
Project: CyberConnect Token
Website: cyber.co
Platform: Binance Smart Chain
Language: Solidity
Date: March 12th, 2024

https://cyber.co

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ……………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of CyberConnect from cyber.co were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 12th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The `CyberToken` contract, built using Solidity, inherits from several foundational

contracts to create a comprehensive ERC20 token with additional functionalities like

burning, permit signatures, and voting. Below, provide an overview of the key

components and functionalities of this contract.

○ ERC20: This is the basic token standard that implements the standard

ERC20 interface, including methods like `transfer`, `approve`, `transferFrom`,

and `allowance`. It handles the basic token mechanics such as balances and

allowances.

○ ERC20Burnable: This extends the ERC20 functionality by allowing tokens to
be burned (destroyed), reducing the total supply. It includes methods for

burning tokens held by the caller (`burn`) and burning tokens on behalf of

another account (`burnFrom`).

○ ERC20Permit: This introduces the EIP-2612 permit function, which allows

token approvals to be made via signatures (meta-transactions) instead of

requiring an on-chain transaction from the token holder. It includes nonce

management and EIP-712 typed data hashing.

○ ERC20Votes: This extension enables a token to be used for voting. It keeps

track of vote delegations and voting power over time, integrating

functionalities for checkpointing and delegation.

○ Ownable: This is a simple authorization pattern where there is an owner who
has exclusive access to specific functions. It provides methods to transfer

and renounce ownership, ensuring that only the owner can perform critical

actions such as minting new tokens.

○ CyberToken: The `CyberToken` contract is a comprehensive implementation
of an ERC20 token with additional functionalities for burning tokens, using

permit signatures for approvals, and enabling vote delegation and tracking. It

utilizes a modular approach by inheriting and combining functionalities from

multiple abstract contracts, ensuring code reusability and modularity. The

use of `Ownable` ensures that certain critical functions are restricted to the

owner, maintaining security and control over the token's life cycle operations.

Audit scope

Name Code Review and Security Analysis Report for
CyberConnect Token Smart Contract

Platform Binance Smart Chain

Language Solidity

File CyberToken.sol

Smart Contract Code 0x14778860E937f509e651192a90589dE711Fb88a9

Audit Date March 12th, 2024

https://bscscan.com/address/0x14778860E937f509e651192a90589dE711Fb88a9#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: CyberConnect

● Symbol: CYBER

● Decimals: 18

YES, This is valid.

Ownership control:
● Only the owner's address has permission to

mint a token.

● The current owner can transfer the ownership.

● The owner can renounce ownership.

YES, This is valid.
We suggest renouncing
ownership once the
ownership functions are not
needed. This is to make the
smart contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium 1 low, and 2 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it Proxy? Not Detected

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in CyberConnect Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the CyberConnect Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a CyberConnect Token smart contract code in the form of a bscscan web

link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://bscscan.com/address/0x14778860E937f509e651192a90589dE711Fb88a9#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint write The owner can mint

unlimited tokens,
Centralization Risks

Refer Audit
Findings

3 _mint internal Passed No Issue
4 _burn internal Passed No Issue
5 _afterTokenTransfer internal Passed No Issue
6 checkpoints read Passed No Issue
7 numCheckpoints read Passed No Issue
8 delegates read Passed No Issue
9 getVotes read Passed No Issue
10 getPastVotes read Passed No Issue
11 getPastTotalSupply read Passed No Issue
12 _checkpointsLookup read Passed No Issue
13 delegate write Passed No Issue
14 delegateBySig write Passed No Issue
15 _maxSupply internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _afterTokenTransfer internal Passed No Issue
19 _delegate internal Passed No Issue
20 _moveVotingPower write Passed No Issue
21 _writeCheckpoint write Passed No Issue
22 _add write Passed No Issue
23 _subtract write Passed No Issue
24 _unsafeAccess write Passed No Issue
25 burn write Passed No Issue
26 burnFrom write Passed No Issue
27 permit write Passed No Issue
28 nonces read Passed No Issue
29 DOMAIN_SEPARATOR external Passed No Issue
30 _useNonce internal Passed No Issue
31 name read Passed No Issue
32 symbol read Passed No Issue
33 decimals read Passed No Issue
34 totalSupply read Passed No Issue
35 balanceOf read Passed No Issue
36 transfer write Passed No Issue
37 allowance read Passed No Issue
38 approve write Passed No Issue
39 transferFrom write Passed No Issue

40 increaseAllowance write Passed No Issue
41 decreaseAllowance write Passed No Issue
42 _transfer internal Passed No Issue
43 _mint internal Passed No Issue
44 _burn internal Passed No Issue
45 _approve internal Passed No Issue
46 _spendAllowance internal Passed No Issue
47 _beforeTokenTransfer internal Passed No Issue
48 _afterTokenTransfer internal Passed No Issue
49 onlyOwner modifier Passed No Issue
50 owner read Passed No Issue
51 _checkOwner internal Passed No Issue
52 renounceOwnership write Centralization Risks Refer Audit

Findings
53 transferOwnership write Centralization Risks Refer Audit

Findings
54 _transferOwnership internal Passed No Issue
55 _domainSeparatorV4 internal Passed No Issue
56 _buildDomainSeparator write Passed No Issue
57 _hashTypedDataV4 internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) The owner can mint unlimited tokens: CyberToken.sol
There is no limit for minting CYBER tokens. Thus the owner can mint unlimited tokens to

any account.

Resolution: There should be a limit for minting or need to confirm, if it is a part of the plan

then disregard this issue.

Very Low / Informational / Best practices:

(1) Use the latest solidity version: CyberToken.sol
Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use 0.8.24 which is the latest version.

(2) Centralization Risks:

CyberToken.sol
● In the contract, onlyOwner can mint a token.

Ownable.sol

In the contract onlyOwner as an owner has authority on the following function:

● renounceOwnership()

● transferOwnership()

Resolution: We suggest carefully managing the onlyOwner private key to avoid any

potential risks of being hacked. In general, we strongly recommend centralized privileges

or roles in the protocol to be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practice.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

CyberToken.sol
● mint: Mint a new token by the owner.

Ownable.sol

● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 low and 2 Informational

issues in the smart contracts. but those are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/address/0xe35009059cb55ded065027e9832a2c564aff7512#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - CyberConnect Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> CyberToken.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

CyberToken.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

CyberToken.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:3
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:241
Provide an error message for require
Pos: 13:253
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:261
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:275
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:535
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 17:541
Error message for require is too long
Pos: 9:650
Error message for require is too long
Pos: 9:1747
Error message for revert is too long
Pos: 13:1770
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:1802
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1979
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:2051
Error message for require is too long
Pos: 9:2093
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:2127
Error message for require is too long
Pos: 9:2277
Error message for require is too long
Pos: 9:2304
Error message for require is too long
Pos: 9:2305
Error message for require is too long
Pos: 9:2310
Error message for require is too long

Pos: 9:2359
Error message for require is too long
Pos: 9:2364
Error message for require is too long
Pos: 9:2394
Error message for require is too long
Pos: 9:2395
Code contains empty blocks
Pos: 24:2441
Code contains empty blocks
Pos: 24:2461
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:2486
Code contains empty blocks
Pos: 55:2486
Avoid making time-based decisions in your business logic
Pos: 17:2500
Avoid making time-based decisions in your business logic
Pos: 17:2694
Error message for require is too long
Pos: 9:2717
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:2810
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:2832
Code contains empty blocks
Pos: 78:2832

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

