totalSupply external Passed No Issue
7 balanceOf read Passed No Issue
8 transfer external Passed No Issue
9 allowance external Passed No Issue
10 approve write Passed No Issue
11 transferFrom external Passed No Issue
12 increaseAllowance external Passed No Issue
13 decreaseAllowance external Passed No Issue
14 isExcludedFromReward external Passed No Issue
15 totalFees external Passed No Issue
16 deliver external Passed No Issue
17 reflectionFromToken external Passed No Issue
18 tokenFromReflection read Passed No Issue
19 excludeFromReward external access only Owner No Issue
20 includeInReward external Infinite loops possibility Refer Audit

Findings
21 _transferBothExcluded write Passed No Issue
22 excludeFromFee external access only Owner No Issue
23 includeInFee external access only Owner No Issue
24 setFundWallet external access only Owner No Issue
25 setSwapAndLiquifyEnabled external access only Owner No Issue
26 updateThreshold external access only Owner No Issue
27 receive external Passed No Issue
28 _reflectFee write Passed No Issue
29 _takeCoinFund write Passed No Issue
30 _getValues read Passed No Issue
31 _getValue read Passed No Issue
32 _getTValues read Passed No Issue
33 _getRValues read Passed No Issue
34 _getRate read Passed No Issue
35 _getCurrentSupply read Infinite loops possibility Refer Audit

Findings
36 _takeLiquidity write Passed No Issue
37 calculateTaxFee read Passed No Issue
38 calculateLiquidityFee read Passed No Issue
39 calculateCoinOperartionTax read Passed No Issue
40 calculateBurnTax read Passed No Issue

41 removeAllFee write Passed No Issue
42 isExcludedFromFee external Passed No Issue
43 _approve write Passed No Issue
44 startTrading external access only Owner No Issue
45 _transfer write Passed No Issue
46 airdrop external High gas consuming

loop in airdrop function
Refer Audit
Findings

47 _sellBuyTax write Passed No Issue
48 swapAndLiquify write lockTheSwap No Issue
49 swapTokensForEth write Passed No Issue
50 addLiquidity write Passed No Issue
51 _tokenTransfer write Passed No Issue
52 _transferStandard write Passed No Issue
53 _transferToExcluded write Passed No Issue
54 _transferFromExcluded write Passed No Issue
55 owner read Passed No Issue
56 onlyOwner modifier Passed No Issue
57 renounceOwnership write access only Owner No Issue
58 transferOwnership write access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) High gas consuming loop in airdrop function:

The airdrop function allows the owner to input unlimited wallets. So, the owner must input

limited wallets, as inputting excessive wallets might hit the block's gas limit. The owner can

accept this risk and can execute this function using limited wallets only.

Resolution: We suggest specifying some limit on the number of wallets can be used. This

will prevent any potential human error.

Status: This issue is acknowledged.

(2) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

● includeInReward() - _excluded.length.

● _getCurrentSupply() - _excluded.length.

Status: This issue is acknowledged.

Very Low / Informational / Best practices:
(1) Variable can be immutable:

The startingHr variables should be declared immutable to save gas.

Resolution:We suggest marking this variable as immutable.

Status: This issue is acknowledged.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

CATCHCOIN.sol

● excludeFromReward: This function excludes the specified address from receiving

reflections by the owner.

● includeInReward: This function for including an account in the reward distribution by

the owner.

● excludeFromFee: Grants the owner the ability to exclude an address from

transaction fees by the owner.

● includeInFee: Grants the owner the ability to include an address in transaction fees

by the owner.

● setFundWallet: The owner can set the address of the fund wallet.

● setSwapAndLiquifyEnabled: Allows the owner to enable or disable the swap and

liquify feature by the owner.

● updateThreshold: External function for updating the threshold amount required for

triggering liquidity addition by the owner.

● startTrading: The owner can start trading.

● airdrop: The owner can airdrop tokens.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a basescan.org web link. And we have used

all possible tests based on given objects as files. We had observed 2 low and 1

informational issues in the smart contracts. We confirm that 2 low and 1 very low-severity

issues are acknowledged in the smart contract code. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://basescan.org/token/0x95017e6f16375e63e5cb4d3a5fbf3c40775b08f4#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Catch Coin

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> CATCHCOIN.sol

INFO:Detectors:
CATCHCOIN.allowance(address,address).owner (CATCHCOIN.sol#520) shadows:

- Ownable.owner() (CATCHCOIN.sol#161-163) (function)
CATCHCOIN._approve(address,address,uint256).owner (CATCHCOIN.sol#1055) shadows:

- Ownable.owner() (CATCHCOIN.sol#161-163) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-sha
dowing
INFO:Detectors:
Reentrancy in CATCHCOIN._transfer(address,address,uint256)
(CATCHCOIN.sol#1095-1153):

External calls:
- swapAndLiquify(contractTokenBalance) (CATCHCOIN.sol#1118)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CATCHCOIN.sol#1294-1301)

-
State variables written after the call(s):
- _approve(sender,_msgSender(),_allowances[sender][_msgSender()] -

amount) (CATCHCOIN.sol#549)
- _allowances[owner][spender] = amount (CATCHCOIN.sol#1059)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnera
bilities-2
INFO:Detectors:
Reentrancy in CATCHCOIN._transfer(address,address,uint256)
(CATCHCOIN.sol#1095-1153):

External calls:
- swapAndLiquify(contractTokenBalance) (CATCHCOIN.sol#1118)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CATCHCOIN.sol#1294-1301)

Event emitted after the call(s):
- Approval(owner,spender,amount) (CATCHCOIN.sol#1060)

- _approve(sender,_msgSender(),_allowances[sender][_msgSender()]
- amount) (CATCHCOIN.sol#549)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnera
bilities-3
INFO:Detectors:
CATCHCOIN._transfer(address,address,uint256) (CATCHCOIN.sol#1095-1153) uses
timestamp for comparisons

Dangerous comparisons:
- startingHr >= block.timestamp (CATCHCOIN.sol#1133)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
CATCHCOIN.includeInReward(address) (CATCHCOIN.sol#678-689) has costly operations
inside a loop:

- _excluded.pop() (CATCHCOIN.sol#685)
CATCHCOIN.removeAllFee() (CATCHCOIN.sol#1030-1035) has costly operations inside
a loop:

- refAmt = 0 (CATCHCOIN.sol#1031)
CATCHCOIN.removeAllFee() (CATCHCOIN.sol#1030-1035) has costly operations inside
a loop:

- coinOperation = 0 (CATCHCOIN.sol#1032)
CATCHCOIN.removeAllFee() (CATCHCOIN.sol#1030-1035) has costly operations inside
a loop:

- liquidty = 0 (CATCHCOIN.sol#1033)
CATCHCOIN.removeAllFee() (CATCHCOIN.sol#1030-1035) has costly operations inside
a loop:

- burn = 0 (CATCHCOIN.sol#1034)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CATCHCOIN.sol#805-815) has
costly operations inside a loop:

- _rTotal = _rTotal - rFee - rBurn (CATCHCOIN.sol#809)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CATCHCOIN.sol#805-815) has
costly operations inside a loop:

- _tFeeTotal = _tFeeTotal + tFee (CATCHCOIN.sol#810)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CATCHCOIN.sol#805-815) has
costly operations inside a loop:

- _tTotal = _tTotal - tBurn (CATCHCOIN.sol#812)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-
inside-a-loop
INFO:Detectors:
Context._msgData() (CATCHCOIN.sol#124-127) is never used and should be removed
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
CATCHCOIN._rTotal (CATCHCOIN.sol#371) is set pre-construction with a
non-constant function or state variable:

- (MAX - (MAX % _tTotal))
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializ
ing-state
INFO:Detectors:
Pragma version0.8.19 (CATCHCOIN.sol#42) necessitates a version too recent to be
trusted. Consider deploying with 0.8.18.
solc-0.8.19 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions
-of-solidity
INFO:Detectors:
Function IUniswapV2Router01.WETH() (CATCHCOIN.sol#225) is not in mixedCase
Parameter CATCHCOIN.setFundWallet(address)._fundWallet (CATCHCOIN.sol#753) is
not in mixedCase
Parameter CATCHCOIN.setSwapAndLiquifyEnabled(bool)._enabled (CATCHCOIN.sol#765)
is not in mixedCase
Parameter CATCHCOIN.updateThreshold(uint256)._amount (CATCHCOIN.sol#781) is not
in mixedCase
Parameter CATCHCOIN.calculateTaxFee(uint256)._amount (CATCHCOIN.sol#981) is not
in mixedCase
Parameter CATCHCOIN.calculateLiquidityFee(uint256)._amount (CATCHCOIN.sol#992)
is not in mixedCase
Parameter CATCHCOIN.calculateCoinOperartionTax(uint256)._amount
(CATCHCOIN.sol#1004) is not in mixedCase
Parameter CATCHCOIN.calculateBurnTax(uint256)._amount (CATCHCOIN.sol#1017) is

not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-sol
idity-naming-conventions
INFO:Detectors:
Redundant expression "this (CATCHCOIN.sol#125)" inContext
(CATCHCOIN.sol#119-128)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statemen
ts
INFO:Detectors:
Variable
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,
address,uint256).amountADesired (CATCHCOIN.sol#230) is too similar to
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,
address,uint256).amountBDesired (CATCHCOIN.sol#231)
Variable
CATCHCOIN._getRValues(uint256,uint256,uint256,uint256,uint256).rCoinOperation
(CATCHCOIN.sol#920) is too similar to
CATCHCOIN._transferToExcluded(address,address,uint256).tCoinOperation
(CATCHCOIN.sol#1373)
Variable
CATCHCOIN._getRValues(uint256,uint256,uint256,uint256,uint256).rCoinOperation
(CATCHCOIN.sol#920) is too similar to
CATCHCOIN._getTValues(uint256).tCoinOperation (CATCHCOIN.sol#893)
Variable
CATCHCOIN._transferBothExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#709) is too similar to
CATCHCOIN._transferStandard(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1350)
Variable CATCHCOIN.reflectionFromToken(uint256,bool).rTransferAmount
(CATCHCOIN.sol#631) is too similar to
CATCHCOIN._transferToExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1373)
Variable
CATCHCOIN._transferFromExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1399) is too similar to
CATCHCOIN._getValues(uint256).tTransferAmount (CATCHCOIN.sol#854)
Variable
CATCHCOIN._transferBothExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#709) is too similar to
CATCHCOIN._transferToExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1373)
Variable CATCHCOIN._getValue(uint256).rTransferAmount (CATCHCOIN.sol#871) is too
similar to
CATCHCOIN._transferBothExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#708)
Variable
CATCHCOIN._transferFromExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1399) is too similar to
CATCHCOIN._transferToExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1373)
Variable CATCHCOIN._transferStandard(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1351) is too similar to
CATCHCOIN._transferToExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1373)
Variable CATCHCOIN.reflectionFromToken(uint256,bool).rTransferAmount
(CATCHCOIN.sol#631) is too similar to
CATCHCOIN._transferBothExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#708)
Variable
CATCHCOIN._transferBothExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#709) is too similar to
CATCHCOIN._transferBothExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#708)

Variable
CATCHCOIN._transferFromExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1399) is too similar to
CATCHCOIN._transferBothExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#708)
Variable CATCHCOIN._getValue(uint256).rTransferAmount (CATCHCOIN.sol#871) is too
similar to CATCHCOIN._getValues(uint256).tTransferAmount (CATCHCOIN.sol#854)
Variable CATCHCOIN._transferStandard(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1351) is too similar to
CATCHCOIN._transferBothExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#708)
Variable CATCHCOIN.reflectionFromToken(uint256,bool).rTransferAmount
(CATCHCOIN.sol#631) is too similar to
CATCHCOIN._transferFromExcluded(address,address,uint256).rTransferAmount
(CATCHCOIN.sol#1399) is too similar to
CATCHCOIN._transferFromExcluded(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1398)
Variable CATCHCOIN._getValue(uint256).rTransferAmount (CATCHCOIN.sol#871) is too
similar to CATCHCOIN._transferStandard(address,address,uint256).tTransferAmount
(CATCHCOIN.sol#1350)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too
-similar
INFO:Detectors:
Loop condition i < _excluded.length (CATCHCOIN.sol#949) should use cached array
length instead of referencing a `length` member of the storage array.
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#cache-array-length
INFO:Detectors:
CATCHCOIN.startingHr (CATCHCOIN.sol#379) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-th
at-could-be-declared-immutable
INFO:Slither:CATCHCOIN.sol analyzed (7 contracts with 93 detectors), 95
result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

CATCHCOIN.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in CATCHCOIN.(address): Could potentially lead
to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 437:47:

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in CATCHCOIN.swapTokensForEth(uint256):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.
Pos: 1278:2:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.
Pos: 1314:28:

Gas costs:
Gas requirement of function CATCHCOIN.includeInReward is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 694:29:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage values,
have to be used carefully. Due to the block gas limit, transactions can only consume a certain amount of
gas. The number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. Additionally, using unbounded loops incurs a lot of
avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to make
it successful.
Pos: 965:3:

ERC20:
ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 490:67:

Constant/View/Pure functions:
CATCHCOIN.reflectionFromToken(uint256,bool) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
Pos: 639:64:

Similar variable names:
CATCHCOIN.(address) : Variables have very similar names "_rOwned" and "_tOwned". Note: Modifiers
are currently not considered by this static analysis.
Pos: 441:18:

No return:
IUniswapV2Router02.removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(address,uint256,
uint256,uint256,address,uint256,bool,uint8,bytes32,bytes32): Defines a return type but never explicitly
returns a value.
Pos: 347:13:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
Pos: 744:3:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1 since
the result is an integer again. This does not hold for division of (only) literal values since those yield
rational constants.
Pos: 952:14:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

CATCHCOIN.sol

Compiler version 0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:41
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:151
Error message for require is too long
Pos: 9:189
Function name must be in mixedCase
Pos: 5:224
Contract has 19 states declarations but allowed no more than 15
Pos: 1:358
Explicitly mark visibility of state
Pos: 5:392
Explicitly mark visibility of state
Pos: 5:393
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 8:423
Avoid making time-based decisions in your business logic
Pos: 22:441
Error message for require is too long
Pos: 9:781
Code contains empty blocks
Pos: 9:1097
Provide an error message for require
Pos: 9:1104
Avoid making time-based decisions in your business logic
Pos: 30:1132
Error message for require is too long
Pos: 9:1156
Avoid making time-based decisions in your business logic
Pos: 13:1271
Avoid making time-based decisions in your business logic
Pos: 13:1299

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

