
Project: Frax Token
Website: frax.finance
Platform: Ethereum
Language: Solidity
Date: April 29th, 2024

https://frax.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 31

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Frax Token from frax.finance were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 29th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● This contract leverages a combination of decentralized oracles, governance control,

and access control mechanisms to maintain and adjust the collateralization and

supply of the FRAX stablecoin dynamically. The design ensures that only

authorized entities can mint and burn FRAX, and that the system parameters can

be adjusted in a controlled manner to respond to market conditions.

● The provided Solidity code defines a smart contract named `FRAXStablecoin`,

which extends the `ERC20Custom` and `AccessControl` contracts. This contract is

designed for the FRAX stablecoin system, incorporating features such as dynamic

collateral ratio adjustment, minting, and burning of tokens, and integration with

Chainlink and Uniswap oracles for price feeds.

● The token is without any other custom functionality and without any ownership

control, which makes it truly decentralized.

● Overall, this contract implements a stablecoin with dynamic collateralization ratio

adjustments based on the price of FRAX. It also provides functionalities for

interacting with pools and managing parameters like fees, oracles, and permissions.

Audit scope

Name Code Review and Security Analysis Report for Frax
Token Smart Contract

Platform Ethereum

File FRAXStablecoin.sol

Smart Contract Code 0x853d955acef822db058eb8505911ed77f175b99e

Audit Date April 29th, 2024

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Frax

● Symbol: FRAX

● Decimals: 18

YES, This is valid.

Owner/Governance control:
● Add/remove the pool address.

● Update a new owner's address.

● Update redemption fee and minting fee.

● Update frax step.

● Update price target.

● Update Cooldown value.

● Update FXS address.

● Sets the FXS_ETH Uniswap Oracle address.

● Sets the FRAX_ETH Uniswap Oracle address.

YES, This is valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 1 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it a Proxy? No

Can Take Ownership? No

Hidden Owner? No

Self Destruction? No

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Frax Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Frax Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Frax Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyCollateralRatioPauser modifier Passed No Issue
3 onlyPools modifier Passed No Issue
4 onlyByOwnerOrGovernance modifier Passed No Issue
5 onlyByOwnerGovernanceOr

Pool
modifier Passed No Issue

6 oracle_price internal Passed No Issue
7 frax_price read Passed No Issue
8 fxs_price read Passed No Issue
9 eth_usd_price read Passed No Issue
10 frax_info read Passed No Issue
11 globalCollateralValue read Passed No Issue
12 refreshCollateralRatio write Passed No Issue
13 pool_burn_from write access only Pools No Issue
14 pool_mint write access only Pools No Issue
15 addPool write access only By

Owner Or
Governance

No Issue

16 removePool write access only By
Owner Or

Governance

No Issue

17 setOwner write Critical operation
lacks event log,

Missing Zero Address
Validation

Refer Audit
Findings

18 setRedemptionFee write Critical operation
lacks event log

Refer Audit
Findings

19 setMintingFee write Critical operation
lacks event log

Refer Audit
Findings

20 setFraxStep write Critical operation
lacks event log

Refer Audit
Findings

21 setPriceTarget write Critical operation
lacks event log

Refer Audit
Findings

22 setRefreshCooldown write access only By
Owner Or

Governance

No Issue

23 setFXSAddress write Critical operation
lacks event log,

Missing Zero Address
Validation

Refer Audit
Findings

24 setETHUSDOracle write Critical operation
lacks event log

Refer Audit
Findings

25 setTimelock external Critical operation
lacks event log,

Missing Zero Address
Validation

Refer Audit
Findings

26 setController external Critical operation
lacks event log,

Missing Zero Address
Validation

Refer Audit
Findings

27 setPriceBand external access only By
Owner Or

Governance

No Issue

28 setFRAXEthOracle write Missing Zero Address
Validation, Missing

Zero Address
Validation

Refer Audit
Findings

29 setFXSEthOracle write Missing Zero Address
Validation

Refer Audit
Findings

30 toggleCollateralRatio write access only Collateral
Ratio Pauser

No Issue

41 totalSupply read Passed No Issue
42 balanceOf read Passed No Issue
43 transfer write Passed No Issue
44 allowance read Passed No Issue
45 approve write Passed No Issue
46 transferFrom write Passed No Issue
47 increaseAllowance write Passed No Issue
48 decreaseAllowance write Passed No Issue
49 _transfer internal Passed No Issue
50 _mint internal Passed No Issue
51 burn write Passed No Issue
52 burnFrom write Passed No Issue
53 _burn internal Passed No Issue
54 _approve internal Passed No Issue
55 _burnFrom internal Passed No Issue
56 _beforeTokenTransfer internal Passed No Issue
57 hasRole read Passed No Issue
58 getRoleMemberCount read Passed No Issue
59 getRoleMember read Passed No Issue
60 getRoleAdmin read Passed No Issue
61 grantRole write Passed No Issue
62 revokeRole write Passed No Issue
63 renounceRole write Passed No Issue
64 _setupRole internal Passed No Issue
65 _setRoleAdmin internal Passed No Issue
66 _grantRole write Passed No Issue
67 _revokeRole write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for :

● setOwner

● setRedemptionFee

● setMintingFee

● setFraxStep

● setPriceTarget

● setFXSAddress

● setETHUSDOracle

● setTimelock

● setPriceBand

● setFRAXEthOracle

● setFXSEthOracle

● setController.

Resolution:Write an event log for listed events.

Very Low / Informational / Best practices:
(1) Use the latest solidity version:

// SPDX-License-Identifier: MIT

pragma solidity 0.6.11;

Using the latest solidity will prevent any compiler-level bugs.

Resolution: Please use 0.8.25 which is the latest version.

(2) Missing Zero Address Validation:

// Sets the FXS_ETH Uniswap oracle address

function setFXSEthOracle(address _fxs_oracle_addr, address

_weth_address) public onlyByOwnerOrGovernance {

fxs_eth_oracle_address = _fxs_oracle_addr;

fxsEthOracle = UniswapPairOracle(_fxs_oracle_addr);

weth_address = _weth_address;

}

function setTimelock(address new_timelock) external

onlyByOwnerOrGovernance {

timelock_address = new_timelock;

}

function setController(address _controller_address) external

onlyByOwnerOrGovernance {

controller_address = _controller_address;

}

function setFXSAddress(address _fxs_address) public

onlyByOwnerOrGovernance {

fxs_address = _fxs_address;

}

function setETHUSDOracle(address _eth_usd_consumer_address) public

onlyByOwnerOrGovernance {

eth_usd_consumer_address = _eth_usd_consumer_address;

eth_usd_pricer =

ChainlinkETHUSDPriceConsumer(eth_usd_consumer_address);

eth_usd_pricer_decimals = eth_usd_pricer.getDecimals();

}

function setOwner(address _owner_address) external

onlyByOwnerOrGovernance {

owner_address = _owner_address;

}

Addresses are not validated before assignment or external calls, potentially allowing the

use of zero addresses and leading to unexpected behavior or vulnerabilities.

Resolution: It is recommended to add a zero-check for the passed-in address value to

prevent unexpected errors.

(3) Variable mutability: FRAXStablecoin.sol
There are "name", "symbol", "creator_address" and "decimals" variables that are defined

with immutability.

Resolution:We suggest defining the variable with the "private" keyword.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

FRAXStablecoin.sol
● pool_burn_from: The pool owner can redeem the amount.

● pool_mint: Pool owner can mint new FRAX.

● addPool: Adds collateral addresses by only the owner or governance.

● removePool: Remove a pool addressed by only the owner or governance.

● setOwner: The new owner address can be set by only the owner or governance.

● setRedemptionFee: The redemption fee can be set by only the owner or

governance.

● setMintingFee: The minting fee can be set by only the owner or governance.

● setFraxStep: The new Frax Step value can be set by only the owner or governance.

● setPriceTarget: Price target value can be set by only the owner or governance.

● setRefreshCooldown: Refresh Cooldown value can be set by only the owner or

governance.

● setFXSAddress: FXS addresses can be by only the owner or governance.

● setETHUSDOracle: Ether USD Oracle addresses can be by only the owner or

governance.

● setTimelock: Timelock address can be set by only the owner or governance.

● setController: Controller address can be set by only the owner or governance.

● setPriceBand: Price Band value can be set by only the owner or governance.

● setFRAXEthOracle: The FRAX_ETH Uniswap oracle address can be set by only

the owner or governance.

● setFXSEthOracle: The FXS_ETH Uniswap oracle address can be set by only the

owner or governance.

● toggleCollateralRatio: Collateral Ratio can be toggled by the Collateral Ratio Pauser

owner.

AccessControl.sol
● grantRole: Grants `role` to `account` by the admin role.

● revokeRole: Revokes `role` from `account` by the admin role.

● renounceRole: Revokes `role` from the calling account by the admin role.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 low and 3 informational

issues in the smart contracts. And those issues are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Frax Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> FRAXStablecoin.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

FRAXStablecoin.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

FRAXStablecoin.sol

Compiler version 0.6.11 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Use double quotes for string literals
Pos: 36:138
Use double quotes for string literals
Pos: 40:5353
Use double quotes for string literals
Pos: 38:5370
Use double quotes for string literals
Pos: 44:5437
Use double quotes for string literals
Pos: 46:5438
Use double quotes for string literals
Pos: 27:5459
Use double quotes for string literals
Pos: 33:5461
Use double quotes for string literals
Pos: 46:5510
Use double quotes for string literals
Pos: 17:5513
Use double quotes for string literals
Pos: 78:5519
Use double quotes for string literals
Pos: 35:5542
Use double quotes for string literals
Pos: 39:5544
Use double quotes for string literals
Pos: 56:5545

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

