
Project: Decentralized USD
Website: usdd.io
Platform: Ethereum
Language: Solidity
Date: April 28th, 2024

https://usdd.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Business Risk Analysis …..…………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Decentralized USD Token from usdd.io were audited. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on April 28th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● Decentralized USD token contract for an ERC20 token called USDD. Here's a

breakdown of the contract:

○ SafeMath Library: This library provides arithmetic functions with safety

checks to prevent overflow and underflow.

○ IERC20 Interface: This interface defines the standard functions and events

for ERC20 tokens.

○ Address Library: This library provides functions to interact with addresses,

including checking if an address is a contract and performing low-level calls.

○ EnumerableSet Library: This library provides data structures and functions

for managing enumerable sets of data.

○ ContextMixin Contract: This contract provides context functions for

retrieving the sender of a message.

○ IMintableERC20 Interface: This interface extends the ERC20 interface with

a `mint` function to mint new tokens.

○ Initializable Contract: This contract ensures that certain functions can only

be called during initialization.

○ ERC20 Contract: This is the main ERC20 token contract, implementing the

ERC20 interface with additional functionality such as minting, burning, and

allowance management.

○ AccessControl Contract: This contract provides role-based access control

functionality, allowing certain roles to perform specific actions.

○ AccessControlMixin Contract: This contract is a mix-in for access control,

defining modifiers and functions to grant, revoke, and check roles.

○ EIP712Base Contract: This contract implements the EIP-712 standard for

typed structured data hashing and signing.

○ NativeMetaTransaction Contract: This contract enables meta transactions

using EIP-712 structured data.

○ USDD Contract: This is the actual token contract that inherits from ERC20,

AccessControlMixin, ContextMixin, and NativeMetaTransaction. It defines the

USDD token, including its constructor and the `mint` function, which can only

be called by the `PREDICATE_ROLE`.

● Overall, this contract provides a comprehensive implementation of an ERC20 token

with additional features like meta transactions and role-based access control.

Audit scope

Name Code Review and Security Analysis Report for
Decentralized USD Token Smart Contract

Platform Ethereum

File USDD.sol

Ethereum Code 0x0C10bF8FcB7Bf5412187A595ab97a3609160b5c6

Audit Date April 28th, 2024

https://etherscan.io/token/0x0C10bF8FcB7Bf5412187A595ab97a3609160b5c6#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Decentralized USD

● Symbol: USDD

● Decimals: 18

YES, This is valid.

Admin role control:
● Grants `role` to `account` can be set by the admin.

● Revokes `role` from `account` by the admin.

● Renounce Role from `account` by the admin.

YES, This is valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it Proxy? No

Can Take Ownership? No

Hidden Owner? No

Self Destruction? No

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Decentralized USD Token are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties/methods can be

reused many times by other contracts in the Decentralized USD Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Decentralized USD Token smart contract code in the form of an

Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x0C10bF8FcB7Bf5412187A595ab97a3609160b5c6#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint external Centralized Ownership

and Privileges
Management

Refer Audit
Findings

3 _msgSender internal Passed No Issue
4 executeMetaTransaction write Passed No Issue
5 hashMetaTransaction internal Passed No Issue
6 getNonce read Passed No Issue
7 verify internal Passed No Issue
8 _initializeEIP712 internal initializer No Issue
9 _setDomainSeperator internal Passed No Issue
10 getDomainSeperator read Passed No Issue
11 getChainId write Passed No Issue
12 toTypedMessageHash internal Passed No Issue
13 only modifier Passed No Issue
14 _setupContractId internal Passed No Issue
15 hasRole read Passed No Issue
16 getRoleMemberCount read Passed No Issue
17 getRoleMember read Passed No Issue
18 getRoleAdmin read Passed No Issue
19 grantRole write Access only admin role No Issue
20 revokeRole write Access only admin role No Issue
21 renounceRole write Access only admin role No Issue
22 _setupRole internal Passed No Issue
23 _setRoleAdmin internal Passed No Issue
24 _grantRole write Passed No Issue
25 _revokeRole write Passed No Issue
26 name read Passed No Issue
27 symbol read Passed No Issue
28 decimals read Passed No Issue
29 totalSupply read Passed No Issue
30 balanceOf read Passed No Issue
31 transfer write Passed No Issue
32 allowance read Passed No Issue
33 approve write Passed No Issue
34 transferFrom write Passed No Issue
35 increaseAllowance write Passed No Issue
36 decreaseAllowance write Passed No Issue
37 _transfer internal Passed No Issue
38 _mint internal Passed No Issue
39 _burn internal Passed No Issue
40 _approve internal Passed No Issue

41 _setupDecimals internal Passed No Issue
42 _beforeTokenTransfer internal Passed No Issue
43 initializer modifier Passed No Issue
44 _msgSender internal Passed No Issue
45 _msgData internal Passed No Issue
46 msgSender internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best Practices:
(1) Consistent Pragma Solidity Version Usage:

USDD.sol

Detected different Solidity versions are used.

Resolution: Use one Solidity version.

(2) Use the Latest Solidity Compiler Version for Enhanced Security: USDD.sol

Solc frequently releases new compiler versions. Using an old version prevents access to

new Solidity security checks. We also recommend avoiding complex pragma statements.

Resolution: Deploy with any of the following Solidity versions:
0.8.18

The recommendations take into account:

● Risks related to recent releases

● Risks of complex code generation changes

● Risks of new language features

● Risks of known bugs

Use a simple pragma version that allows any of these versions. Consider using the latest

version of Solidity for testing.

(3) Centralized Ownership and Privileges Management:

USDD.sol

Only PREDICATE_ROLE can mint a usdd token. PREDICATE_ROLE can mint unlimited

tokens.

Resolution: Create a contract always 100% Decentralized. Please define the maximum

token limit.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

AccessControl.sol
● grantRole: Grants `role` to `account` can be set by the admin.

● revokeRole: Revokes `role` from `account` by the admin.

● renounceRole: Renounce Role from `account` by the admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 3 informational issues in the

smart contracts. And those issues are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x0C10bF8FcB7Bf5412187A595ab97a3609160b5c6#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Decentralized USD Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> USDD.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

USDD.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

USDD.sol

Compiler version >=0.6.0 <0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:2
Error message for require is too long
Pos: 9:106
Error message for require is too long
Pos: 9:325
Error message for require is too long
Pos: 9:382
Error message for require is too long
Pos: 9:407
Error message for require is too long
Pos: 9:431
Error message for require is too long
Pos: 9:560
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:738
Explicitly mark visibility of state
Pos: 5:775
Error message for require is too long
Pos: 9:960
Error message for require is too long
Pos: 9:961
Error message for require is too long
Pos: 9:1001
Error message for require is too long
Pos: 9:1024
Error message for require is too long
Pos: 9:1025
Code contains empty blocks
Pos: 94:1056
Error message for require is too long
Pos: 9:1187
Error message for require is too long
Pos: 9:1202
Error message for require is too long
Pos: 9:1222
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:1332
Explicitly mark visibility of state
Pos: 5:1372
Error message for require is too long
Pos: 9:1398

Avoid using low level calls.
Pos: 51:1413
Error message for require is too long
Pos: 9:1448

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

