@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Frax Token
Website: frax.finance
Platform: Ethereum
Language: Solidity

Date: April 29th, 2024

https://frax.finance

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
BUSINESS RISK ANAlYSIS ... 9
Code QUAIIRY ...eee e 10
DOCUMENTALION ... e 10
0 LY o) D T=T o= o [T T [T 10
ASHIS OVEIVIBW ..o e 11
Severity DefinitioNS ... 13
AUt FINAINGS ..o 14
@70 o T 1017 T o 19
(@ 18] g1/ 1= 1 ToTo (o] (oo VPP 20
DISCIAIMEIS ... e 22
Appendix
o Code FIOW Diagram ... 23
o Slither RESUIS LOG ...uviiiiiiii e 24
e Solidity staticanalysis ..., 28
® SOININt LNl .. 31

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Frax Token from frax.finance were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 29th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.
Project Background

e This contract leverages a combination of decentralized oracles, governance control,
and access control mechanisms to maintain and adjust the collateralization and
supply of the FRAX stablecoin dynamically. The design ensures that only
authorized entities can mint and burn FRAX, and that the system parameters can
be adjusted in a controlled manner to respond to market conditions.

e The provided Solidity code defines a smart contract named "'FRAXStablecoin’,
which extends the 'ERC20Custom™ and "AccessControl’” contracts. This contract is
designed for the FRAX stablecoin system, incorporating features such as dynamic
collateral ratio adjustment, minting, and burning of tokens, and integration with
Chainlink and Uniswap oracles for price feeds.

e The token is without any other custom functionality and without any ownership
control, which makes it truly decentralized.

e Overall, this contract implements a stablecoin with dynamic collateralization ratio
adjustments based on the price of FRAX. It also provides functionalities for

interacting with pools and managing parameters like fees, oracles, and permissions.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for Frax
Token Smart Contract

Platform Ethereum

File FRAXStablecoin.sol

Smart Contract Code 0x853d955acef822db058eb8505911ed77f175b99%e

Audit Date April 29th, 2024

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:
e Name: Frax
e Symbol: FRAX

e Decimals: 18

YES, This is valid.

Owner/Governance control:
e Add/remove the pool address.
e Update a new owner's address.
e Update redemption fee and minting fee.
e Update frax step.
e Update price target.
e Update Cooldown value.
e Update FXS address.
e Sets the FXS_ETH Uniswap Oracle address.
e Sets the FRAX_ETH Uniswap Oracle address.

YES, This is valid.

This is a private and confidential document. Mo part of thi
be disclosed to third party without prior written permissio

Email: audit@EtherAuthority.io

s document should
n of EtherAuthority.

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found O critical, 0 high, 0 medium, 1 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract The solidity version is not specified Passed
Programming The solidity version is too old

Integer overflow/underflow Passed
Function input parameters lack check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues

Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Business Risk Analysis

Category Result
Buy Tax 0%
Sell Tax 0%
Cannot Buy No
Cannot Sell No
Max Tax 0%
Modify Tax Not Detected
Fee Check No
Is Honeypot Not Detected

Trading Cooldown Not Detected

oo 00000 CCQOOOCOQCNOYVYIYEOYQOCO OV VYT

Can Pause Trade? No
Pause Transfer? No
Max Tax? No
Is it Anti-whale? No
Is Anti-bot? Not Detected
Is it a Blacklist? Not Detected
Blacklist Check No
Can Mint? Yes
Is it a Proxy? No
Can Take Ownership? No
Hidden Owner? No
Self Destruction? No
Auditor Confidence High

Overall Audit Result: PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Frax Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Frax Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Frax Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries used in this smart contract infrastructure are based on

well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

AS-IS overview

Functions
SI. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 | onlyCollateralRatioPauser modifier Passed No Issue
3 | onlyPools modifier Passed No Issue
4 | onlyByOwnerOrGovernance | modifier Passed No Issue
5 | onlyByOwnerGovernanceOr | modifier Passed No Issue
Pool
6 | oracle price internal Passed No Issue
7 | frax price read Passed No Issue
8 | fxs price read Passed No Issue
9 | eth usd price read Passed No Issue
10 | frax _info read Passed No Issue
11 | globalCollateralValue read Passed No Issue
12 | refreshCollateralRatio write Passed No Issue
13 | pool burn from write access only Pools No Issue
14 | pool mint write access only Pools No Issue
15 | addPool write access only By No Issue
Owner Or
Governance
16 | removePool write access only By No Issue
Owner Or
Governance
17 | setOwner write Critical operation Refer Audit
lacks event log, Findings
Missing Zero Address
Validation
18 | setRedemptionFee write Critical operation Refer Audit
lacks event log Findings
19 | setMintingFee write Critical operation Refer Audit
lacks event log Findings
20 | setFraxStep write Critical operation Refer Audit
lacks event log Findings
21 | setPriceTarget write Critical operation Refer Audit
lacks event log Findings
22 | setRefreshCooldown write access only By No Issue
Owner Or
Governance
23 | setFXSAddress write Critical operation Refer Audit
lacks event log, Findings
Missing Zero Address
Validation
24 | setETHUSDOracle write Critical operation Refer Audit
lacks event log Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

25 | setTimelock external Critical operation Refer Audit
lacks event log, Findings
Missing Zero Address
Validation
26 | setController external Critical operation Refer Audit
lacks event log, Findings
Missing Zero Address
Validation
27 | setPriceBand external access only By No Issue
Owner Or
Governance
28 | setFRAXEthOracle write Missing Zero Address | Refer Audit
Validation, Missing Findings
Zero Address
Validation
29 | setFXSEthOracle write Missing Zero Address | Refer Audit
Validation Findings
30 | toggleCollateralRatio write access only Collateral No Issue
Ratio Pauser
41 | totalSupply read Passed No Issue
42 | balanceOf read Passed No Issue
43 | transfer write Passed No Issue
44 | allowance read Passed No Issue
45 | approve write Passed No Issue
46 | transferFrom write Passed No Issue
47 | increaseAllowance write Passed No Issue
48 | decreaseAllowance write Passed No Issue
49 transfer internal Passed No Issue
50 mint internal Passed No Issue
51 | burn write Passed No Issue
52 | burnFrom write Passed No Issue
53 burn internal Passed No Issue
54 approve internal Passed No Issue
55 burnFrom internal Passed No Issue
56 beforeTokenTransfer internal Passed No Issue
57 | hasRole read Passed No Issue
58 | getRoleMemberCount read Passed No Issue
59 | getRoleMember read Passed No Issue
60 [getRoleAdmin read Passed No Issue
61 [grantRole write Passed No Issue
62 [revokeRole write Passed No Issue
63 | renounceRole write Passed No Issue
64 setupRole internal Passed No Issue
65 setRoleAdmin internal Passed No Issue
66 grantRole write Passed No Issue
67 revokeRole write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for :

e setOwner

e setRedemptionFee
e setMintingFee

e setFraxStep

e setPriceTarget

e setFXSAddress

e setETHUSDOracle
e setTimelock

e setPriceBand

e setFRAXEthOracle
o setFXSEthOracle

e setController.

Resolution: Write an event log for listed events.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Use the latest solidity version:

Using the latest solidity will prevent any compiler-level bugs.

Resolution: Please use 0.8.25 which is the latest version.

(2) Missing Zero Address Validation:

setFXSEthOracle (_fxs oracle_ addr,
_weth address) onlyByOwnerOrGovernance {
fxs _eth oracle address = _fxs oracle_ addr;
fxsEthOracle = UniswapPairOracle(_fxs oracle_addr);

weth address _weth address;

setTimelock (new_timelock)
onlyByOwnerOrGovernance {

timelock address = new_timelock;

setController (_controller address)
onlyByOwnerOrGovernance {

controller address = _controller address;

setFXSAddress (_fxs address)
onlyByOwnerOrGovernance {

fxs_address = _fxs address;

setETHUSDOracle (_eth usd _consumer_address)
onlyByOwnerOrGovernance {
eth usd consumer address = _eth usd consumer address;
eth usd pricer =
ChainlinkETHUSDPriceConsumer (eth usd consumer address) ;

eth usd pricer decimals = eth usd pricer.getDecimals() ;

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setOwner (_owner_ address)

onlyByOwnerOrGovernance {

owner address = _owner_ address;

Addresses are not validated before assignment or external calls, potentially allowing the

use of zero addresses and leading to unexpected behavior or vulnerabilities.

Resolution: It is recommended to add a zero-check for the passed-in address value to

prevent unexpected errors.

(3) Variable mutability: FRAXStablecoin.sol

There are "name", "symbol", "creator_address" and "decimals" variables that are defined

with immutability.

Resolution: We suggest defining the variable with the "private" keyword.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

FRAXStablecoin.sol

pool_burn_from: The pool owner can redeem the amount.

pool_mint: Pool owner can mint new FRAX.

addPool: Adds collateral addresses by only the owner or governance.
removePool: Remove a pool addressed by only the owner or governance.
setOwner: The new owner address can be set by only the owner or governance.
setRedemptionFee: The redemption fee can be set by only the owner or
governance.

setMintingFee: The minting fee can be set by only the owner or governance.
setFraxStep: The new Frax Step value can be set by only the owner or governance.
setPriceTarget: Price target value can be set by only the owner or governance.
setRefreshCooldown: Refresh Cooldown value can be set by only the owner or
governance.

setFXSAddress: FXS addresses can be by only the owner or governance.
setETHUSDOracle: Ether USD Oracle addresses can be by only the owner or
governance.

setTimelock: Timelock address can be set by only the owner or governance.
setController: Controller address can be set by only the owner or governance.
setPriceBand: Price Band value can be set by only the owner or governance.
setFRAXEthOracle: The FRAX_ETH Uniswap oracle address can be set by only
the owner or governance.

setFXSEthOracle: The FXS_ETH Uniswap oracle address can be set by only the
owner or governance.

toggleCollateralRatio: Collateral Ratio can be toggled by the Collateral Ratio Pauser

owner.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AccessControl.sol
e grantRole: Grants ‘role’ to "account’ by the admin role.
e revokeRole: Revokes ‘role’ from “account’ by the admin role.

e renounceRole: Revokes ‘role’ from the calling account by the admin role.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all
possible tests based on given objects as files. We observed 1 low and 3 informational
issues in the smart contracts. And those issues are not critical. So, it’s good to go for the

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x853d955acef822db058eb8505911ed77f175b99e#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Frax Token

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.
We did the analysis of the project altogether. Below are the results.

Slither Log >> FRAXStablecoin.sol

vent for:

ld emit an event for:

event for:

d emit an event for:

rithmetic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FRAXStablecoin.setTimelock(address).new_timelock (FRAXStablecoin.sol#6 lacks a zero-check on
- timelock address = new timelock (FRAXStablecoin.sol#
FRAXStablecoin.setController({address). controller_address {FRAXStablecoin. sol+)
- controller_address = controller_address (FRAXStablecoin.sol#6706)
FRAXStablecoin.setFRAXEthOr CIAIajj|Ass Laddress). frax oracle_addr IFRHECtablaco1n sol#6714) lacks a zero-check on
- frax_eth_olacle_ajjless = frax oracle_addr (FRAXStablecoin.sol#6715)
FRAXStablecoin.setFRAXEthOracle({address,address). weth address (FRAXStablecoin.sol# 14) lacks a zero-check on
- weth_address = weth_address (FRAXStablecoin.sol#6717)
FRAXStablecoin.setFXSEthOracle(address,address). fxs oracle addr (FRAXStablecoin.sol#6721) lacks a zero-check on
- fxs_eth oracle_address = fxs_oracle addr (FRAXStablecoin.sol#6
FRAXStablecoin.setFxSEthoracle(address,address). weth_address {FRAXStablecoin. solﬁn441n lacks a zero-check on
- weth_address = _weth_address (FRAXStablecoin.sol#6724)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

lacks a zero-check on

Modifier MigrationHelper.restricted() (; or revertModifier Migrations.re
stricted() (FRAXStablecoin.sol#2720-2722) doés not al\ays execute _; or revertReference: https //github.com/crytic/slither/wiki
/Detector-Documentation#incorrect-modifier

GovernorAlpha._gueueOrRevert(address,uint256,string,bytes,uint256) (FRAXStablecoin.sol#5765-5762) has external calls inside a 1
oop: require(bool,string)(! timelock.queuedT "hSaCTlDHS'kQCCakL:rlb tes)(abi. AncojAItalgnt alue,signature,data,eta))),Governor
Alpha::_queueOrRevert: proposal action already gqueued at eta) (FRAXStablecoin.sol#
GovernorAlpha._gueueOrRevert(address,uint256,string.bytes,uint256) iFRAXStablecoln.sol 6 768) has external calls inside a 1
timelock. queue ran5act10nlta|gAt value, Slghatul ata,eta) (FRAXStablecoin.sol#5)

ernorAlpha.execute(uint256) {FRAX tablecoin.sol#5 ETTS} has external calls inside a loop: timelock.executeTransaction(pro
posal.targets[i],proposal. .aluQS[IJ proposal.signa tU|es[i],proposal.calldatas[i],proposal.eta) {FRAXStablecoin.sol#5775)
Goue'norhlpha.canceltuiHTA 6) IFRHXCtablacoln s0l#5780-5793) has external calls inside a loop: timelock. Cancnl’r'nsactiontpropo
sal.targets[i].proposal.\ aluas[l] proposal.signatures[i], p|op05a1 Calljatas[l] proposal.eta) {FRAXStablecoin.sol#5789)
FRAXStablecoin. globaICDllatn|a1ba1u9I| (FRAXStablecoin.sol?) has QXTQIHaI Calls ins ja a loop total collatera _wvalue_
d18 = total_collateral_value_d18.add({FraxPool(f
Reference: https://github. CDWFC|vt1cf511thA|f\lklfDAtactor Docuwantatlonf¢Calls 1n51ja a- loop

Reentrancy in UniswapV2Factory.createPair(address,address) (FRAXStablecoin.sol#554
External calls:
- IUniswapV2Pair(pair).initialize(tokend,tokenl) (FRAXStablecoin.sol#5554)
State variables written after the call{s):
- allPairs.push{pair) (FRAXStablecoin.sol#5557)
Reentrancy in StakingRewards.stake(uint256) (FRAXStablecoin.sol#6108-6124):
External calls:
- TransferHelper.safeTransferFrom({address(stakingToken),msg.sender,address(this),amount) (FRAXStablecoin.sol#6113)
State variables written after the call{s):
- _unlocked_balances[msg.sender] = _unlocked_balances[msg.sender].add({amount) (FRAXStablecoin.sol#6120)
Reentrancy in StakingRewards.stakelocked{uint256,uint256) (FRAXStablecoin.sol#6126-6154):
External calls:
TransferHelper.safeTransferFrom(address({stakingToken),msg.sender,address{this),amount) (FRAXStablecoin.sol#6143)
State variables written after the call(s):
- _locked_balances[msg.sender] = _locked_balances[msg.sender].add{amount) (FRAXStablecoin.sol#6150)
Reentrancy in UniswapV2Pair.swap{uint256,uint256,address,bytes) (FRAXStablecoin.sol#5189-5217):
External calls:
- _safeTransfer(_token®, to,amountB@Out) (FRAXStablecoin.sol#5)
- (success,data) = token.call{abi.encodeWithSelector(SELECTOR,to,value)) (FRAXStablecoin.sol#5874)
- _safeTransfer{_t Dk°h1 to,amountl10ut) ({FRAXStablecoin.sol#5201)
- {success, jatal = token. Call'dbi encodeWithSelector(SELECTOR,to,value)) (FRAXStablecoin.sol#5874)
- ILHIS\GPJ;CGllQQ'tD' uniswapV2Call{msg.sender,amount@0ut,amountl0ut,data) (FRAXStablecoin.sol#5202)
State variables written after the call(s):
- _update(balanced,balancel,_reserved,_reservel) (FRAXStablecoin.sol#5215)
- priceBCumulativelast += uint256{UQ112x112.encode(_reservel).ugdiv{_reserved)} * timeElapsed (FRAXStablecoin.s
ol#5108)
- _update(balanced,balancel,_reserved,_reservel) (FRAXStablecoin.sol#5215)
- pricelCumulativeLast += uint256(UQ112x112.encode(_reserved). qulvi_reservel}) * timeElapsed (FRAXStablecoin.s
ol#5109)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

FakeCollateral.faucet() (FRAXStablecoin.sol#2416-2421) compares to a boolean constant:
-used[msg.sender] == false (FRAXStablecoin.sol#2417)

FraxPool.getCollateralPrice() (FRAXStablecoin.sol#31708-3177) compares to a boolean constant:
-collateralPricePaused == true (FRAXStablecoin.sol#3171)

FraxPool.collectRedemption{) (FRAXStablecoin.sol#3338-2368) compares to a boolean constant:
-sendCollateral == true (FRAXStablecoin.sol#33

FraxPool.collectRedemption{) (FRAXStablecoin.sol#33338-
-sendFXS == true (FRAXStablecoin.sol#3362)

FraxPool.recollateralizeFRAX{uint256,uint256) (FRAXStablecoin.sol#3375-3399) compares to a boolean constant:
-require(bool,string)(recollateralizePaused == false,Recollateralize is paused) (FRAXStablecoin.sol#

FraxPool.buyBackFXS({uint256,uint256) (FRAXStablecoin.sol#3403-3421) compares to a boolean constant:
-require(bool,string)(buyBackPaused = false,Buyback is paused) (FRAXStablecoin.sol#3404)

FraxPool.toggleCollateralPrice{) {FRAXStablecoin. 501¢344=—34=4w compares to a boolean constant:
-collateralPricePaused false iFRAXStablecoin.sol#SﬂﬂS}

FraxPool.notRedeemPaused() (FRAXStablecoin.sol#3185-3108) compares to a boolean constant:
-require{bool,string){redeemPaused == false,Redeeming is paused) (FRAXStablecoin.sol#3186)

FraxPool.notMintPaused() (FRAXStablecoin.sol#31108-3113) compares to a boolean constant:
-require(bool,string)(mintPaused == false,Minting is paused) (FRAXStablecoin.sol#3111)

FRAXShares.onlyPools() (FRAXStablecoin. 531«551173514} compares to a boolean constant:
-require({bool,string){FRAX.frax pools({msg.sender) true,Only frax pools can mint new FRAX) (FRAXStablecoin.sol#3512)

GovernorAlpha._castVote(address,uint256,bool) (FRAXStablecoin.sol#5839-5857) compares to a boolean constant:
-require{beool,string){receipt.hasVoted == false,GovernorAlpha::_castVote: voter already voted) (FRAXStablecoin.sol#5843

=0
3368) compares to a boolean constant:

3376)

Stak ingRewards . stakAIUIHtA.C (FRAXStablecoin.sol#6108-6124) compares to a boolean constant:
Zgrevllst[wsg sender] false,address has been greylisted) (FRAXStablecoin.sol#6110)
,uint256) IFRHXCtablﬁcaln sol#6126-6154) compares to a boolean constant:
quir tbool Stllhgllgl ylist[msg.sender] == false,address has been greylisted) {FRAXStablecoin.sol#6129)
CtaklthQ\aljS withdrawLocked(bytes32) IFRHECtablacoin sol#6172- i) compares to a boolean constant:

FRAXStablecoin.sol#6184)
FRAXStablecoin.refreshCollateralRatio() (FRAXStablecoin.sol#6 6628) compares to a boolean constant:
-require{bool,string){collateral_ratio_paused Collateral Ratic has been paused) (FRAXStablecoin.sol#6
FRAXStablecoin.addPool({address) (FRAXStablecoin.sol#664 649) compares to a boolean constant:
-require{bool,string){frax_pools[pool_address] Talsa address already exists) (FRAXStablecoin.sol#6646)
FRAXStablecoin. removePool(address) iFRAXStablecoin.sol. 2-6) compares to a boolean constant:
i f t|ue,ajj|ass doesn't exist already) (FRAXStablecoin.sol#6653
FRAXStablecoin.onlyPools() (FRAXStablecoin.sol# f40= f4°8‘ compares to a boolean constant:
-require(bool,string) % _pools[msg.sender] == true,Only frax pools can call this function) (FRAXStablecoin.sol#6496)
FRAXStablecoin.onlyByOwnerGovernanceOrPool() \FRuhctablncoln s0l#6505 r=14. compares to a boolean constant:
-require(bool,string)(msg.sender == owner adleSS || msg.sender == timelock_address || frax poocls[msg.sender] == true,Y
not the owner, the governance timelock, or a pool) (FRAXStableco
rence: https:ffgithub.cowfcryticjsl1the'fw'kifDAtactor Documentation#boolean- nqudlltv

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

TestSwap.USDT (FRAXStablecoin.sol#4555) is set pre-construction with a non-constant function or state va
- FakeCollateral _USDT{USDT)

TestSwap.WETH (FRAXStablecoin.sol#4556) 1is set pre-construction with a non-censtant functien or state varia
- FakeCollateral WETH{WETH)

Reference: https://qithub.com/crytic/slither/wiki/Detector-Documentation#function-1initializing-state

@
o,

call in Address.sendValue({address,uint256) (FRAXStablecoin.sol#307-3

{success) = recipient.call{value: amount}{) fFRHictablacoiu sol#%lll

call in Address._functionCallWithvalue(ad:

{success,returndata) = target.call{value: \Alha1UA~lﬂata- IFRHXCtablﬁcaln S)l«sff'

call in TransferHelper.safeApprove({address,address, u1nt4=fl {FRAXStablecoin.sol#1533-1537):
(success,data) = token.call{abi. QHCDjQulthcﬂlﬂctDI|" 3 2)) (FRAXStablecoin.sol#1535)

call in _ransferHelpel Safn ransfnllajjlass address, u1nt‘ 6) (FRAXStablecoin.sol#1539-1543):
(success,data) = token. (e 2 2 - Bxa s value)) (FRAXStablecoin.sol#1541)

call in TransferHelper.safeTran '_' rom{ address,address,address ,uint256) (tablecoin.sol#1545-1549):
(success,data) = token.call{abi.encodeWithSelector 3bg72dd, from, to =)) (FRAXStablecoin.sol#1547)
call in TransferHelper.safeTransferETH{address,uin) {FRAXStablecoin.sol#1551-1554):

(success) = to.call{value: value}(new bytes(@)) (FRAXStablecoin.sol#1)

call in Timelock.executeTransaction(address,uint256,string,bytes,uint256) (FRAXStablecoin.sol#1781-18086):
{success,returnData) = target.call lue: value}{callData) IFRHXCtablnco1n sol#18680)

call in UniswapVv2Pair._safeTransfer(address,address,uint256) (FRAXStablecoin.sol#35

{success,data) = token.call{abi.encodeWithSelector({SELECTOR,to,value)) (FRAXStablecoin.sol#
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

o ®

o

@

o

@
m oo~ =~ = = =

@

Parameter StringHelpers.parseAddr(string)._a (FRAXStablecoin.sol#7) 1is not in mixedCase

Parameter StringHelpers.strCompare(string,string)._a (FRAXStablecoin.sol#35) is not in mixedCase

Parameter StringHelpers.strCompare(string,string)._b (FRAXStablecoin.sol#35) is not in mixedCase

Parameter StringHelpers.index0f(string,string)._haystack (FRAXStablecoin.sol#58) is not in mixedCase

Parameter StringHelpers.index0f(string,string). needle (FRAXStablecoin.sol#58) is not in mixedCase

Parameter StringHelpers.strConcat(string,string)._a (FRAXStablecoin.sol#82) is not in mixedCase

Parameter StringHelpers.strConcat(string,string)._b iFRAKStablacoin sol#82) is not in mixedCase

Parameter StringHelpers.strConcat({string,string,string)._a (FRAXStablecoin.sol#86) is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string)._b (FRAXStablecoin.sol#86) is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string)._c (FRAXStablecoin.sol#86) is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string,string)._a (FRAXStablecoin.seol#90) is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string,string)._b ((Stablecoin.sol is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string,string)._c {FRAXStablecoin.sol is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string,string)._d {FRAXStablecoin.sol#98) is not in mixedCase

Parameter StringHelpers.strConcat(string,string,string,string,string)._a (FRAXStablecoin.sol#94) is not in mixedCase
Parameter StringHelpers.strConcat(string,string,string,string,string)._b (FRAXStablecoin.sol#94) is not in mixedCase
Parameter StringHelpers.strConcat(string,string,string,string,string)._c (FRAXStablecoin.sol#94) is not in mixedCase
Parameter StringHelpers.strConcat(string,string,string,string,string)._d (FRAXStablecoin.sol#94) is not in mixedCase
Parameter StringHelpers.strConcat(string,string,string,string.string)._e (FRAXStablecoin.sol#94) is not in mixedCase
Parameter StringHelpers.safeParseInt(string). a (FRAXStablecoin.sol#122) is not in mixedCase

Parameter StringHelpers.safeParseInt(string,uint256)._a (FRAXStablecoin.sol#126) is not in mixedCase

Parameter StringHelpers.safeParseInt({string,uint2 ._b (FRAXStablecoin.sol#126) is not in mixedCase

Parameter StringHelpers.parseInt(string)._a (FRAXStablecoin.sol#151) is not in mixedCase

Parameter StringHelpers.parseInt(string,uint256)._a (FRAXStablecoin.sol#155) is not in mixedCase

Parameter StringHelpers.parseInt{string,uint ._b (FRAXStablecoin.sol#155) is not in mixedCase

Parameter StringHelpers.uint2str{uint256)._1i (FRAXStablecoin.sol#188) is not in mixedCase

Struct FraxPoolLibrary.MintFF_Params (FRAXStablecoin.sol#547-557) is not in CapWords

Struct FraxPoolLibrary.BuybackFxs_Params (FRAXStablecoin.sol#559-564) is not in CapWords

Parameter FraxPoolLibrary.calcMintlt1FRAX{uint256, ? nt256).col_price (FRAXStablecoin.sol#568) is not in mixedCase
Parameter FraxPoolLibrary.calcMintltlFRAX(2 nt256).mint_fee (FRAXStablecoin.sol#568) is not in mixedCase
Piraweter FraxPoolLibrary.calcMintlt1FRAX{uint256,uin int256).collateral_amount_d18 (FRAXStablecoin.sol#568) is not in mix
edCase

Parameter FraxPoolLibrary.calcMintAlgorithmicFRAX{uint256,uint256,uint256).mint_fee (FRAXStablecoin.sol#574) is not in mixedCas
e

Parameter FraxPoolLibrary.calcMintAlgorithmicFRAX(uint256,uint256,uint256).fxs_price_usd (FRAXStablecoin.sol#574) is not in mix
edCase

Function nisi 2 20.DOMAIN_SEPARATOR() {FRAXStablecoin.sol#l) is not in mixedCase

Function [2 MIT_TYPEHASH() (FR ablecoin.sol#l) is not in mixedCase

Function i pV2Pair .DOMAIN_SEPARATOR() (FR ablecoin.sol#1138) is not in mixedCase

Function niswapV2Pair .PERMIT_TYPEHASH{) (FRAXStablecoin.sol#1139) is not in mixedCase

Function i pVZPair .MINIMUM LIQUIDITY() (FRAXStablecoin.sol#1156) is not in mixedCase

Function iswapV2Router@1.WETH() (FRAXStablecoin.sol#11908) is not in mixedCase

Struct FixedPoint.ugl12x112 (FRAXStablecoin.sol#1342-1344) is not in CapWords

Struct FixedPoint.ugl44x112 (FRAXStablecoin.sol#1348-1) is not in CapWords

Function TimelockInterface.GRACE_PERIOD{) (FRAXStablecoin.sol#1411) 1is not in mixedCase

Variable ustom._balances ({FRAXStablecoin.sol#2118) is not in mixedCase

Variable ustom._allowances (FRAXStablecoin.sol#2121) is not in mixedCase

Variable FakeCollateral.creator_address (FRAXStablecoin.sol#2395) is not in mixedCase

Variable FakeCollateral.genesis supply (FRAXStablecoin.sol#2396) is not in mixedCase

Contract FakeCollateral USDC (FRAXStablecoin.sol# is not in CapWords

Contract FakeCollateral USDT (FRAXStablecoin.sol# i) is not in CapWords

Contract FakeCollateral WETH (FRAXStablecoin.sol#2688-2697) is not in CapWords

Parameter MigrationHelper.setGovToTimeLockETA{uint256) (FRAXStablecoin.sol#2711) is not in mixedCase

Variable MigrationHelper.gov_to_timelock_eta (FRAXStablecoin.sols B1) is not in mixedCase

Variable Migrations.last_completed migration {FRAXStablecoin.sol#2718) is not in mixedCase

Parameter Owned.nominateMewOwner{address)._owner (FRAXStablecoin.sol#2743) is not in mixedCase

Parameter Pausable.setPaused(bool). paused (FRAXStablecoin.sol#2777) is not in mixedCase

Parameter RewardlestrlbutlonRectplent.setRewa|-lestrlbutloniaddressn. rewardsDistribution {FRAXStablecoin.sol#2856) 1is not in
mixedCase

Parameter FraxPool.setCollatETHOracle(address,address). collateral_weth_oracle_address (FRAXStablecoin.sol#3179) is not in mixe
dCase

Parameter FraxPool.setCollatETHOracle({address,address). weth_address (FRAXStablecoin.sol#3179) is not in mixedCase
Parameter FraxPool.mintlt1FRAX(uint256,uint2 .collateral_amount (FRAXStablecoin.sol#3186) is not in mixedCase
Parameter FraxPool.mintltlFRAX(uint256,uint256).FRAX_out_min ({FRAXStablecoin.sol#3186) is not in mixedCase

Contract UniswapPairOracle_FRAX_FXS (FRAX i is not in CapWords

Contract UniswapPairOracle FRAX_USDC {FRA) is not in CapWord

Contract UniswapPairOracle_FRAX_USDT {) tableCDlH.SDI? 4) is not in Cap

Contract UniswapPairOracle_FRAX_| (FRAXStablecoin.sol# is not in CapW

Contract UniswapPairOracle_FXS_USDC (FRAXStablecoin.sol#5 is not in Capuo|js

Contract UniswapPairOracle_| SDT (FRA ablecoin.sol# is not in CapWords

Contract UniswapPairOracle | TH (FRAXStablecoin.sol#54 : is not in CapWords

Contract UniswapPairOracle_U WETH (tablecoin.sol# 5) is not in CapWor

Contract UniswapPairOracle USDT_WETH {FRAXStablecoin.sol#5 ?) is not in CapWor

Variable UniswapV2ERC208.DOMAIN_SEPARATOR (FRAXStablecoir sol¢=44=l is not in mixedCase

Parameter UniswapV2Factory.setFeeTo(address)._feeTe (FRAXStablecoin.sol#5561) is not in mixedCase
Parameter UniswapV2Fa .se Attn|lajj|955|. féA' _Attnr fFRA ablecoin.sol#5566) is not in mixedCase
Function GovernorAlpha. i

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FRAXStablecoin.eth_usd_pricer {FRAXStablecoin.seld is not in mixedCase
FRAXStablecoin.eth_usd_pricer_decimals (FRAXStablecoin.sol#6458) is not in mixedCase
FRAXStablecoin.owner_address (FRAXStablecoin.sol#6456) is not in mixedCase
FRAXStablecoin.creator_address (FRAXStablecoin.sol#6457) is not in mixedCase
FRAXStablecoin.timelock_address (FRAXStablecoin.sol#6458) is not in mixedCase
FRAXStablecoin.controller_address (FRAXStablecoin.sol#6459) is not in mixedCase
FRAXStablecoin.fxs_address (FRAXStablecoin.sol#64608) is not in mixedCase
FRAXStablecoin.frax_eth_ocracle_address ({FRAXStablecoin.sol#6461) is not in mixedCase
FRAXStablecoin.fxs_eth_oracle_address (FRAXStablecoin.sol#) is not in mixedCase

variable FRAXStablecoin.weth_address (FRAXStablecoin.sol#6463) is not in mixedCase

Variable FRAXStablecoin.eth_usd consumer_address (FRAXStablecoin.sol#6464) is not in mixedCase

Constant FRAXStablecoin.genesis_supply (FRAXStablecoin.sol#6465) is not in UPPER_CASE_WITH_UNDERSCORES

Variable FRAXStablecoin.frax_pools_array (FRAXStablecoin.sol#6468) is not in mixedCase

Variable FRAXStablecoin.frax_pools (FRAXStablecoin.sol#6471) is not in mixedCase

variable FRAXStablecoin.glebal_collateral_ratio [FRAXStablecoin.sol#6476) is not in mixedCase

Variable FRAXStablecoin.redemption_fee (FRAXStablecoin.sol#6477) is not in mixedCase

Variable FRAXStablecoin.minting fee (FRAXStablecoin.sol#6478) is not in mixedCase

Variable pxStablecoin. frax_step (FRAXStablecoin.sol#6479) is not in mixedCase

Variable iStablecoin.refresh_cooldown {FRAXStablecoin.sol#64808) is not in mixedCase

Variable FRHXCtablacaln price_target (FRAXStablecoin.sol#6481) is not in mixedCase

Variable FRAXStablecoin.price_band (FRAXStablecoin.sol#6482) is not in mixedCase

variable XStablecoin.DEFAULT_ADMIN_ADDRESS (FRAXStablecoin.sol#6484) is not in mixedCase

Variable FRAXStablecoin.collateralfratiofpaused [FRAXStablecoin.sol#6486) is not in mixedCase

Variable FRAXStablecoin.last_call_time (FRAXStablecoin.sol#) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

Redundant expression "this (FRAXStablecoin.sol#671)" inContext (FRAXStablecoin.sol#661-674)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
Reentrancy in WETH.withdraw{uint256) (FRAXStablecoin.sol#3978-39383):
External calls:
msg.sender.transfer(wad) (FRAXStablecoin.sol#29281)
vent emitted after the callis):
Withdrawal{msg.sender,wad) (FRAXStablecoin.sol#3982)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4

ChainlinkETHUSDPriceConsumerTest.getlatestPrice() (FRAXStablecoin.sol#1653-1684) uses literals with too many digits:
(FRAXStablecoin.sol#1683)
FRAXShares.slitherConstructorConstantVariables({) {FRAXStablecoin.sol#3477-3750) uses literals with too many digits:
- genesis_supply = 18 218 (FRAXStablecoin.sol#3487)
WETH.constructor({address) (FR ablecoin.sol#3968-3971) uses literals with too many digits:
ress] = el8 (FRAXStablecoin.sol#3978)
UniswapV2Factory.createPai ress, ajleSS' (FRAXStablecoin.sol#5542-5559) uses literals with too many digits:
- bytncoja = type()(UniswapV2Pair).creationCode (FRAXStablecoin.sol#5547)
vernorAlpha.quorumvotes() {FRAXStablecoin.sol#5577) uses literals with too many digits:
- 48 12 (FRAXStablecoin.sol#5577)
vernorAlpha.proposalThreshold({) (FRAXStablecoin.sol#5580) uses literals with too many digits:
- 18 18 (FRAXStablecoin.sol#5580)
FraxPool.mintFractional FRAX{uint256,uint256,uint256) (FRAXStablecoin.sol#3223-
- require(bool, stllngllglobal CDllatQ\al ratio = COLLATERAL RATIO MAX
eeds to be between {FRAXStablecoin.sol#3228)
FraxPool.redeemFractional FRAX({uint256, u1ntLEC uint256) (FRAXStablecoin.sol#3288-3311) uses literals with too many digits:
- require{bool,string){global_, collatera _ratio = COLLATERAL_RATIO_MAX &5 global_collateral_ratio = 0,Collateral ratio n
eeds to be between and .999999) (FRAXStablecoin.sol#3284)
Stake FRAX_FXS.slith istructory aleS" (FRAXStablecoin.sol#6388)) uses Lliterals with too many digits:
- locked_stake_max_multiplier = 3@ (FRAXStablecoin. 5014
Stake_FRAX_FXS.slitherConstructorvariables() (FRAXStablecoin.sol#63 400) uses literals with too many digits:
- cr_boost_max_multiplier (FRAXStablecoin.sol#
Stake_ FRAX_USDC.slitherConstructorVar) (FRAXStablecoin.sol# #6402 6414) uses literals with too many digits:
- Tocked stake max multiplier = (FRAXStablecoin.sol#5970)
Stake_FRAX_USDC. sllthA\CDust|uctD|“'|1ab195II (FRAXStablecoin. 501#6 6414) uses literals with too many digits:
- cr_boost_max_multiplier IFRHiCtablﬂcoln 501
Stake_FRAX_WETH.slitherConstructarVar (FJZS\ uses literals with too many digits:
- locked_stake_max_multiplier tFRHhStablecoln.sol
Stake FRAX_WETH. sllthnwcoustlucto|ha| s) (FRAXStablecoin.sol#6416-6428) uses literals with too many digits:
3 {FRAXStablecoin.sol#5975)
Stake FXS WETH.slitherConstructor 25 () LFRHXStablecoln.sol.E45l 442) uses literals with too many digits:
- locked stake max multiplier = 3@ {FRAXStablecoin. sol)
Stake_FXS_WETH.slitherConstructorvari) (FRAXStablecoin.sol#64 ») uses literals with too many digits:
- cr_boost_max_multiplier = {FRAXStablecoin.sol#59
FRAXStablecoin.constructor{string,str dress,address) IFRHECtablacoln so0l#6516-6537) uses literals with too many digits:
- global_collateral_ratio = 1 {FRAXStablecoin.sol#6533)

251) uses literals with too many digits:
& global collateral ratio = 8,Collateral ratio n

&)
&

FRAXStablecoin.name (FRAXStablecoin.sol#6454) should be immutable
FRAXStablecoin.symbol (FRAXStablecoin.sol#6453) should be immutable
FakeCollateral.creator_address (FRAXStablecoin.sol#2395) should be immutable
FakeCollateral.decimals (FRAXStablecoin.sol#2394) should be immutable
FakeCollateral.genesis_supply (FRAXStablecoin.sol#2396) should be immutable
FakeCollateral.symbol {FRAXStablecoin.sol#2393) should be immutable
norAlpha.fxs (FRAXStablecoin.sol#5597) should be immutable
tionHelper.owner (FRAXStablecoin.sol#2) should be immutable

Pool_USDC.USDC_address (FRAXStablecoin.sol#
Pool_USDT.USDT_address {FRAXStablecoin.sol#5926) should be immutable

wards. rewardsToken (FRAXStablecoin.sol#5949) should be immutable

ds.stakingToken {FRAXStablecoin.sol#5958) should be immutable

.USDT {FRAXStablecoin.sol#4555) should be immutable

.USDT_address (FRAXStablecoin.sol#4552) should be immutable

.WETH {FRAXStablecoin.sol#4556) should be immutable

.WETH_address (FRAXStablecoin.sol#4553) should be immutable

wap.router (FRAXStablecoin.sol#4554) should be immutable
esting._beneficiary IFRHXCtablacoln sol#3765) should be immutable

TokenVesting. cliff {FRAXStablecoin.sol#3771) should be immutable
TokenVesting._duration (FRAXStablecoin.sol#3773) should be immutable
TokenVesting r (FRAXStablecoin.sol#3768) should be immutable
TokenVesting._r Cablé fFRuictablncain sol#%??o\ shoulﬂ be iwnutable
TokenVesting._start
UniswapV2ERC DDHHIN CEPHRH OR IFRHictablﬂcoln 501 ‘44=| should be immutable
UniswapV2Pai / (FRAXStablecoin.sol#5) should be immutable
Reference: https:ffgithub.cowfcryticfslither iki/Detector-Documentation#state riables-that-could-be-declared- immutable
FRAXStablecoin.sol analyzed (72 contracts with 84 detectors), 611 result(s) found

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program
is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

FRAXStablecoin.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases.
Additionally static analysis modules do not parse inline Assembly, this can
lead to wrong analysis results.

more

Pos: 5551:8:

Block timestamp:

Use of "block timestamp": "block.timestamp" can be influenced by miners
to a certain degree. That means that a miner can "choose" the
block.timestamp, to a certain degree, to change the outcome of a
transaction in the mined block.

more

Pos: 5279:28:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to
unexpected behavior if return value is not handled properly. Please use
Direct Calls via specifying the called contract's interface.

more

Pos: 5074:44:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function FRAXStablecoin.globalCollateralValue is
infinite: If the gas requirement of a function is higher than the block gas
limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays
in storage)

Pos: 6589:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number
of iterations in a loop can grow beyond the block gas limit which can cause
the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it
successful.

more

Pos: 5788:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas
limit, transactions can only consume a certain amount of gas. The number
of iterations in a loop can grow beyond the block gas limit which can cause
the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how
many items at maximum you can pass to such functions to make it
successful.

Pos: 4231:8:

ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more

Pos: 1129:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

FRAXShares.getPriorVotes(address,uint256) : Variables have very similar
names "checkpoints" and "nCheckpoints". Note: Modifiers are currently not

considered by this static analysis.
Pos: 3652:12:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.

invalid input or a failing external component.

maore

Pos: 6646:8:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains
the same. If you want to remove the empty position you need to shift items
manually and update the "length" property.

more

Pos: 6656:8:

Data truncated:

Division of integer values yields an integer value again. That means eg. 10/
100 = 0 instead of 0.1 since the result is an integer again. This does not

hold for division of (only) literal values since those yield rational constants.
Pos: 6240:38:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming
errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

FRAXStablecoin.sol

Compiler version 0.6.11 does not satisfy the
requirement

quotes r string literals
6:138
double quotes for string literals
40:5353
double quotes string literals
38:5370
double quotes string literals
44:5437
double quotes b)r string literal
46:5438
double quotes r string literals
27:5459
double quotes)r string literals
33:5461
double quotes string literals
46:5510
double quotes string literals
17:5513
double quotes ~ string
78:5519

d,.

&
S
E
S
@

U QWG Gt g ua
O » ® »n O 0

® » ® » O W

& a
O Owmw OmOmwOoOn O n O n

literals

o]

0

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

