
Project: Lido Dao
Website: stake. lido.fi
Platform: Ethereum
Language: Solidity
Date: April 14th, 2024

https://stake.lido.fi/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Lido Dao Token from stake.lido.fi were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 14th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The provided Solidity code is for the MiniMeToken contract, originally authored by

Jordi Baylina. The MiniMeToken is designed to be a versatile and cloneable ERC20

token that allows for decentralized upgrades and governance.

● The MiniMeToken contract provides a powerful tool for creating and managing

ERC20 tokens with advanced governance and upgrade capabilities. Its

checkpointing system and cloneable nature make it particularly suited for

decentralized applications requiring flexible token management and historical state

queries.

● The MiniMeToken Contract aims to facilitate easy cloning of the token through token

distribution at a specific block, enabling decentralized feature upgrades for DAOs

and DApps without affecting the original token.

● In the actual token contract, the default controller is the owner that deploys the

contract, so usually, this token will be deployed by a token controller contract, which

Giveth will call a "campaign."

Audit scope

Name Code Review and Security Analysis Report for Lido
Dao Smart Contract

Platform Ethereum

File MiniMeToken.sol

Smart Contract Code 0x5a98fcbea516cf06857215779fd812ca3bef1b32

Audit Date April 14th, 2024

https://etherscan.io/token/0x5a98fcbea516cf06857215779fd812ca3bef1b32#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Lido DAO Token

● Symbol: LDO

● Decimals: 18

● Version: MMT_0.1

● Total Supply: 1 billion LDO

YES, This is valid.

Security Considerations:
● Controller Authority: The controller has significant

control over the token, including the ability to transfer

tokens, mint new tokens, and burn tokens. It is crucial to

ensure that the controller is trustworthy and/or governed

by a robust DAO mechanism.

● Transfer Restrictions: Ensure the logic for

enabling/disabling transfers is thoroughly tested to

prevent unintentional locking or unlocking of tokens.

YES, This is valid.

Controller Ownership control:
● Generates `_amount` tokens.

● Burns `_amount` tokens from `_owner`.

● Enables token holders to transfer their tokens freely if

true _transfersEnabled True if transfers are allowed in

the clone.

● extract mistakenly sent tokens to this contract.

● Changes the controller of the contract.

YES, This is valid.
We suggest
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 1 medium 2 low, and 6 very low-level issues.

Investors Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version is not specified Passed
Solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Yes

Max Tax? No

Is it Anti-whale? Yes

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it Proxy? No

Can Take Ownership? Yes

Hidden Owner? No

Self Destruction? No

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Lido Dao are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Lido Dao.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Lido Dao Token smart contract code in the form of an Etherscan web

link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x5a98fcbea516cf06857215779fd812ca3bef1b32#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 createCloneToken write Optimization Refer Audit

Findings
3 MiniMeToken write Passed No Issue
4 transfer write Passed No Issue
5 transferFrom write Passed No Issue
6 doTransfer internal Passed No Issue
7 balanceOf write Warning Refer Audit

Findings
8 approve write Passed No Issue
9 allowance write Passed No Issue
10 approveAndCall write Optimization Refer Audit

Findings
11 totalSupply write Passed No Issue
12 balanceOfAt write Passed No Issue
13 totalSupplyAt write Passed No Issue
14 createCloneToken write Optimization Refer Audit

Findings
15 generateTokens write Centralization Refer Audit

Findings
16 destroyTokens write Centralization Refer Audit

Findings
17 enableTransfers write Centralization Refer Audit

Findings
18 getValueAt internal Passed No Issue
19 updateValueAtNow internal Passed No Issue
20 isContract internal Passed No Issue
21 min internal Passed No Issue
22 claimTokens write Unchecked-transfer,

Warning, Centralization
Refer Audit
Findings

23 receiveApproval write Optimization Refer Audit
Findings

24 onlyController modifier Error message for
require

Refer Audit
Findings

25 Controlled write Passed No Issue
26 changeController write Missing-events-access

-control,
Missing-zero-address-

validation,
Centralization

Refer Audit
Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Unchecked-transfer:

The return value of an external transfer call is not checked.

Resolution: Use SafeERC20, or ensure that the transfer return value is checked.

Low

(1) Missing-events-access-control:

Detecting missing events for critical access control parameters changeController() has no

event, so it is difficult to track off-chain owner changes.

Resolution:We suggest emitting an event for critical parameter changes.

(2) Missing-zero-address-validation:

Detecting missing zero address validation in changeController function. controller can

changeController without specifying the _newController, so the owner may lose ownership

of the contract.

Resolution:We suggest at first Check that the address is not zero.

Very Low / Informational / Best practices:

(1) Use latest solidity version:

Use the latest solidity version that protects against any compiler level bugs.

Resolution: Please use versions greater than 0.8.7.

(2) Solc-version:

Solc frequently releases new compiler versions. Using an old version prevents access to

new Solidity security checks. We also recommend avoiding complex pragma statements.

Resolution: Deploy with any of the following Solidity versions:

0.8.18 The recommendations take into account:

● Risks related to recent releases

● Risks of complex code generation changes

● Risks of new language features

● Risks of known bugs

Use a simple pragma version that allows any of these versions. Consider using the latest

version of Solidity for testing.

(3) Warning:

Use of the "var" keyword is deprecated.

Resolution:We suggest please use proper variable names.

https://docs.soliditylang.org/en/v0.4.20/control-structures.html#assignment

https://docs.soliditylang.org/en/v0.4.20/control-structures.html#assignment

Invoking events without the "emit" prefix is deprecated.

Resolution:We suggest please use proper guidelines of solidity smart contract.

(4) Optimization:

Public functions that are never called by the contract should be declared external, and its

immutable parameters should be located in calldata to save gas.

Declare these function external:

● receiveApproval()

● approveAndCall()

● createCloneToken()

● createCloneToken()

Resolution: Use the external attribute for functions never called from the contract, and

change the location of immutable parameters to calldata to save gas.

(5) Centralization:

In the contract onlyController as a owner authority on the following function:

● changeController

● generateTokens

● destroyTokens

● enableTransfers

● claimTokens

Any compromise to these accounts may allow the hacker to manipulate the project through

these functions.

Resolution: We suggest carefully managing the owner account's private key to avoid any

potential risks of being hacked. In general, we strongly recommend centralized privileges

or roles in the protocol to be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practice.

(6) Error message for require():

Detects missing error message in required statement.

Resolution: We suggest writing a proper message in require(), Otherwise the user can't

identify the actual problem why the transaction is not successful.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

MiniMeToken.sol

● generateTokens: Generates `_amount` tokens by the controller owner.

● destroyTokens: Burns `_amount` tokens from `_owner` by the controller owner.

● enableTransfers: Enables token holders to transfer their tokens freely if true by the

controller owner.

● _transfersEnabled True if transfers are allowed in the clone by the controller owner.

● claimTokens: extract mistakenly sent tokens to this contract by the controller owner.

● changeController: Changes the controller of the contract by the controller owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We had observed 1 medium, 2 low and 6

informational issues in the smart contracts. And those issues are not critical. So, it’s good
to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/token/0x5a98fcbea516cf06857215779fd812ca3bef1b32#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Lido Dao

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> MiniMeToken.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

MiniMeToken.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

MiniMeToken.sol

Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:4
Provide an error message for require
Pos: 9:59
Visibility modifier must be first in list of modifiers
Pos: 71:69
Explicitly mark visibility of state
Pos: 5:120
Explicitly mark visibility of state
Pos: 5:123
Explicitly mark visibility of state
Pos: 5:126
Provide an error message for require
Pos: 9:181
Provide an error message for require
Pos: 13:198
Provide an error message for require
Pos: 9:218
Provide an error message for require
Pos: 9:220
Provide an error message for require
Pos: 13:230
Provide an error message for require
Pos: 9:238
Provide an error message for require
Pos: 9:258
Provide an error message for require
Pos: 9:264
Provide an error message for require
Pos: 13:269
Provide an error message for require
Pos: 9:294
Visibility modifier must be first in list of modifiers
Pos: 74:413
Provide an error message for require
Pos: 9:415
Provide an error message for require
Pos: 9:417
Visibility modifier must be first in list of modifiers
Pos: 73:429
Provide an error message for require
Pos: 9:431

Provide an error message for require
Pos: 9:433
Visibility modifier must be first in list of modifiers
Pos: 69:447
Visibility modifier must be first in list of modifiers
Pos: 81:459
Visibility modifier must be first in list of modifiers
Pos: 49:501
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:506
Visibility modifier must be first in list of modifiers
Pos: 39:514
Fallback function must be simple
Pos: 5:521
Provide an error message for require
Pos: 9:522
Provide an error message for require
Pos: 9:524
Visibility modifier must be first in list of modifiers
Pos: 57:535

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

